1887
Volume 35, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

For the first time, this study presents interpretations of alluvial fans in spectral decomposition RGB Blends, analysed in seismic time slices from the Middle Triassic to Lower Jurassic stratigraphical interval of the Horda Platform (northern North Sea). The time slices record a shifting alluvial fan front, fluvial variability, uplift and erosion and reveals depositional elements that may set the common conception of the geological development of this area during the Early–Middle Mesozoic up for discussion. Results show that the Upper Triassic Lunde Formation in the eastern margin of the Horda Platform was characterized by the deposition of coalesced alluvial fans. A variable extent of the fan front through the Upper Triassic is linked to interplaying allogenic factors: uplifted source areas in the aftermath of Early–Middle Triassic rifting determined sediment availability; climate transitioning from arid to semi‐humid, with increasingly fluctuating precipitation, controlled sedimentation, and run‐off; provenance dictated bulk sedimentology and affected prevailing alluvial processes. An overall retreat of the fan system through the Late Triassic coincided with a significant change in landscape characteristics at the transition into the overlying Statfjord Group. Uplift and initial tilting of the Horda Platform caused landscape degradation and the formation of plateaus and incised valleys, contemporaneous with increased humidity and marine transgression, forming estuaries. The shift in depositional style has implications for reservoir properties, creating complexity and heterogeneity in terms of facies distribution and connectivity, which may benefit potential CO storage. Upper Triassic alluvial fan development in the Horda Platform (northern North Sea) depicted through spectral decomposition of seismic time slices Enhanced level of seismic stratigraphic interpretation with RGB blending Impact of allogenic factors on alluvial depositional development Implications of alluvial variability on reservoir properties

,

The development of the Horda Platform during the Middle Triassic to Lower Jurassic depicted through spectral decomposition of seismic time slices. The interpretation level has been significantly enhanced with RGB blending, which reveal the buildout and retreats of an alluvial fan complex, fluvial variability in the alluvial plain, and the eventual uplift and transgression of the area leading to the establishment of a coastline and formation of incised valleys and estuaries. Changing climate concurrent to hinterland degradation resulted in the alluvial variability and changing landscape morphology, which have a significant impact on reservoir properties.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12799
2023-11-12
2025-05-17
Loading full text...

Full text loading...

/deliver/fulltext/bre/35/6/bre12799.html?itemId=/content/journals/10.1111/bre.12799&mimeType=html&fmt=ahah

References

  1. Abels, H. A., Kraus, M. J., & Gingerich, P. D. (2013). Precession‐scale cyclicity in the fluvial lower Eocene Willwood formation of the Bighorn Basin, Wyoming (USA). Sedimentology, 60(6), 1467–1483. https://doi.org/10.1111/sed.12039
    [Google Scholar]
  2. Arche, A., & López‐Gómez, J. (2014). The Carnian pluvial event in Western Europe: New data from Iberia and correlation with the Western Neotethys and Eastern North America–NW Africa regions. Earth‐Science Reviews, 128, 196–231. https://doi.org/10.1016/j.earscirev.2013.10.012
    [Google Scholar]
  3. Bell, R., Jackson, C. A.‐L., Whipp, P. S., &Clements, B. (2014). Strain migration during multiphase extension: Observations from the northern North Sea. Tectonics (Washington, D.C.), 33(10), 1936–1963. https://doi.org/10.1002/2014TC003551
    [Google Scholar]
  4. Bertoldi, W., Zanoni, L., & Tubino, M. (2009). Planform dynamics of braided streams. Earth Surface Processes and Landforms, 34(4), 547–557.
    [Google Scholar]
  5. Blair, T. C. (1987). Tectonic and hydrologic controls on cyclic alluvial fan, fluvial, and lacustrine rift‐basin sedimentation, Jurassic‐lowermost cretaceous Todos Santos formation, Chiapas, Mexico. Journal of Sedimentary Petrology, 57(5), 845–862. https://doi.org/10.1306/212F8C83‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  6. Blair, T. C. (1999). Cause of dominance by sheetflood vs. debris‐flow processes on two adjoining alluvial fans, Death Valley, California. Sedimentology, 46(6), 1015–1028. https://doi.org/10.1046/j.1365‐3091.1999.00261.x
    [Google Scholar]
  7. Blair, C. (2003). Features and origin of the giant Cucomungo Canyon alluvial fan, Eureka Valley California. Special Papers (Geological Society of America), 370, 105. https://doi.org/10.1130/0‐8137‐2370‐1.105
    [Google Scholar]
  8. Blair, T. C., & McPherson, J. G. (1994). Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. Journal of Sedimentary Research, 64(3a), 450–489.
    [Google Scholar]
  9. Blair, T. C., & McPherson, J. G. (2009). Processes and forms of alluvial fans. In Geomorphology of desert environments (pp. 413–467). Springer. https://doi.org/10.1007/978‐1‐4020‐5719‐9_14
    [Google Scholar]
  10. Bourquin, S., Guillocheau, F., & Péron, S. (2009). Braided rivers within an arid alluvial plain (example from the Lower Triassic, western German Basin): Recognition criteria and expression of stratigraphic cycles. Sedimentology, 56(7), 2235–2264. https://doi.org/10.1111/j.1365‐3091.2009.01078.x
    [Google Scholar]
  11. Boyd, R., Dalrymple, R. W., & Zaitlin, B. A. (2006). Estuarine and incised‐valley facies models. In H. W.Posamentier & R. G.Walker (Eds.), Facies models revisited (pp. 171–235). SEPM special publication No. 84. Society for Sedimentary Geology.
    [Google Scholar]
  12. Bridge, J. S. (2009). Rivers and floodplains: Forms, processes, and sedimentary record. John Wiley & Sons.
    [Google Scholar]
  13. Brown, A. R., Partyka, G. A., Bush, M. D., Garossino, P. G., & Gutowski, P. R. (2011). Spectral decomposition. In Interpretation of three‐dimensional seismic data (pp. 283–308). Society of Exploration Geophysicists and American Association of Petroleum Geologists.
    [Google Scholar]
  14. Calvès, G., Calderon, Y., Roso, V., Bonnel, C., Roddaz, M., Brusset, S., Baby, P., & Clift, P. D. (2019). Past Amazon Basin fluvial systems, insight into the Cenozoic sequences using seismic geomorphology (Marañón Basin, Peru). Journal of South American Earth Sciences, 90, 440–452. https://doi.org/10.1016/j.jsames.2018.12.019
    [Google Scholar]
  15. Cesta, J., & Ward, D. J. (2016). Timing and nature of alluvial fan development along the Chajnantor Plateau, northern Chile. Geomorphology (Amsterdam, Netherlands), 273, 412–427. https://doi.org/10.1016/j.geomorph.2016.09.003
    [Google Scholar]
  16. Chamock, M. A., Kristiansen, I., Ryseth, A., & Fenton, J. P. G. (2001). Sequence stratigraphy of the Lower Jurassic Dunlin Group, Northern North Sea. In Norwegian petroleum society special publications (Vol. 10, pp. 145–174). Elsevier. https://doi.org/10.1016/S0928‐8937(01)80012‐6
    [Google Scholar]
  17. Charlton, R. (2007). Fundamentals of fluvial geomorphology. Routledge.
    [Google Scholar]
  18. Chopra, S., & Marfurt, K. J. (2015, October). Choice of mother wavelets in CWT spectral decomposition. In SEG International Exposition and Annual Meeting (pp. SEG‐2015). SEG.
    [Google Scholar]
  19. Clevis, Q., de Boer, P., & Wachter, M. (2003). Numerical modelling of drainage basin evolution and three‐dimensional alluvial fan stratigraphy. Sedimentary Geology, 163(1–2), 85–110. https://doi.org/10.1016/S0037‐0738(03)00174‐X
    [Google Scholar]
  20. Corfu, F., & Andersen, T. B. (2002). U‐Pb ages of the Dalsfjord complex, SW Norway, and their bearing on the correlation of allochthonous crystalline segments of the Scandinavian Caledonides. International Journal of Earth Sciences : Geologische Rundschau, 91(6), 955–963. https://doi.org/10.1007/s00531‐002‐0298‐3
    [Google Scholar]
  21. Coward, M. P., Dewey, J., Hempton, M., & Holroyd, J. (2003). Tectonic evolution. In D.Evans (Ed.), The millennium atlas: Petroleum geology of the Central and Northern North Sea (pp. 17–33). Geological Society.
    [Google Scholar]
  22. Dreyer, T., & Wiig, M. (1995). Reservoir architecture of the Cook Formation on the Gullfaks field based on sequence stratigraphic concepts. In Norwegian petroleum society special publications (Vol. 5, pp. 109–142). Elsevier.
    [Google Scholar]
  23. E.U. Commission. (2018). Communication from the commission to the European parliament, the European Council, the Council, the European economic and social committee, the committee of the regions and the European investment bank. A clean planet for all. A European strategic long‐term vision for a prosperous, modern, competitive and climate neutral economy. Modern Competitive and Climate Neutral Economy. Brussels, 28.11.2018, pp. 15.
    [Google Scholar]
  24. Evans, R., Mory, A. J., & Tait, A. M. (2007). An outcrop gamma ray study of the Tumblagooda Sandstone, Western Australia. Journal of Petroleum Science & Engineering, 57(1), 37–59. https://doi.org/10.1016/j.petrol.2006.02.004
    [Google Scholar]
  25. Faerseth, R. B. (1996). Interaction of Permo‐Triassic and Jurassic extensional fault‐blocks during the development of the northern North Sea. Journal of the Geological Society, 153(6), 931–944. https://doi.org/10.1144/gsjgs.153.6.0931
    [Google Scholar]
  26. Fraser, S., Robinson, A., Johnson, H., Underhill, J., & Kadolsky, D. (2003). Upper jurassic. In D.Evans, C.Graham, A.Armour, & P.Bathurst (Eds.), The millennium atlas: Petroleum geology of the central and northern North Sea (pp. 157–189). The Geological Society of London.
    [Google Scholar]
  27. Frostick, L. E., Linsey, T. K., & Reid, I. (1992). Tectonic and climatic control of Triassic sedimentation in the Beryl Basin, northern North Sea. Journal of the Geological Society, 149(1), 13–26. https://doi.org/10.1144/gsjgs.149.1.0013
    [Google Scholar]
  28. Furnes, H., Skjerlie, K. P., Pedersen, R. B., Andersen, T. B., Stillman, C. J., Suthren, R. J., Tysseland, M., & Garmann, L. B. (1990). The Solund–Stavfjord Ophiolite Complex and associated rocks, west Norwegian Caledonides: geology, geochemistry and tectonic environment. Geological Magazine, 127(3), 209–224.
    [Google Scholar]
  29. Gao, Ji, Y., Wu, C., Jin, J., Ren, Y., Yang, Z., Liu, D., Huan, Z., Duan, X., Zhou, Y., & Bristow, C. (2020). Facies and depositional model of alluvial fan dominated by episodic flood events in arid conditions: An example from the Quaternary Poplar Fan, north‐western China. Sedimentology, 67(4), 1750–1796. https://doi.org/10.1111/sed.12684
    [Google Scholar]
  30. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12(3–4), 195–218. https://doi.org/10.1111/j.1365‐2117.2000.00121.x
    [Google Scholar]
  31. Gibbins, J., & Chalmers, H. (2008). Carbon capture and storage. Energy Policy, 36(12), 4317–4322. https://doi.org/10.1016/j.enpol.2008.09.058
    [Google Scholar]
  32. Gibling, M. R., Tandon, S. K., Sinha, R., & Jain, M. (2005). Discontinuity‐bounded alluvial sequences of the southern Gangetic Plains, India; aggradation and degradation in response to monsoonal strength. Journal of Sedimentary Research, 75(3), 369–385. https://doi.org/10.2110/jsr.2005.029
    [Google Scholar]
  33. Goldsmith, P. J., Hudson, G., & Van Venn, P. (2003). Triassic. In D.Evans, C.Graham, A.Armour, & P.Bathurst (Eds.), The millennium atlas: Petroleum geology of the central and northern North Sea (pp. 105–127). The Geological Society of London.
    [Google Scholar]
  34. Gough, A. (2015). Controls on sediment architecture and deposition in arid continental basin margin systems. Doctoral thesis. University of Keele.
    [Google Scholar]
  35. Harvey, A. M., Mather, A. E., & Stokes, M. (2005). Alluvial fans: geomorphology, sedimentology, dynamics—Introduction. A review of alluvial‐fan research. Geological Society, London, Special Publications, 251(1), 1–7.
    [Google Scholar]
  36. He, J., Garzanti, E., Dinis, P., Yang, S., & Wang, H. (2020). Provenance versus weathering control on sediment composition in tropical monsoonal climate (South China)—1. Geochemistry and Clay Mineralogy. Chemical Geology, 558, 119860. https://doi.org/10.1016/j.chemgeo.2020.119860
    [Google Scholar]
  37. Heeremans, M., & Faleide, J. I. (2004). Late Carboniferous‐Permian tectonics and magmatic activity in the Skagerrak, Kattegat and the North Sea. Geological Society Special Publication, 223(1), 157–176. https://doi.org/10.1144/GSL.SP.2004.223.01.07
    [Google Scholar]
  38. Hochuli, P. A., & Vigran, J. O. (2010). Climate variations in the Boreal Triassic—Inferred from palynological records from the Barents Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1), 20–42. https://doi.org/10.1016/j.palaeo.2009.08.013
    [Google Scholar]
  39. Hossain, S. (2020). Application of seismic attribute analysis in fluvial seismic geomorphology. Journal of Petroleum Exploration and Production Technology, 10(3), 1009–1019. https://doi.org/10.1007/s13202‐019‐00809‐z
    [Google Scholar]
  40. Howlett, D. M., Gawthorpe, R. L., Ge, Z., Rotevatn, A., & Jackson, C. A.‐L. (2021). Turbidites, topography and tectonics: Evolution of submarine channel‐lobe systems in the salt‐influenced Kwanza Basin, offshore Angola. Basin Research, 33(2), 1076–1110. https://doi.org/10.1111/bre.12506
    [Google Scholar]
  41. Husmo, T., Hamar, G. P., Høiland, O., Johannessen, E. P., Rømuld, A., Spencer, A., & Titterton, R. (2003). Lower and middle Jurassic. In The millennium atlas: Petroleum geology of the central and northern North Sea (pp. 129–155). The Geological Society of London.
    [Google Scholar]
  42. Iglauer, S. (2018). Optimum storage depths for structural CO2 trapping. International Journal of Greenhouse Gas Control, 77, 82–87. https://doi.org/10.1016/j.ijggc.2018.07.009
    [Google Scholar]
  43. Issautier, B., Fillacier, S., Le Gallo, Y., Audigane, P., Chiaberge, C., & Viseur, S. (2013). Modelling of CO2 injection in fluvial sedimentary heterogeneous reservoirs to assess the impact of geological heterogeneities on CO2 storage capacity and performance. Energy Procedia, 37, 5181–5190. https://doi.org/10.1016/j.egypro.2013.06.434
    [Google Scholar]
  44. Jarsve, E. M., Maast, T. E., Gabrielsen, R. H., Faleide, J. I., Nystuen, J. P., & Sassier, C. (2014). Seismic stratigraphic subdivision of the Triassic succession in the Central North Sea; integrating seismic reflection and well data. Journal of the Geological Society, 171(3), 353–374. https://doi.org/10.1144/jgs2013‐056
    [Google Scholar]
  45. Jo, H. R., Rhee, C. W., & Chough, S. K. (1997). Distinctive characteristics of a streamflow‐dominated alluvial fan deposit: Sanghori area, Kyongsang Basin (Early Cretaceous), southeastern Korea. Sedimentary Geology, 110(1‐2), 51–79.
    [Google Scholar]
  46. Johannessen, K. C., Kohlmann, F., Ksienzyk, A. K., Dunkl, I., & Jacobs, J. (2013). Tectonic evolution of the SW Norwegian passive margin based on low‐temperature thermochronology from the innermost Hardangerfjord area. Norsk Geologisk Tidsskrift, 93(3–4), 243–260.
    [Google Scholar]
  47. Kaufmann, R., Gasda, S. E., Elenius, M., Skurtveit, E., Choi, J. C., Braathen, A., Mulrooney, M., Sundal, A., & Wangen, M. (2018). Large‐scale CO2‐injection in Smeaheia‐FME SUCCESS Synthesis Report (Vol. 8).
    [Google Scholar]
  48. Koenemann, F. H. (1993). Tectonics of the Scandian orogeny and the Western Gneiss Region in southern Norway. Geologische Rundschau, 82, 696–717.
    [Google Scholar]
  49. Lauritsen, H., Kassold, S., Meneguolo, R., &Furre, A. (2018). Assessing potential influence of nearby hydrocarbon production on CO2 storage at Smeaheia. In Fifth CO2 geological storage workshop (Vol. 2018, No. 1, pp. 1–5). EAGE Publications BV.
    [Google Scholar]
  50. Lengler, U., De Lucia, M., & Kühn, M. (2010). The impact of heterogeneity on the distribution of CO 2: Numerical simulation of CO 2 storage at Ketzin. International Journal of Greenhouse Gas Control, 4(6), 1016–1025. https://doi.org/10.1016/j.ijggc.2010.07.004
    [Google Scholar]
  51. Leonard, J. S., Whipple, K. X., & Heimsath, A. M. (2023). Isolating climatic, tectonic, and lithologic controls on mountain landscape evolution. Science Advances, 9(3), eadd8915. https://doi.org/10.1126/sciadv.add8915
    [Google Scholar]
  52. Lervik, K. (2006). Triassic lithostratigraphy of the northern North Sea Basin. Norsk Geologisk Tidsskrift, 86(2), 93.
    [Google Scholar]
  53. Li, W., Yue, D., Wu, S., Wang, W., Li, J., Wang, W., & Tian, T. (2019). Characterizing meander belts and point bars in fluvial reservoirs by combining spectral decomposition and genetic inversion. Marine and Petroleum Geology, 105, 168–184. https://doi.org/10.1016/j.marpetgeo.2019.04.015
    [Google Scholar]
  54. Lothe, A. E., Bergmo, P. E., & Grimstad, A. A. (2019). Storage resources for future European CCS deployment; A roadmap for a Horda CO2 storage hub, offshore Norway. In Proceedings of the 10th Trondheim Conference on CO2 Capture, Transport and Storage; TCCS‐10, 2019. SINTEF Academic Press.
    [Google Scholar]
  55. Luzon, A. (2005). Oligocene–Miocene alluvial sedimentation in the northern Ebro Basin, NE Spain: Tectonic control and palaeogeographical evolution. Sedimentary Geology, 177(1), 19–39. https://doi.org/10.1016/j.sedgeo.2005.01.013
    [Google Scholar]
  56. Müller, R., Nystuen, J. P., & Wright, V. P. (2004). Pedogenic mud aggregates and paleosol development in ancient dryland river systems; criteria for interpreting alluvial mudrock origin and floodplain dynamics. Journal of Sedimentary Research, 74(4), 537–551. https://doi.org/10.1306/010704740537
    [Google Scholar]
  57. Mangerud, G., & Rømuld, A. (1991). Spathian‐Anisian (Triassic) palynology at the Svalis Dome, southwestern Barents Sea. Review of Palaeobotany and Palynology, 70(3), 199–216. https://doi.org/10.1016/0034‐6667(91)90002‐K
    [Google Scholar]
  58. Marjanac, T., & Steel, R. J. (1997). Dunlin Group sequence stratigraphy in the northern North Sea; A model for Cook Sandstone deposition. AAPG Bulletin, 81(2), 276–292. https://doi.org/10.1306/522B4307‐1727‐11D7‐8645000102C1865D
    [Google Scholar]
  59. Martinius, A. W., Elfenbein, C., & Keogh, K. J. (2014). Applying accommodation versus sediment supply ratio concepts to stratigraphic analysis and zonation of a fluvial reservoir. In From depositional systems to sedimentary successions on the Norwegian continental margin (Vol. 9781118920466, pp. 101–125). John Wiley & Sons, Ltd.https://doi.org/10.1002/9781118920435.ch4
    [Google Scholar]
  60. Mathewson, C. C., Keaton, J. R., & Santi, P. M. (1990). Role of bedrock ground water in the initiation of debris flows and sustained post‐flow stream discharge. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 27(5), 256. https://doi.org/10.1016/0148‐9062(90)92731‐S
    [Google Scholar]
  61. McDonnell, J. J. (1990). The in influence of macropores on debris flow initiation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 28(4), A249. https://doi.org/10.1016/0148‐9062(91)90999‐3
    [Google Scholar]
  62. McKie, T. (2014). Climatic and tectonic controls on Triassic dryland terminal fluvial system architecture, central North Sea. In From depositional systems to sedimentary successions on the Norwegian continental margin (Vol. 9781118920466, pp. 19–57). John Wiley & Sons, Ltd.https://doi.org/10.1002/9781118920435.ch2
    [Google Scholar]
  63. McKie, T., Jolley, S. J., & Kristensen, M. B. (2010). Stratigraphic and structural compartmentalization of dryland fluvial reservoirs: Triassic Heron Cluster, Central North Sea. Geological Society Special Publication, 347(1), 165–198. https://doi.org/10.1144/SP347.11
    [Google Scholar]
  64. McKie, T., & Williams, B. (2009). Triassic palaeogeography and fluvial dispersal across the northwest European Basins. Geological Journal, 44(6), 711–741.
    [Google Scholar]
  65. Mejía, A. I., & Niemann, J. D. (2008). Identification and characterization of dendritic, parallel, pinnate, rectangular, and trellis networks based on deviations from planform self‐similarity. Journal of Geophysical Research: Earth Surface, 113(F2).
    [Google Scholar]
  66. Meneguolo, R., Sundal, A., Martinius, A. W., Veselovsky, Z., Cullum, A., & Milovanova, E. (2022). Impact of the lower Jurassic dunlin group depositional elements on the Aurora CO2 storage site, EL001, northern North Sea, Norway. International Journal of Greenhouse Gas Control, 119, 103723. https://doi.org/10.1016/j.ijggc.2022.103723
    [Google Scholar]
  67. Millard, T. H., Hogan, D. L., Wilford, D. J., & Roberts, B. (2010). A method to assess fluvial fan channel networks, with a preliminary application to fans in coastal British Columbia. Geomorphology, 115, 286–293.
    [Google Scholar]
  68. Morad, S., De Ros, L. F., Nystuen, J. P., & Bergan, M. (1998). Carbonate diagenesis and porosity evolution in sheet‐flood sandstones: Evidence from the Middle and Lower Lunde members (Triassic) in the snorre field, Norwegian North Sea. Special Publication‐International Association of Sedimentologists, 26, 53–86.
    [Google Scholar]
  69. Moscariello, A. (2018). Alluvial fans and fluvial fans at the margins of continental sedimentary basins: Geomorphic and sedimentological distinction for geo‐energy exploration and development. Geological Society Special Publication, 440(1), 215–243. https://doi.org/10.1144/SP440.11
    [Google Scholar]
  70. Mueller, S., Hounslow, M. W., & Kürschner, W. M. (2016). Integrated stratigraphy and palaeoclimate history of the Carnian pluvial event in the Boreal Realm; new data from the Upper Triassic Kapp Toscana Group in central Spitsbergen (Norway). Journal of the Geological Society, 173(1), 186–202. https://doi.org/10.1144/jgs2015‐028
    [Google Scholar]
  71. Mulrooney, M. J., Osmond, J. L., Skurtveit, E., Faleide, J. I., & Braathen, A. (2020). Structural analysis of the Smeaheia fault block, a potential CO2 storage site, northern Horda Platform, North Sea. Marine and Petroleum Geology, 121, 104598. https://doi.org/10.1016/j.marpetgeo.2020.104598
    [Google Scholar]
  72. Mutti, M., & Weissert, H. (1995). Triassic monsoonal climate and its signature in Ladinian‐Carnian carbonate platforms (southern Alps, Italy). Journal of Sedimentary Research, 65(3), 357–367. https://doi.org/10.1306/D4268252‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  73. Nazeer, A., Abbasi, S. A., & Solangi, S. H. (2016). Sedimentary facies interpretation of Gamma Ray (GR) log as basic well logs in Central and Lower Indus Basin of Pakistan. Geodesy and Geodynamics, 7(6), 432–443.
    [Google Scholar]
  74. Norsk Hydro Produksjon . (1984). Final Well Report, Well 31/6‐1. Norsk Hydro Produksjon.
    [Google Scholar]
  75. NPD . (2022). Factpages. Norwegian Petroleum Directorate (NPD)https://factpages.npd.no
    [Google Scholar]
  76. Nystuen, J. P., & Fält, L. M. (1995). Upper Triassic‐Lower Jurassic reservoir rocks in the Tampen Spur area, Norwegian North Sea. In Norwegian petroleum society special publications (Vol. 4, pp. 135–179). Elsevier Science & Technology. https://doi.org/10.1016/S0928‐8937(06)80041‐X
    [Google Scholar]
  77. Nystuen, J. P., Kjemperud, A. V., Müller, R., Adestål, V., & Schomacker, E. R. (2014). Late Triassic to Early Jurassic climatic change, northern North Sea region. In From depositional systems to sedimentary successions on the Norwegian continental margin (pp. 59–99). John Wiley & Sons, Ltd.https://doi.org/10.1002/9781118920435.ch3
    [Google Scholar]
  78. Nystuen, J. P., Knarud, R., Jorde, K., & Stanley, K. O. (1989). Correlation of Triassic to Lower Jurassic sequences, snorre field and adjacent areas, northern North Sea. In J. D.Collinson (Ed.), Correlation in hydrocarbon exploration (pp. 273–289). Graham & Trotman for the Norwegian Petroleum Society.
    [Google Scholar]
  79. Odinsen, T., Christiansson, P., Gabrielsen, R. H., Faleide, J. I., & Berge, A. M. (2000). The geometries and deep structure of the northern North Sea rift system. Dynamics of the Norwegian Margin, 167(1), 41–57. https://doi.org/10.1144/GSL.SP.2000.167.01.03
    [Google Scholar]
  80. Odinsen, T., Reemst, P., Van Der Beek, P., Faleide, J. I., & Gabrielsen, R. H. (2000). Permo‐Triassic and Jurassic extension in the northern North Sea: Results from tectonostratigraphic forward modelling. Dynamics of the Norwegian Margin, 167(1), 83–103. https://doi.org/10.1144/GSL.SP.2000.167.01.05
    [Google Scholar]
  81. Orre, L. T., & Folkestad, A. (2019). Depositional environments of the Early to Middle Triassic northern North Sea in a syn‐rift to a post‐rift setting. Geological Society Special Publication, 494(1), 411–431. https://doi.org/10.1144/SP494‐2019‐64
    [Google Scholar]
  82. Osmundsen, P. T., & Andersen, T. B. (2001). The middle Devonian basins of western Norway: Sedimentary response to large‐scale transtensional tectonics?Tectonophysics, 332(1–2), 51–68. https://doi.org/10.1016/S0040‐1951(00)00249‐3
    [Google Scholar]
  83. Othman, A. A., Fathy, M., & Maher, A. (2016). Use of spectral decomposition technique for delineation of channels at solar gas discovery, offshore West Nile Delta, Egypt. Egyptian Journal of Petroleum, 25(1), 45–51. https://doi.org/10.1016/j.ejpe.2015.03.005
    [Google Scholar]
  84. Paredes, J. M., Giordano, S. R., Olazábal, S. X., Valle, M. N., Allard, J. O., Foix, N., & Tunik, M. A. (2020). Climatic control on stacking and connectivity of fluvial successions: Upper Cretaceous Bajo Barreal formation of the Golfo San Jorge basin, Patagonia. Marine and Petroleum Geology, 113, 104116. https://doi.org/10.1016/j.marpetgeo.2019.104116
    [Google Scholar]
  85. Partyka, G., Gridley, J., & Lopez, J. (1999). Interpretational applications of spectral decomposition in reservoir characterization. Leading Edge (Tulsa, Okla.), 18(3), 353–357, 360. https://doi.org/10.1190/1.1438295
    [Google Scholar]
  86. Peyton, L., Bottjer, R., &Partyka, G. (1998). Interpretation of incised valleys using new 3‐D seismic techniques; a case history using spectral decomposition and coherency. Leading Edge (Tulsa, Okla.), 17(9), 1294–1296, 1298. https://doi.org/10.1190/1.1438127
    [Google Scholar]
  87. Phillips, T. B., Fazlikhani, H., Gawthorpe, R. L., Fossen, H., Jackson, C. L., Bell, R. E., Faleide, J. I., & Rotevatn, A. (2019). The influence of structural inheritance and multiphase extension on rift development, the northern North Sea. Tectonics (Washington, D.C.), 38, 4099–4126. https://doi.org/10.1029/2019TC005756
    [Google Scholar]
  88. Phillips Petroleum Company Norway . (1996). PL 205 Licence Group, Well 32/4–1. Final Well Report. Philips Petroleum Company Norway.
    [Google Scholar]
  89. Preto, N., Kustatscher, E., & Wignall, P. B. (2010). Triassic climates—State of the art and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1), 1–10. https://doi.org/10.1016/j.palaeo.2010.03.015
    [Google Scholar]
  90. Prosser, S. (1993). Rift‐related linked depositional systems and their seismic expression. Geological Society Special Publication, 71(1), 35–66. https://doi.org/10.1144/GSL.SP.1993.071.01.03
    [Google Scholar]
  91. Ragnhildstveit, J., & Helliksen, D. (1997). Bergen geological map. NGU.
    [Google Scholar]
  92. Ravnås, R., Nøttvedt, A., Steel, R. J., & Windelstad, J. (2000). Syn‐rift sedimentary architectures in the northern North Sea. Dynamics of the Norwegian Margin, 167(1), 133–177. https://doi.org/10.1144/GSL.SP.2000.167.01.07
    [Google Scholar]
  93. Riber, L., Dypvik, H., & Sørlie, R. (2015). Altered basement rocks on the Utsira High and its surroundings, Norwegian North Sea. Norwegian Journal of Geology, 95(1), 57–89.
    [Google Scholar]
  94. Rykkelid, E., & Fossen, H. (1992). Composite fabrics in mid‐crustal gneisses: observations from the Øygarden Complex, West Norway Caledonides. Journal of structural geology, 14(1), 1–9.
    [Google Scholar]
  95. Saeid, E., Kendall, C., Kellogg, J., De Keyser, T., Hafiz, I., Albesher, Z., & Martinez, J. A. (2022). A depositional model for the Carbonera Formation, Llanos Foothills, Colombia, from workflow of a sequence stratigraphic framework and interpretation from well‐log stacking patterns, well cuttings, and three‐dimensional seismic spectral decomposition. AAPG Bulletin, 106(2), 321–353. https://doi.org/10.1306/08092118015
    [Google Scholar]
  96. Schlische, R. W., & Anders, M. H. (1996). Stratigraphic effects and tectonic implications of the growth of normal faults and extensional basins. Special Papers (Geological Society of America), 303, 183–203. https://doi.org/10.1130/0‐8137‐2303‐5.183
    [Google Scholar]
  97. Sellwood, B. W., & Valdes, P. J. (2006). Mesozoic climates: General circulation models and the rock record. Sedimentary Geology, 190(1), 269–287. https://doi.org/10.1016/j.sedgeo.2006.05.013
    [Google Scholar]
  98. Serck, C. S., & Braathen, A. (2019). Extensional fault and fold growth: Impact on accommodation evolution and sedimentary infill. Basin Research, 31(5), 967–990.
    [Google Scholar]
  99. Serres, B., & Roy, A. G. (1990). Flow direction and branching geometry at junctions in dendritic river networks. The Professional Geographer, 42, 194–201. https://doi.org/10.1111/j.0033‐0124.1990.00194.x
    [Google Scholar]
  100. Shanley, K. W., & McCabe, P. J. (1994). Perspectives on the sequence stratigraphy of continental strata. AAPG Bulletin, 78(4), 544–568.
    [Google Scholar]
  101. Slagstad, T., Davidsen, B., & Daly, J. S. (2011). Age and composition of crystalline basement rocks on the Norwegian continental margin; offshore extension and continuity of the Caledonian‐Appalachian orogenic belt. Journal of the Geological Society, 168(5), 1167–1185. https://doi.org/10.1144/0016‐76492010‐136
    [Google Scholar]
  102. Smith, N. D., Cross, T. A., Dufficy, J. P., & Clough, S. R. (1989). Anatomy of an avulsion. Sedimentology, 36(1), 1–23. https://doi.org/10.1111/j.1365‐3091.1989.tb00817.x
    [Google Scholar]
  103. Smyrak‐Sikora, A., Johannessen, E. P., Olaussen, S., Sandal, G., & Braathen, A. (2019). Sedimentary architecture during Carboniferous rift initiation; the arid Billefjorden Trough, Svalbard. Journal of the Geological Society, 176(2), 225–252. https://doi.org/10.1144/jgs2018‐100
    [Google Scholar]
  104. Statoil . (2016). Feasibility Study. Planning and Design of a CO2 Storage Facility on the Norwegian Continental Shelf. OED 15/1785. Document A—Underground Report Smeaheia (Internal report—Available on request only).
  105. Steel, R., & Ryseth, A. (1990). The Triassic—Early Jurassic succession in the northern North Sea: Megasequence stratigraphy and intra‐Triassic tectonics. Geological Society Special Publication, 55(1), 139–168. https://doi.org/10.1144/GSL.SP.1990.055.01.07
    [Google Scholar]
  106. Steel, R. J. (1993). Triassic‐Jurassic megasequence stratigraphy in the northern North Sea: Rift to post‐rift evolution. Geological Society, London, Petroleum Geology Conference Series, 4(1), 299–315. https://doi.org/10.1144/0040299
    [Google Scholar]
  107. Stokes, M., Nash, D. J., & Harvey, A. M. (2007). Calcrete ‘fossilisation’ of alluvial fans in SE Spain: The roles of groundwater, pedogenic processes and fan dynamics in calcrete development. Geomorphology (Amsterdam), 85(1), 63–84. https://doi.org/10.1016/j.geomorph.2006.03.020
    [Google Scholar]
  108. Strecker, U., Steidtmann, J. R., & Smithson, S. B. (1999). A conceptual tectonostratigraphic model for seismic facies migrations in a fluvio‐lacustrine extensional basin. AAPG Bulletin, 83(1), 43–61. doi:10.1306/00AA99F8-1730-11D7-8645000102C1865D
    [Google Scholar]
  109. Sun, X., Cao, Y., Liu, K., Alcalde, J., Cabello, P., Travé, A., Cruset, D., & Gomez‐Rivas, E. (2023). Effects of fluvial sedimentary heterogeneity on CO2 geological storage: Integrating storage capacity, injectivity, distribution and CO2 phases. Journal of Hydrology (Amsterdam), 617, 128936. https://doi.org/10.1016/j.jhydrol.2022.128936
    [Google Scholar]
  110. Sundal, A., Nystuen, J. P., Rørvik, K. L., Dypvik, H., & Aagaard, P. (2016). The Lower Jurassic Johansen Formation, northern North Sea–depositional model and reservoir characterization for CO2 storage. Marine and Petroleum Geology, 77, 1376–1401.
    [Google Scholar]
  111. Terrizzano, C. M., Morabito, E. G., Christl, M., Likerman, J., Tobal, J., Yamin, M., & Zech, R. (2017). Climatic and tectonic forcing on alluvial fans in the southern Central Andes. Quaternary Science Reviews, 172, 131–141. https://doi.org/10.1016/j.quascirev.2017.08.002
    [Google Scholar]
  112. Torrado, L., Mann, P., & Bhattacharya, J. (2014). Application of seismic attributes and spectral decomposition for reservoir characterization of a complex fluvial system: Case study of the Carbonera Formation, Llanos foreland basin, Colombia. Geophysics, 79(5), B221–B230.
    [Google Scholar]
  113. Vollset, J., & Doré, A. G. (1984). A revised Triassic and Jurassic lithostratigraphic nomenclature for the Norwegian North Sea. Oljedirektoratet.
    [Google Scholar]
  114. Würtzen, C. L., Braathen, A., Poyatos‐Moré, M., Mulrooney, M. J., Line, L. H., & Midtkandal, I. (2022). The impact of faulting in depocentre development, facies assemblages, drainage patterns, and provenance in continental half‐graben basins: An example from the Fanja Basin of Oman. Basin Research., 35, 705–743. https://doi.org/10.1111/bre.12731
    [Google Scholar]
  115. Würtzen, C. L., Osmond, J. L., Faleide, J. I., Nystuen, J. P., Anell, I. M., & Midtkandal, I. (2021). Syn‐ to post‐rift alluvial basin fill: Seismic stratigraphic analysis of Permian‐Triassic deposition in the Horda platform, Norway. Basin Research, 34(2), 883–912. https://doi.org/10.1111/bre.12644
    [Google Scholar]
  116. Wagreich, M., & Strauss, P. E. (2005). Source area and tectonic control on alluvial‐fan development in the Miocene Fohnsdorf intramontane basin, Austria. Alluvial Fans: Geomorphology, Sedimentology, Dynamics, 251(1), 207–216. https://doi.org/10.1144/GSL.SP.2005.251.01.14
    [Google Scholar]
  117. Walker, R. G. (1976). Facies model‐3. Sandy fluvial systems.
    [Google Scholar]
  118. Wang, P. X. (2009). Global monsoon in a geological perspective. Chinese Science Bulletin, 54, 1113–1136.
    [Google Scholar]
  119. White, N., & McKenzie, D. (1988). Formation of the “steer's head” geometry of sedimentary basins by differential stretching of the crust and mantle. Geology (Boulder), 16(3), 250–253. https://doi.org/10.1130/0091‐7613(1988)0162.3.CO;2
    [Google Scholar]
  120. Ying, W., & Bifan, Z. (1992). Conversion mechanism of gravelly soil to viscous debris flow. In D. E.Walling, T. R.Davies, & B.Hasholt (Eds.), Erosion, debris flows, and environment in mountain regions (Vol. 209, pp. 315–323). International Association of Hydrological Sciences Publication.
    [Google Scholar]
  121. Young, R. W., Young, A. R. M., Price, D. M., & Wray, R. A. L. (2002). Geomorphology of the Namoi alluvial plain, northwestern New South Wales. Australian Journal of Earth Sciences, 49(3), 509–523. https://doi.org/10.1046/j.1440‐0952.2002.00934.x
    [Google Scholar]
  122. Yuan, Zhao, J., Luo, X., Zhou, Y., &Wang, S. (2020). Laboratory study of short term response of alluvial fans to changes in input water flow and sediment supply under lateral confinement. In Estuaries and coastal zones in times of global change (pp. 677–690). Springer. https://doi.org/10.1007/978‐981‐15‐2081‐5_39
    [Google Scholar]
  123. Zanella, E., & Coward, M. P. (2003). Structural framework (chapter 4). In D.Evans, C.Graham, A.Armour, & P.Bathurst (Eds.), The Millenium Atlas: Petroleum geology of the Central and Northern North Sea. The Geological Society of London.
    [Google Scholar]
  124. Zhou, Y., Ji, Y., Pigott, J. D., & Wan, L. (2014). Tectono‐stratigraphy of Lower Cretaceous Tanan sub‐basin, Tamtsag Basin, Mongolia: sequence architecture, depositional systems and controls on sediment infill. Marine and Petroleum Geology, 49, 176–202.
    [Google Scholar]
/content/journals/10.1111/bre.12799
Loading
/content/journals/10.1111/bre.12799
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error