1887
Volume 35, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

[

Updated Early Cretaceous configuration of south‐western Gondwana (base plate model after Müller et al., 2019) including the distribution of crustal types in the Falkland Plateau Basin (FPB). Black lines—faults; red lines—dykes; double red line and double arrows—oceanic ridge and spreading direction; grey lines—extent of Chon Aike and Karoo—Dronning Maud Land—Ferrar volcanics. Question marks in the FPB oceanic domain mark its uncertain southern extent and relation to the Weddell Sea oceanic crust. Brown shades mark the interpreted intruded and underplated continental crust in the FPB. EANT, East Antarctica; FB, Fitzroy sub‐basin; FPB, Falkland Plateau Basin; MB, Malvinas Basin; MEB, Maurice Ewing Bank; NFB, North Falkland Basin; NSR, North Scotia Ridge; NWMP, Northern Weddell Magnetic Province; OB, Outeniqua Basin; oc. c., oceanic crust; SDR, seaward dipping reflectors; SJB, San Julian Basin; SJoB, San Jorge Basin; VB, Volunteer sub‐basin. NWMP from Jordan et al. (2017); East Antarctica dykes after Curtis et al. (2008); Patagonia dykes after Rapalini and Lopez de Luchi (2000); Falkland Islands onshore dykes after Stone et al. (2009); SNFB and NFB faults after Lohr and Underhill (2015) and Stanca et al. (2019); FB and VB dykes and faults after Stanca et al. (2021); South America fault network after Lovecchio et al. (2019); Karoo lavas extent after Jourdan et al. (2007); Chon Aike lavas extent after Bouhier et al. (2017); DML‐Ferrar lavas extent after Elliot (1992) and Elliot et al. (1999); Outeniqua Basin fault network after Paton et al. (2006) and Parsiegla et al. (2009).

, Abstract

Continental break‐up can be oftentimes associated with intracontinental wrenching that can lead to the generation of transform margins and transform marginal plateaus. The wrenching phase can be accompanied by complicated processes, which result in heterogeneous structural and crustal architectures. This makes understanding the evolution of such tectonic settings challenging. The Falkland Plateau is an example of a transform marginal plateau where regional wrenching accompanied the incipient stages of Gondwanan continental break‐up to result in a mosaic of crustal types underlying its largest basin: the Falkland Plateau Basin (FPB). The uncertainties in crustal boundaries have led to several models for the evolution of the plateau, which hinder the development of a reliable plate reconstruction of Southern Gondwana. We integrate seismic reflection, gravity and magnetic data to propose an updated crustal architecture of the FPB. The results show that extended continental crust underlies the basin in the west and north. The eastern and central parts consist of a juxtaposition of intruded and underplated continental crust which transitions southwards to a thick oceanic domain. The basin is crosscut by three main NE–SW trending shear zones which facilitated the development of the contrasting crustal and structural domains interpreted across the plateau. This integrated reassessment of the FPB provides new insights into the tectonic evolution of the plateau, the deformation associated with wrenching and transform margin formation and our understanding of the tectono‐stratigraphic evolution of such areas.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12800
2023-11-12
2025-05-12
Loading full text...

Full text loading...

/deliver/fulltext/bre/35/6/bre12800.html?itemId=/content/journals/10.1111/bre.12800&mimeType=html&fmt=ahah

References

  1. Adie, R. J. (1952). The position of the Falkland Islands in a reconstruction of Gondwanaland. Geological Magazine, 89(6), 401–410. https://doi.org/10.1017/S0016756800068102
    [Google Scholar]
  2. Aldiss, D. T., & Edwards, E. J. (1999). The geology of the Falkland Islands. British Geological Survey Technical Report WC/99/10 Retrieved from http://nora.nerc.ac.uk/507542/
  3. Amante, C., & Eakins, B. W. (2009). ETOPO1 1 arc‐minute global relief model: Procedures, data sources and analysis. NOAA technical memorandum NESDIS NGDC‐24. National Geophysical Data Center, NOAA. 10.7289/V5C8276M
  4. Attoh, K., Brown, L., Guo, J., & Heanlein, J. (2004). Seismic stratigraphic record of transpression and uplift on the Romanche transform margin, offshore Ghana. Tectonophysics, 378(1–2), 1–16. https://doi.org/10.1016/j.tecto.2003.09.026
    [Google Scholar]
  5. Baristeas, N., Anka, Z., di Primio, R., Rodriguez, J. F., Marchal, D., & Dominguez, F. (2013). New insights into the tectono‐stratigraphic evolution of the Malvinas Basin, offshore of the southernmost Argentinean continental margin. Tectonophysics, 604, 280–295. https://doi.org/10.1016/j.tecto.2013.06.009
    [Google Scholar]
  6. Barker, P. F. (1999). Evidence for a volcanic rifted margin and oceanic crustal structure for the Falkland Plateau Basin. Journal of the Geological Society, 156, 889–900. https://doi.org/10.1144/gsjgs.156.5.0889
    [Google Scholar]
  7. Barker, P. F., Dalziel, I. W. D., Dinkelman, M. G., Elliot, D. H., Gombos, A. M., Jr., Lonardi, A., Plafker, G., Tarney, J., Thompson, R. W., Tjalsma, R. C., von der Borch, C. C., Wise, S. W., Jr., Harris, W. K., & Sliter, W. V. (1977). Site 330. Ocean Drilling ProgramOcean Drilling Program. Texas A and M University. https://doi.org/10.2973/dsdp.proc.36.106.1977
    [Google Scholar]
  8. Basile, C. (2015). Transform continental margins—Part 1: Concepts and models. Tectonophysics, 661, 1–10. https://doi.org/10.1016/j.tecto.2015.08.034
    [Google Scholar]
  9. Basile, C., & Allemand, P. (2002). Erosion and flexural uplift along transform faults. Geophysical Journal International, 151(2), 646–653. https://doi.org/10.1046/j.1365‐246X.2002.01805.x
    [Google Scholar]
  10. Beckinsale, R. D., Tarney, J., Darbyshire, D. P. F., & Humm, M. J. (1977). Re‐Sr and K‐Ar age determinations on samples of the Falkland plateau basement at site 330, DSDP. Initial Reports of the Deep Sea Drilling Project, 71(36), 923–927.
    [Google Scholar]
  11. Ben‐Avraham, Z., Hartnady, C. J. H., & Malan, J. A. (1993). Early tectonic extension between the Agulhas Bank and the Falkland Plateau due to the rotation of the Lafonia microplate. Earth and Planetary Science Letters, 117(1–2), 43–58. https://doi.org/10.1016/0012‐821X(93)90116‐Q
    [Google Scholar]
  12. Bouhier, V. E., Franchini, M. B., Caffe, P. J., Maydagán, L., Rapela, C. W., & Paolini, M. (2017). Petrogenesis of volcanic rocks that host the world‐class Ag–Pb Navidad District, North Patagonian Massif: Comparison with the Jurassic Chon Aike Volcanic Province of Patagonia, Argentina. Journal of Volcanology and Geothermal Research, 338, 101–120. https://doi.org/10.1016/j.jvolgeores.2017.03.016
    [Google Scholar]
  13. Bry, M., White, N., Singh, S., England, R., & Trowell, C. (2004). Anatomy and formation of oblique continental collision: South Falkland basin. Tectonics, 23(4), 1–20. https://doi.org/10.1029/2002TC001482
    [Google Scholar]
  14. Chemale, F., Ramos, V. A., Naipauer, M., Girelli, T. J., & Vargas, M. (2018). Age of basement rocks from the Maurice Ewing Bank and the Falkland/Malvinas Plateau. Precambrian Research, 314, 28–40. https://doi.org/10.1016/j.precamres.2018.05.026
    [Google Scholar]
  15. Cordell, L., & Grauch, V. J. S. (1985). Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In W. J.Hinze (Ed.), The utility of regional gravity and magnetic anomaly maps (pp. 181–197). Society of Exploration Geophysicists.
    [Google Scholar]
  16. Crowell, J. C., & Frakes, L. A. (1972). Late Paleozoic Glaciation: Part V, Karoo Basin, South Africa. Geological Society of America Bulletin, 83, 2887–2912.
    [Google Scholar]
  17. Cunningham, A. P., Barker, P. F., & Tomlinson, J. S. (1998). Tectonics and sedimentary environment of the North Scotia Ridge region revealed by side‐scan sonar. Journal of the Geological Society, London, 155, 941–956.
    [Google Scholar]
  18. Curtis, M. L., & Hyam, D. M. (1998). Late Palaeozoic to Mesozoic structural evolution of the Falkland Islands: A displaced segment of the Cape Fold Belt. Journal of the Geological Society, 155(1), 115–129. https://doi.org/10.1144/gsjgs.155.1.0115
    [Google Scholar]
  19. Curtis, M. L., Riley, T. R., Owens, W. H., Leat, P. T., & Duncan, R. A. (2008). The form, distribution and anisotropy of magnetic susceptibility of Jurassic dykes in H.U. Sverdrupfjella, Dronning Maud Land, Antarctica. Implications for dyke swarm emplacement. Journal of Structural Geology, 30(11), 1429–1447. https://doi.org/10.1016/j.jsg.2008.08.004
    [Google Scholar]
  20. Dalziel, I. W. D., Lawver, L. A., & Murphy, J. B. (2000). Plumes, orogenesis, and supercontinental fragmentation. Earth and Planetary Science Letters, 178(1–2), 1–11. https://doi.org/10.1016/S0012‐821X(00)00061‐3
    [Google Scholar]
  21. Dalziel, I. W. D., Lawver, L. A., Norton, I. O., & Gahagan, L. M. (2013). The scotia arc: Genesis, evolution, global significance. Annual Review of Earth and Planetary Sciences, 41(1), 767–793. https://doi.org/10.1146/annurev‐earth‐050212‐124155
    [Google Scholar]
  22. Del Ben, A., & Mallardi, A. (2004). Interpretation and choronostratigraphic mapping of multichannel seismic reflection profile I95167, Eastern Falkland Plateau (South Atlantic). Marine Geology, 209, 347–361.
    [Google Scholar]
  23. Dodd, T. J. H., & McCarthy, D. J. (2016). The Berkley Arch: Seaward Dipping Reflectors or a missing slice of the Cape Fold Thrust Belt? The Roberts Conference Passive Margins https://doi.org/10.13140/RG.2.2.13836.97928
  24. Du Toit, A. L. (1937). Our wandering continents. Oliver and Boyd.
    [Google Scholar]
  25. Eagles, G. (2000). Modelling plate kinematics in the Scotia Sea. [PhD Thesis], University of Leeds.
  26. Eagles, G., & Eisermann, H. (2020). The Skytrain plate and tectonic evolution of Southwest Gondwana since Jurassic times. Scientific Reports, 10(1), 1–17. https://doi.org/10.1038/s41598‐020‐77070‐6
    [Google Scholar]
  27. Elliot, D. H. (1992). Jurassic magmatism and tectonism associated with Gondwanaland break‐up: An Antarctic perspective. Geological Society, London, Special Publications, 68(68), 165–184. https://doi.org/10.1144/GSL.SP.1992.068.01.11
    [Google Scholar]
  28. Elliot, D. H., Fleming, T. H., Kyle, P. R., & Foland, K. A. (1999). Long‐distance transport of magmas in the Jurassic Ferrar Large Igneous Province, Antarctica. Earth and Planetary Science Letters, 167(1–2), 89–104. https://doi.org/10.1016/S0012‐821X(99)00023‐0
    [Google Scholar]
  29. Ewing, J. I., Ludwig, W. J., Ewing, M., & Eittreim, S. L. (1971). Structure of the Scotia Sea and Falkland Plateau. Journal of Geophysical Research, 76(29), 7118–7137.
    [Google Scholar]
  30. Frakes, L. A., & Crowell, J. C. (1967). Facies and paleogeography of Late Paleozoic Diamictite, Falkland Islands. Geological Society of America Bulletin, 78, 37–58.
    [Google Scholar]
  31. Galeazzi, J. S. (1998). Structural and stratigraphic evolution of the Western Malvinas Basin, Argentina. AAPG Bulletin, 82(4), 596–636.
    [Google Scholar]
  32. GEBCO Compilation Group . (2020). GEBCO 2020 Grid. https://doi.org/10.5285/a29c5465‐b138‐234d‐e053‐6c86abc040b9
  33. Heine, C., Zoethout, J., & Müller, R. D. (2013). Kinematics of the South Atlantic rift. Solid Earth, 4(2), 215–253. https://doi.org/10.5194/se‐4‐215‐2013
    [Google Scholar]
  34. Hodgkinson, R. (2002). Structural studies in the Falkland Islands, South Atlantic. [Unpublished PhD Thesis], University of Birmingham, UK.
  35. Hole, M. J., Ellam, R. M., Macdonald, D. I. M., & Kelley, S. P. (2016). Gondwana break‐up related magmatism in the Falkland Islands. Journal of the Geological Society, 173(1), 108–126. https://doi.org/10.1144/jgs2015‐027
    [Google Scholar]
  36. Hubbard, R. J., Pape, J., & Roberts, D. G. (1985a). Depositional sequence mapping as a technique to establish tectonic and stratigraphic framework and evaluate hydrocarbon potential on a passive continental margin. In O. R.Berg & D.Woolverton (Eds.), Seismic stratigraphy II: An integrated approach to hydrocarbon exploration (Vol. 39, pp. 79–91). American Association of Petroleum Geologists Memoir.
    [Google Scholar]
  37. Hubbard, R. J., Pape, J., & Roberts, D. G. (1985b). Depositional sequence mapping to illustrate the evolution of a passive continental margin. In O. R.Berg & D.Woolverton (Eds.), Seismic stratigraphy II: An integrated approach to hydrocarbon exploration (Vol. 39, pp. 93–115). American Association of Petroleum Geologists Memoir.
    [Google Scholar]
  38. Jordan, T. A., Ferraccioli, F., & Leat, P. T. (2017). New geophysical compilations link crustal block motion to Jurassic extension and strike‐slip faulting in the Weddell Sea rift system of West Antarctica. Gondwana Research, 42, 29–48. https://doi.org/10.1016/j.gr.2016.09.009
    [Google Scholar]
  39. Jourdan, F., Féraud, G., Bertrand, H., & Watkeys, M. K. (2007). From flood basalts to the inception of oceanization: Example from the 40Ar/39Ar high‐resolution picture of the Karoo large igneous province. Geochemistry, Geophysics, Geosystems, 8(2), 1–20. https://doi.org/10.1029/2006GC001392
    [Google Scholar]
  40. Kimbell, G. S., & Richards, P. C. (2008). The three‐dimensional lithospheric structure of the Falkland Plateau region based on gravity modelling. Journal of the Geological Society, 165(4), 795–806. https://doi.org/10.1144/0016‐76492007‐114
    [Google Scholar]
  41. König, M., & Jokat, W. (2006). The Mesozoic breakup of the Weddell Sea. Journal of Geophysical Research Solid Earth, 111(12), 1–28. https://doi.org/10.1029/2006JB004035
    [Google Scholar]
  42. Lawrence, S. R., Johnson, M., Tubb, S. R., & Marshallsea, S. J. (1999). Tectono‐stratigraphic evolution of the North Falkland region. Geological Society, London, Special Publications, 153(1), 409–424. https://doi.org/10.1144/GSL.SP.1999.153.01.25
    [Google Scholar]
  43. Lohr, T., & Underhill, J. R. (2015). Role of rift transection and punctuated subsidence in the development of the North Falkland Basin. Petroleum Geoscience, 21(2–3), 85–110. https://doi.org/10.1144/petgeo2014‐050
    [Google Scholar]
  44. Loncke, L., Roest, W. R., Klingelhoefer, F., Basile, C., Graindorge, D., Heuret, A., Marcaillou, B., Museur, T., Fanget, A. S., & Mercier de Lépinay, M. (2020). Transform marginal plateaus. Earth‐Science Reviews, 203, 102940. https://doi.org/10.1016/j.earscirev.2019.102940
    [Google Scholar]
  45. Lorenzo, J. M., & Mutter, J. C. (1988). Seismic stratigraphy and tectonic evolution of the Falkland/Malvinas Plateau. Revista Brasileira de Geociencias, 18(2), 191–200.
    [Google Scholar]
  46. Lovecchio, J. P., Naipauer, M., Cayo, L. E., Rohais, S., Giunta, D., Flores, G., Gerster, R., Bolatti, N. D., Joseph, P., Valencia, V. A., & Ramos, V. (2019). Rifting evolution of the Malvinas basin, offshore Argentina: New constrains from zircon U–Pb geochronology and seismic characterization. Journal of South American Earth Sciences, 95, 102253. https://doi.org/10.1016/j.jsames.2019.102253
    [Google Scholar]
  47. Ludwig, W. J. (1983). Geologic framework of the Falkland plateau. Initial Reports of the Deep Sea Drilling Project, 71, 281–293. https://doi.org/10.2973/dsdp.proc.71.107.1983
    [Google Scholar]
  48. Ludwig, W. J., Windisch, C. C., Houtz, R. E., & Ewing, J. I. (1978). Structure of Falkland plateau and offshore Tierra del Fuego, Argentina. In J. S.Watkins, L.Montadert, & P. W.Dickerson (Eds.), Geological and geophysical investigations of continental margins (Vol. 29, pp. 125–137). American Association of Petroleum Geologists Memoir.
    [Google Scholar]
  49. Macdonald, D., Gomez‐Perez, I., Franzese, J., Spalletti, L., Lawver, L., Gahagan, L., Dalziel, I., Thomas, C., Trewin, N., Hole, M., & Paton, D. (2003). Mesozoic break‐up of SW Gondwana: Implications for regional hydrocarbon potential of the southern South Atlantic. Marine and Petroleum Geology, 20, 287–308.
    [Google Scholar]
  50. Marshall, J. E. A. (1994). The Falkland Islands: A key element in Gondwana paleogeography. Tectonics, 13(2), 499–514.
    [Google Scholar]
  51. Mascle, J., & Blarez, E. (1987). Evidence for transform margin evolution from the Ivory Coast‐Ghana continental margin. Nature, 326, 378–381.
    [Google Scholar]
  52. Mercier de Lépinay, M., Loncke, L., Basile, C., Roest, W. R., Patriat, M., Maillard, A., & De Clarens, P. (2016). Transform continental margins—Part 2: A worldwide review. Tectonophysics, 693, 96–115. https://doi.org/10.1016/j.tecto.2016.05.038
    [Google Scholar]
  53. Miller, H. G., & Singh, V. (1994). Potential field tilt—A new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213–217.
    [Google Scholar]
  54. Mitchell, C., Ellam, R. M., & Cox, K. G. (1999). Mesozoic dolerite dykes of the Falkland Islands: Petrology, petrogenesis and implications for geochemical provinciality in Gondwanaland low‐Ti basaltic rocks. Journal of the Geological Society, 156, 901–916.
    [Google Scholar]
  55. Mitchell, C., Taylor, G. K., Cox, K. G., & Shaw, J. (1986). Are the Falkland Islands a rotated microplate?Nature, 319(6049), 131–134. https://doi.org/10.1038/319131a0
    [Google Scholar]
  56. Mitchum, R. M., Jr., Vail, P. R., & Sangree, J. B. (1977). Seismic stratigraphy and global changes of sea level: Part 6, stratigraphic interpretation of seismic reflection patterns in depositional sequences. In C. E.Payton (Ed.), Seismic stratigraphy: Applications to hydrocarbon exploration (Vol. 26, pp. 117–134). American Association of Petroleum Geologists Memoir.
    [Google Scholar]
  57. Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., Tetley, M., Heine, C., Le Breton, E., Liu, S., Russell, S. H. J., Yang, T., Leonard, J., & Gurnis, M. (2019). A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics, 38(6), 1884–1907. https://doi.org/10.1029/2018TC005462
    [Google Scholar]
  58. Mussett, A. E., & Taylor, G. K. (1994). 40Ar‐39Ar ages for dykes from the Falkland Islands with implications for the break‐up of southern Gondwanaland. Journal of the Geological Society, 151(1), 79–81. https://doi.org/10.1144/gsjgs.151.1.0079
    [Google Scholar]
  59. NOAA National Geophysical Data Center . (2009). ETOPO1 1 Arc‐Minute Global Relief Model. NOAA National Centers for Environmental Information.
    [Google Scholar]
  60. Oruç, B., & Keskinsezer, A. (2008). Structural setting of the northeastern Biga Peninsula (Turkey) from tilt derivatives of gravity gradient tensors and magnitude of horizontal gravity components. Pure and Applied Geophysics, 165, 1913–1927.
    [Google Scholar]
  61. Parsiegla, N., Stankiewicz, J., Gohl, K., Ryberg, T., & Uenzelmann‐Neben, G. (2009). Southern African continental margin: Dynamic processes of a transform margin. Geochemistry, Geophysics, Geosystems, 10(3), 1–20. https://doi.org/10.1029/2008GC002196
    [Google Scholar]
  62. Paton, D. A., Macdonald, D. I. M., & Underhill, J. R. (2006). Applicability of thin or thick skinned structural models in a region of multiple inversion episodes: Southern South Africa. Journal of Structural Geology, 28(11), 1933–1947. https://doi.org/10.1016/j.jsg.2006.07.002
    [Google Scholar]
  63. Ramos, V. A. (2008). Patagonia: A Paleozoic continent adrift?Journal of South American Earth Sciences, 26(3), 235–251. https://doi.org/10.1016/j.jsames.2008.06.002
    [Google Scholar]
  64. Ramos, V. A., Cingolani, C., Junior, F. C., Naipauer, M., & Rapalini, A. (2017). The Malvinas (Falkland) islands revisited: The tectonic evolution of southern Gondwana based on U‐Pb and Lu‐Hf detrital zircon isotopes in the Paleozoic cover. Journal of South American Earth Sciences, 76, 320–345. https://doi.org/10.1016/j.jsames.2016.12.013
    [Google Scholar]
  65. Rapalini, A. E., & Lopez De Luchi, M. (2000). Paleomagnetism and magnetic fabric of Middle Jurassic dykes from Western Patagonia, Argentina. Physics of the Earth and Planetary Interiors, 120(1), 11–27. https://doi.org/10.1016/S0031‐9201(00)00140‐0
    [Google Scholar]
  66. Richards, P. C., & Fannin, N. G. T. (1997). Geology of the North Falkland Basin. Journal of Petroleum Geology, 20(2), 165–183. https://doi.org/10.1111/j.1747‐5457.1997.tb00771.x
    [Google Scholar]
  67. Richards, P. C., Gatliff, R. W., Quinn, M. F., & Fannin, N. G. T. (1996). Petroleum potential of the Falkland Islands offshore area. Journal of Petroleum Geology, 19(2), 161–182. https://doi.org/10.1111/j.1747‐5457.1996.tb00423.x
    [Google Scholar]
  68. Richards, P. C., Gatliff, R. W., Quinn, M. F., Fannin, N. G. T., & Williamson, J. P. (1996). The geological evolution of the Falkland Islands continental shelf. Geological Society, London, Special Publications, 108(1), 105–128. https://doi.org/10.1144/GSL.SP.1996.108.01.08
    [Google Scholar]
  69. Richards, P. C., & Hillier, B. V. (2000). Post‐drilling analysis of the North Falkland Basin‐Part 1: Tectono‐stratigraphic framework. Journal of Petroleum Geology, 23(3), 253–272. https://doi.org/10.1111/j.1747‐5457.2000.tb01019.x
    [Google Scholar]
  70. Richards, P. C., Stone, P., Kimbell, G. S., McIntosh, W. C., & Phillips, E. R. (2013). Mesozoic magmatism in the Falkland Islands (South Atlantic) and their offshore sedimentary basins. Journal of Petroleum Geology, 36(1), 61–73.
    [Google Scholar]
  71. Riley, T. R., Jordan, T. A. R. M., Leat, P. T., Curtis, M. L., & Millar, I. L. (2020). Magmatism of the Weddell Sea rift system in Antarctica: Implications for the age and mechanism of rifting and early stage Gondwana breakup. Gondwana Research, 79, 185–196. https://doi.org/10.1016/j.gr.2019.09.014
    [Google Scholar]
  72. Rockhopper Exploration Plc . (2012). [In‐house presentation] The East Falklands Basin. Retrieved from http://ww7.investorrelations.co.uk/fogl/uploads/companypresentations/TheEastFalklandsBasin‐2012DrillingProgramme.pdf
  73. Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., & Francis, R. (2014). New global marine gravity model from CryoSat‐2 and Jason‐1 reveals buried tectonic structure. Science, 346(6205), 65–67. https://doi.org/10.1126/science.1258213
    [Google Scholar]
  74. Schimschal, C. M., & Jokat, W. (2017). The crustal structure of the continental margin east of the Falkland Islands. Tectonophysics, 724‐725, 234–253. https://doi.org/10.1016/j.tecto.2017.11.034
    [Google Scholar]
  75. Schimschal, C. M., & Jokat, W. (2019a). The crustal structure of the Maurice Ewing Bank. Tectonophysics, 769, 228190. https://doi.org/10.1016/j.tecto.2019.228190
    [Google Scholar]
  76. Schimschal, C. M., & Jokat, W. (2019b). The Falkland Plateau in the context of Gondwana breakup. Gondwana Research, 68, 108–115. https://doi.org/10.1016/j.gr.2018.11.011
    [Google Scholar]
  77. Schreider, A. A., Mazo, E. L., Bulychev, A. A., Schreider, A. A., Gilod, D. A., & Kulikova, M. P. (2011). The structure of the Falkland Basin's lithosphere. Oceanology, 51(5), 866–875. https://doi.org/10.1134/S0001437011050171
    [Google Scholar]
  78. Scrutton, R. A. (1979). On sheared passive continental margins. Tectonophysics, 59, 293–305.
    [Google Scholar]
  79. Stanca, R. M., McCarthy, D. M., Paton, D. A., Hodgson, D. J., & Mortimer, E. J. (2021). The tectono‐stratigraphic architecture of the Falkland Plateau basin; implications for the evolution of the Falkland Islands microplate. Gondwana Research, 105, 320–342.
    [Google Scholar]
  80. Stanca, R. M., Paton, D. A., Hodgson, D. M., McCarthy, D. J., & Mortimer, E. J. (2019). A revised position for the rotated Falkland Islands microplate. Journal of the Geological Society London, 176, 417–429.
    [Google Scholar]
  81. Stone, P. (2016). Geology reviewed for the Falkland Islands and their offshore sedimentary basins, South Atlantic Ocean. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 106(2), 115–143. https://doi.org/10.1017/S1755691016000049
    [Google Scholar]
  82. Stone, P., Kimbell, G. S., & Richards, P. C. (2009). Rotation of the Falklands microplate reassessed after recognition of discrete Jurassic and Cretaceous dyke swarms. Petroleum Geoscience, 15(3), 279–287.
    [Google Scholar]
  83. Stone, P., Richards, P. C., Kimbell, G. S., Esser, R. P., & Reeves, D. (2008). Cretaceous dykes discovered in the Falkland Islands: Implications for regional tectonics in the South Atlantic. Journal of the Geological Society, 165(1), 1–4. https://doi.org/10.1144/0016‐76492007‐072
    [Google Scholar]
  84. Storey, B. C., Curtis, M. L., Ferris, J. K., Hunter, M. A., & Livermore, R. A. (1999). Reconstruction and break‐out model for the Falkland Islands within Gondwana. Journal of African Earth Sciences, 29(1), 153–163.
    [Google Scholar]
  85. Tarney, J. (1977). Petrology, mineralogy, and geochemistry of the Falkland Plateau basement rocks, site 330, Deep Sea drilling project. Initial Reports of the Deep Sea Drilling Project, 36, 893–921.
    [Google Scholar]
  86. Thistlewood, L., Leat, P. T., Millar, I. L., Storey, B. C., & Vaughan, A. P. M. (1997). Basement geology and Palaeozoic‐Mesozoic mafic dykes from the Cape Meredith Complex, Falkland Islands: A record of repeated intracontinental extension. Geological Magazine, 134(3), 355–367.
    [Google Scholar]
  87. Thomas, R. J., Jacobs, J., & Weber, K. (1997). Geology of the Mesoproterozoic Cape Meredith Complex, West Falkland. In C. A.Ricci (Ed.), The Antarctica Region, Geological Evolution and Processes (pp. 21–30). Terra Antarctica Publications.
    [Google Scholar]
  88. Thomas, R. J., Von Veh, M. W., & McCourt, S. (1993). The tectonic evolution of southern Africa: An overview. Journal of African Earth Sciences, 16, 5–24.
    [Google Scholar]
  89. Thomson, K. (1998). When did the Falklands rotate?Marine and Petroleum Geology, 15(8), 723–736.
    [Google Scholar]
  90. Trewin, N. H., Macdonald, D. I. M., & Thomas, C. G. C. (2002). Stratigraphy and sedimentology of the Permian of the Falkland Islands; lithostratigraphic and palaeoenvironmental links with South Africa. Journal of the Geological Society, 159(1), 5–19. https://doi.org/10.1144/0016‐764900‐089
    [Google Scholar]
  91. Trouw, R. A. J., & De Wit, M. J. (1999). Relation between the Gondwanide Orogen and contemporaneous intracratonic deformation. Journal of African Earth Sciences, 28(1), 203–213. https://doi.org/10.1016/S0899‐5362(99)00024‐X
    [Google Scholar]
  92. Verduzco, B., Fairhead, J. D., Green, C. M., & MacKenzie, C. (2004). The meter reader—New insights into magnetic derivatives for structural mapping. The Leading Edge, 23, 116–119.
    [Google Scholar]
/content/journals/10.1111/bre.12800
Loading
/content/journals/10.1111/bre.12800
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): crustal architecture; Falkland Plateau Basin

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error