1887
Volume 35, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

Stacked vents, pockmark and free gas indicate long‐lived reutilization of fluid migration pathway over 54 Myr.

, Abstract

Structures that facilitate fluid migration are common in sedimentary basins. We document several possible hydrothermal and/or volcanic vents located above a >157 km2, late Cretaceous volcanic field in the Great South Basin, offshore New Zealand. Three of the four vents are vertically stacked, suggesting episodic re‐use of the same fluid pathway between ca. 75 and 56 Ma. A palaeo‐pockmark dated to ca. 49 Ma and free gas occurring within strata ca. 21 Myr old are located directly above these stacked vents. The spatial association of the vents, pockmark and free gas further suggests re‐use of the fluid migration pathway(s) extended for over 54 Myr. Our results imply that reutilization of fluid flow pathways can affect the distribution of fluids within basins over prolonged periods, potentially impacting hydrocarbon/geothermal exploration and geohazard assessment.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12801
2023-11-12
2025-04-17
Loading full text...

Full text loading...

References

  1. Alvarez, R., & Camacho, M. (2023). Plumbing system of Hunga Tonga Hunga Ha’apai Volcano. Journal of Earth Science, 34, 706–716. https://doi.org/10.1007/s12583‐022‐1792‐0
    [Google Scholar]
  2. Alves, T. M., Omosanya, K. D., & Gowling, P. (2015). Volume rendering of enigmatic high‐amplitude anomalies in southeast Brazil: A workflow to distinguish lithologic features from fluid accumulations. Interpretation, 3(2), 1–14. https://doi.org/10.1190/INT‐2014‐0106.1
    [Google Scholar]
  3. Barrier, A., Bischoff, A., Nicol, A., Browne, G. H., & Bassett, K. N. (2021). Relationships between volcanism and plate tectonics: A case‐study from the Canterbury Basin, New Zealand. Marine Geology, 433(433), 106397. https://doi.org/10.1016/j.margeo.2020.106397
    [Google Scholar]
  4. Beggs, J. M., Challis, G. A., & Cook, R. A. (1990). Basement geology of the Campbell Plateau: Implications for correlation of the Campbell Magnetic Anomaly System. New Zealand Journal of Geology and Geophysics, 33(3), 401–404. https://doi.org/10.1080/00288306.1990.10425696
    [Google Scholar]
  5. Bertoni, C., Cartwright, J., Foschi, M., & Martin, J. (2018). Spectrum of gas migration phenomena across multilayered sealing sequences. AAPG Bulletin, 102(6), 1011–1034. https://doi.org/10.1306/0810171622617210
    [Google Scholar]
  6. Bertoni, C., Gan, Y., Paganoni, M., Mayer, J., Cartwright, J., Martin, J., van Rensbergen, P., Wunderlich, A., & Clare, A. (2019). Late Paleocene pipe swarm in the Great South–Canterbury Basin (New Zealand). Marine and Petroleum Geology, 107, 451–466. https://doi.org/10.1016/j.marpetgeo.2019.05.039
    [Google Scholar]
  7. Bischoff, A., Barrier, A., Beggs, M., Nicol, A., Cole, J., & Sahoo, T. (2020). Volcanoes buried in Te Riu‐a‐Māui/Zealandia sedimentary basins. New Zealand Journal of Geology and Geophysics, 63(4), 378–401. https://doi.org/10.1080/00288306.2020.1773510
    [Google Scholar]
  8. Bischoff, A., Nicol, A., Barrier, A., & Wang, H. (2019). Paleogeography and volcanic morphology reconstruction of a buried monogenetic volcanic field (part 2). Bulletin of Volcanology, 81(9), 57. https://doi.org/10.1007/s00445‐019‐1317‐6
    [Google Scholar]
  9. Blanke, S. (2015). PEP 38264 Caravel‐1 well completion report. In New Zealand Petroleum Report (PR4896). Hunt International Petroleum Co NZ.
    [Google Scholar]
  10. Brown, A. R. (2011). Interpretation of three‐dimensional seismic data (7th ed.). Society of Exploration Geophysicists and American Association of Petroleum Geologists.
    [Google Scholar]
  11. Burgess, P. M., Winefield, P., Minzoni, M., & Elders, C. (2013). Methods for identification of isolated carbonate buildups from seismic reflection data. AAPG Bulletin, 97(7), 1071–1098. https://doi.org/10.1306/12051212011
    [Google Scholar]
  12. Calvès, G., Schwab, A. M., Huuse, M., Clift, P. D., Gaina, C., Jolley, D., Tabrez, A. R., & Inam, A. (2011). Seismic volcanostratigraphy of the western Indian rifted margin: The pre‐Deccan igneous province. Journal of Geophysical Research: Solid Earth, 116(B1), B01101. https://doi.org/10.1029/2010JB000862
    [Google Scholar]
  13. Cartwright, J. (2007). The impact of 3D seismic data on the understanding of compaction, fluid flow and diagenesis in sedimentary basins. Journal of the Geological Society, 164(5), 881. https://doi.org/10.1144/0016‐76492006‐143
    [Google Scholar]
  14. Cartwright, J., & Santamarina, C. (2015). Seismic characteristics of fluid escape pipes in sedimentary basins: Implications for pipe genesis. Marine and Petroleum Geology, 65, 126–140. https://doi.org/10.1016/j.marpetgeo.2015.03.023
    [Google Scholar]
  15. Chenrai, P. (2016). Seismic stratigraphy and fluid flow in the Taranaki and Great South Basins offshore New Zealand. The University of Manchester.
    [Google Scholar]
  16. Cook, R. A., Sutherland, R., & Zhu, H. (1999). Cretaceous‐Cenozoic geology and petroleum systems of the Great South Basin, New Zealand. Institute of Geological & Nuclear Sciences.
    [Google Scholar]
  17. Dimitrov, L. I. (2002). Mud volcanoes—The most important pathway for degassing deeply buried sediments. Earth‐Science Reviews, 59(1), 49–76. https://doi.org/10.1016/S0012‐8252(02)00069‐7
    [Google Scholar]
  18. Ellefsen, M., Boldreel, L. O., & Larsen, M. (2010). Intra‐basalt units and base of the volcanic succession east of the Faroe Islands exemplified by interpretation of offshore 3D seismic data. Geological Society, London, Petroleum Geology Conference Series, 7(1), 1033–1042. https://doi.org/10.1144/0071033
    [Google Scholar]
  19. Evans, P. R. (1982). Petroleum potential of New Zealand. Journal of Petroleum Geology, 5(1), 89–96. https://doi.org/10.1111/j.1747‐5457.1982.tb00562.x
    [Google Scholar]
  20. Field, B. D., Browne, G. H., Davy, B. W., & Survey, N. Z. G. (1989). Cretaceous and Cenozoic sedimentary basins and geological evolution of the Canterbury region, South Island, New Zealand. New Zealand Geological Survey.
    [Google Scholar]
  21. Gross, F., Mountjoy, J. J., Crutchley, G. J., Böttner, C., Koch, S., Bialas, J., Pecher, I., Woelz, S., Dannowski, A., Micallef, A., & Huhn, K. (2018). Free gas distribution and basal shear zone development in a subaqueous landslide—Insight from 3D seismic imaging of the Tuaheni Landslide Complex, New Zealand. Earth and Planetary Science Letters, 502, 231–243. https://doi.org/10.1016/j.epsl.2018.09.002
    [Google Scholar]
  22. Hansen, D. M. (2006). The morphology of intrusion‐related vent structures and their implications for constraining the timing of intrusive events along the NE Atlantic margin. Journal of the Geological Society, 163(5), 789. https://doi.org/10.1144/0016‐76492004‐167
    [Google Scholar]
  23. Heckel, P. H. (1974). Carbonate buildups in the geologic record: A review. In L. F.Laporte (Ed.), Reefs in time and space: Selected examples from the recent and ancient. SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.74.18.0090
    [Google Scholar]
  24. Higgs, K. E., Funnell, R. H., & Browne, G. H. (2021). A multidisciplinary study of diagenesis and pore fluid evolution in frontier basins; An example from Canterbury and Great South basins, New Zealand. Marine and Petroleum Geology, 124, 104817. https://doi.org/10.1016/j.marpetgeo.2020.104817
    [Google Scholar]
  25. Ho, S., Imbert, P., Hovland, M., Wetzel, A., Blouet, J.‐P., & Carruthers, D. (2018). Downslope‐shifting pockmarks: Interplay between hydrocarbon leakage, sedimentations, currents and slope's topography. International Journal of Earth Sciences, 107(8), 2907–2929. https://doi.org/10.1007/s00531‐018‐1635‐5
    [Google Scholar]
  26. Hoernle, K., Timm, C., Hauff, F., Tappenden, V., Werner, R., Jolis, E. M., Mortimer, N., Weaver, S., Riefstahl, F., & Gohl, K. (2020). Late cretaceous (99–69 Ma) basaltic intraplate volcanism on and around Zealandia: Tracing upper mantle geodynamics from Hikurangi Plateau collision to Gondwana breakup and beyond. Earth and Planetary Science Letters, 529, 115864. https://doi.org/10.1016/j.epsl.2019.115864
    [Google Scholar]
  27. Hoernle, K., White, J. D. L., van den Bogaard, P., Hauff, F., Coombs, D. S., Werner, R., Timm, C., Garbe‐Schönberg, D., Reay, A., & Cooper, A. F. (2006). Cenozoic intraplate volcanism on New Zealand: Upwelling induced by lithospheric removal. Earth and Planetary Science Letters, 248(1–2), 350–367. https://doi.org/10.1016/j.epsl.2006.06.001
    [Google Scholar]
  28. Holford, S. P., Schofield, N., & Reynolds, P. (2017). Subsurface fluid flow focused by buried volcanoes in sedimentary basins: Evidence from 3D seismic data, Bass Basin, offshore southeastern Australia. Interpretation, 5(3), SK39–SK50. https://doi.org/10.1190/INT‐2016‐0205.1
    [Google Scholar]
  29. Hunt International Petroleum Co NZ . (1977a). Toroa‐1 well completion report. In New Zealand Petroleum Report, PR691.
  30. Hunt International Petroleum Co NZ . (1977b). Final report Kawau‐1A. In New Zealand Petroleum Report, PR716.
  31. Hunt International Petroleum Co NZ . (1977c). Pakaha‐1 well completion report. In New Zealand Petroleum Report, PR703.
  32. Hunt International Petroleum Co NZ . (1978a). Hoiho‐1C well completion report. In New Zealand Petroleum Report, PR730.
  33. Hunt International Petroleum Co NZ . (1978b). Tara‐1 well completion report. In New Zealand Petroleum Report, PR732.
  34. Hunt International Petroleum Co NZ . (1978c). Takapu‐1 & Takapu‐1A well completion report. In New Zealand Petroleum Report, PR733.
  35. Iyer, K., Schmid, D. W., Planke, S., & Millett, J. (2017). Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate. Earth and Planetary Science Letters, 467, 30–42. https://doi.org/10.1016/j.epsl.2017.03.023
    [Google Scholar]
  36. Jackson, C. A. L. (2012). Seismic reflection imaging and controls on the preservation of ancient sill‐fed magmatic vents. Journal of the Geological Society, 169(5), 503–506. https://doi.org/10.1144/0016‐76492011‐147
    [Google Scholar]
  37. Jackson, C. A. L., Magee, C., & Hunt‐Stewart, E. R. (2019). Cenozoic Contourites in the Eastern Great Australian Bight, offshore southern Australia: Implications for the onset of the Leeuwin Current. Journal of Sedimentary Research, 89(3), 199–206. https://doi.org/10.2110/jsr.2019.16
    [Google Scholar]
  38. Jackson, C. A. L., Schofield, N., & Golenkov, B. (2013). Geometry and controls on the development of igneous sill‐related forced folds: A 2‐D seismic reflection case study from offshore southern Australia. GSA Bulletin, 125(11–12), 1874–1890. https://doi.org/10.1130/B30833.1
    [Google Scholar]
  39. Jamtveit, B., Svensen, H., Podladchikov, Y. Y., & Planke, S. (2004). Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. Geological Society, London, Special Publications, 234(1), 233. https://doi.org/10.1144/GSL.SP.2004.234.01.15
    [Google Scholar]
  40. Killops, S. D., Cook, R. A., Sykes, R., & Boudou, J. P. (1997). Petroleum potential and oil‐source correlation in the Great South and Canterbury Basins. New Zealand Journal of Geology and Geophysics, 40(4), 405–423. https://doi.org/10.1080/00288306.1997.9514773
    [Google Scholar]
  41. Killops, S. D., Funnell, R. H., Suggate, R. P., Sykes, R., Peters, K. E., Walters, C., Woolhouse, A. D., Weston, R. J., & Boudou, J. P. (1998). Predicting generation and expulsion of paraffinic oil from vitrinite‐rich coals. Organic Geochemistry, 29(1), 1–21. https://doi.org/10.1016/S0146‐6380(98)00087‐4
    [Google Scholar]
  42. Kirkham, C., Cartwright, J., Hermanrud, C., & Jebsen, C. (2018). The genesis of mud volcano conduits through thick evaporite sequences. Basin Research, 30(2), 217–236. https://doi.org/10.1111/bre.12250
    [Google Scholar]
  43. Kjoberg, S., Schmiedel, T., Planke, S., Svensen, H. H., Millett, J. M., Jerram, D. A., Galland, O., Lecomte, I., Schofield, N., Haug, Ø. T., & Helsem, A. (2017). 3D structure and formation of hydrothermal vent complexes at the Paleocene‐Eocene transition, the Møre Basin, mid‐Norwegian margin. Interpretation, 5(3), SK65–SK81. https://doi.org/10.1190/INT‐2016‐0159.1
    [Google Scholar]
  44. Løseth, H., Wensaas, L., Arntsen, B., Hanken, N.‐M., Basire, C., & Graue, K. (2011). 1000 m long gas blow‐out pipes. Marine and Petroleum Geology, 28(5), 1047–1060. https://doi.org/10.1016/j.marpetgeo.2010.10.001
    [Google Scholar]
  45. Magee, C., Hunt‐Stewart, E., & Jackson, C. A. L. (2013). Volcano growth mechanisms and the role of sub‐volcanic intrusions: Insights from 2D seismic reflection data. Earth and Planetary Science Letters, 373, 41–53. https://doi.org/10.1016/j.epsl.2013.04.041
    [Google Scholar]
  46. Magee, C., Jackson, C. A. L., & Schofield, N. (2014). Diachronous sub‐volcanic intrusion along deep‐water margins: Insights from the Irish Rockall Basin. Basin Research, 26(1), 85–105. https://doi.org/10.1111/bre.12044
    [Google Scholar]
  47. Magee, C., Pichel, L. M., Madden‐Nadeau, A. L., Jackson, C. A. L., & Mohriak, W. (2021). Salt–magma interactions influence intrusion distribution and salt tectonics in the Santos Basin, offshore Brazil. Basin Research, 33(3), 1820–1843. https://doi.org/10.1111/bre.12537
    [Google Scholar]
  48. Manton, B., Müller, P., Mazzini, A., Zastrozhnov, D., Jerram, D. A., Millett, J. M., Schmid, D. W., Berndt, C., Myklebust, R., & Planke, S. (2022). Characterizing ancient and modern hydrothermal venting systems. Marine Geology, 447, 106781. https://doi.org/10.1016/j.margeo.2022.106781
    [Google Scholar]
  49. Marfurt, K. J., & Alves, T. M. (2014). Pitfalls and limitations in seismic attribute interpretation of tectonic features. Interpretation, 3(1), SB5–SB15. https://doi.org/10.1190/INT‐2014‐0122.1
    [Google Scholar]
  50. Mazzini, A., & Etiope, G. (2017). Mud volcanism: An updated review. Earth‐Science Reviews, 168, 81–112. https://doi.org/10.1016/j.earscirev.2017.03.001
    [Google Scholar]
  51. Meadows, D. J. (2009). Stable isotope geochemistry of Paleocene to Early Eocene strata around southern New Zealand. Victoria University of Wellington.
    [Google Scholar]
  52. Mitchell, M., Craw, D., Landis, C. A., & Frew, R. (2009). Stratigraphy, provenance, and diagenesis of the Cretaceous Horse Range Formation, east Otago, New Zealand. New Zealand Journal of Geology and Geophysics, 52(3), 171–183. https://doi.org/10.1080/00288300909509884
    [Google Scholar]
  53. Morley, C. K., Maczak, A., Rungprom, T., Ghosh, J., Cartwright, J. A., Bertoni, C., & Panpichityota, N. (2017). New style of honeycomb structures revealed on 3D seismic data indicate widespread diagenesis offshore Great South Basin, New Zealand. Marine and Petroleum Geology, 86, 140–154. https://doi.org/10.1016/j.marpetgeo.2017.05.035
    [Google Scholar]
  54. Mourgues, R., Bureau, D., Bodet, L., Gay, A., & Gressier, J. B. (2012). Formation of conical fractures in sedimentary basins: Experiments involving pore fluids and implications for sandstone intrusion mechanisms. Earth and Planetary Science Letters, 313–314, 67–78. https://doi.org/10.1016/j.epsl.2011.10.029
    [Google Scholar]
  55. Németh, K., & Kereszturi, G. (2015). Monogenetic volcanism: personal views and discussion. International Journal of Earth Sciences, 104(8), 2131–2146. https://doi.org/10.1007/s00531‐015‐1243‐6
    [Google Scholar]
  56. New Zealand Petroleum and Minerals . (2014). New Zealand petroleum basins. Ministry of Business, Innovation and Employment.
    [Google Scholar]
  57. Nicol, A., Mazengarb, C., Chanier, F., Rait, G., Uruski, C., & Wallace, L. (2007). Tectonic evolution of the active Hikurangi subduction margin, New Zealand, since the Oligocene. Tectonics, 26(4), TC4002. https://doi.org/10.1029/2006TC002090
    [Google Scholar]
  58. Niyazi, Y., Warne, M., & Ierodiaconou, D. (2021). Post‐rift magmatism and hydrothermal activity in the central offshore Otway Basin and implications for igneous plumbing systems. Marine Geology, 438, 106538. https://doi.org/10.1016/j.margeo.2021.106538
    [Google Scholar]
  59. Omosanya, K. O., & Harishidayat, D. (2019). Seismic geomorphology of Cenozoic slope deposits and deltaic clinoforms in the Great South Basin (GSB) offshore New Zealand. Geo‐Marine Letters, 39(1), 77–99. https://doi.org/10.1007/s00367‐018‐00558‐8
    [Google Scholar]
  60. Omosanya, K. O., Lawal, M. A., Iqbal, H. M., & Yizhaq, M. (2021). Massive seafloor mounds depict potential for seafloor mineral deposits in the Great South Basin (GSB) offshore New Zealand. Scientific Reports, 11(1), 9185. https://doi.org/10.1038/s41598‐021‐88620‐x
    [Google Scholar]
  61. Osli, L. N., Shalaby, M. R., & Islam, M. A. (2018). Hydrocarbon generation modeling and source rock characterization of the Cretaceous–Paleocene Taratu Formation, Great South Basin, New Zealand. Journal of Petroleum Exploration and Production Technology, 9(1), 125–139. https://doi.org/10.1007/s13202‐018‐0511‐y
    [Google Scholar]
  62. Phillips, T. B., & Magee, C. (2020). Structural controls on the location, geometry and longevity of an intraplate volcanic system: The Tuatara Volcanic Field, Great South Basin, New Zealand. Journal of the Geological Society, 177(5), 1039–1056. https://doi.org/10.1144/jgs2020‐050
    [Google Scholar]
  63. Placid Oil Company . (1984a). Well report, Rakiura‐1, Great South Basin, New Zealand. In New Zealand Petroleum Report, PR994.
  64. Placid Oil Company . (1984b). Final geological well completion report, Pukaki‐1, Great South Basin, New Zealand, PPL38081. In New Zealand Petroleum Report, PR1005.
  65. Planke, S., Rasmussen, T., Rey, S. S., & Myklebust, R. (2005). Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. Geological Society, London, Petroleum Geology Conference, 6(1), 833. https://doi.org/10.1144/0060833
    [Google Scholar]
  66. Rateau, R., Schofield, N., & Smith, M. (2013). The potential role of igneous intrusions on hydrocarbon migration, West of Shetland. Petroleum Geoscience, 19(3), 259–272. https://doi.org/10.1144/petgeo2012‐035
    [Google Scholar]
  67. Reynolds, P., Holford, S., Schofield, N., & Ross, A. (2017). The shallow depth emplacement of mafic intrusions on a magma‐poor rifted margin: An example from the Bight Basin, southern Australia. Marine and Petroleum Geology, 88, 605–616. https://doi.org/10.1016/j.marpetgeo.2017.09.008
    [Google Scholar]
  68. Reynolds, P., Schofield, N., Brown, R. J., & Holford, S. P. (2018). The architecture of submarine monogenetic volcanoes—Insights from 3D seismic data. Basin Research, 30, 437–451. https://doi.org/10.1111/bre.12230
    [Google Scholar]
  69. Roelofse, C., Alves, T. M., & Kamal'deen, O. O. (2021). Reutilisation of hydrothermal vent complexes for focused fluid flow on continental margins (Modgunn Arch, Norwegian Sea). Basin Research, 33(2), 1111–1134. https://doi.org/10.1111/bre.12507
    [Google Scholar]
  70. Roy, S., Hovland, M., & Braathen, A. (2016). Evidence of fluid seepage in Grønfjorden, Spitsbergen: Implications from an integrated acoustic study of seafloor morphology, marine sediments and tectonics. Marine Geology, 380, 67–78. https://doi.org/10.1016/j.margeo.2016.07.002
    [Google Scholar]
  71. Sahoo, T. R., Strogen, D. P., Browne, G. H., & Nicol, A. (2022). Evolution of syn‐to early post‐rift facies in rift basins: Insights from the cretaceous–Paleocene of the Great South Basin, New Zealand. Basin Research, 34(3), 1113–1142. https://doi.org/10.1111/bre.12652
    [Google Scholar]
  72. Schiøler, P., Browne, G. H., Cameron, H., King, P. R., Strogen, D. P., Sahoo, T., & Funnell, R. H. (2017). Great South Basin: National wells audit pilot project play analysis report, GNS Science Consultancy Report 2017/20. In New Zealand Petroleum Report (PR5428, pp. 1–70).
  73. Schiøler, P., & Raine, J. I. (2009). Palynology of lower Hoiho Group in the Great South Basin and Clipper and Horse Range Formations in the Canterbury Basin, GNS Science Consultancy Report, 2009/361. In New Zealand Petroleum Report (PR4348, pp. 1–67).
  74. Schiøler, P., Raine, J. I., Crundwell, M. P., Fohrmann, M., Griffin, A., Hollis, C. J., Kulhanek, D. K., Morgans, H. E. G., Roncaglia, L., & Strong, C. P. (2012). Revised biostratigraphy and well correlation, Canterbury Basin, New Zealand; updated with results from Cutter‐1 well. GNS Science Consultancy Report, 2012/248, 164 p. In New Zealand Petroleum Report, PR4621.
  75. Schiøler, P., Raine, J. I., Crundwell, M. P., Griffin, A., Hollis, C. J., Kulhanek, D. K., Morgans, H. E. G., Roncaglia, L. R., Strong, C. P., & Uruski, C. I. (2011). Revised biostratigraphy and well correlation, Canterbury Basin, New Zealand, GNS Science Consultancy Report 2011/12. In New Zealand Petroleum Report, PR4365.
  76. Schiøler, P., Rogers, K., Sykes, R., Hollis, C. J., Ilg, B., Meadows, D., Roncaglia, L., & Uruski, C. (2010). Palynofacies, organic geochemistry and depositional environment of the Tartan Formation (Late Paleocene), a potential source rock in the Great South Basin, New Zealand. Marine and Petroleum Geology, 27(2), 351–369. https://doi.org/10.1016/j.marpetgeo.2009.09.006
    [Google Scholar]
  77. Schofield, A., Holford, S., Millett, J., Brown, D., Jolley, D., Passey, S. R., Muirhead, D., Grove, C., Magee, C., Murray, J., Hole, M., Jackson, C. A.‐L., & Stevenson, C. (2017). Regional magma plumbing and emplacement mechanisms of the Faroe‐Shetland Sill Complex: Implications for magma transport and petroleum systems within sedimentary basins. Basin Research, 29, 41–63. https://doi.org/10.1111/bre.12164
    [Google Scholar]
  78. Schofield, A., & Totterdell, J. (2008). Distribution, timing and origin of magmatism in the Bight and Eucla Basins, p. 19. Geoscience Australia Record 2008/24.
  79. Scott, J. M., Pontesilli, A., Brenna, M., White, J. D. L., Giacalone, E., Palin, J. M., & le Roux, P. J. (2020). The Dunedin Volcanic Group and a revised model for Zealandia's alkaline intraplate volcanism. New Zealand Journal of Geology and Geophysics, 63(4), 510–529. https://doi.org/10.1080/00288306.2019.1707695
    [Google Scholar]
  80. Shalaby, M. R., Osli, L. N., Kalaitzidis, S., & Islam, M. A. (2019). Thermal maturity and depositional palaeoenvironments of the Cretaceous‐Palaeocene source rock Taratu Formation, Great South Basin, New Zealand. Journal of Petroleum Science and Engineering, 181, 106156. https://doi.org/10.1016/j.petrol.2019.06.020
    [Google Scholar]
  81. Sharma, R., & Srivastava, P. K. (2014). Hydrothermal fluids of magmatic origin. In S.Kumar & R. N.Singh (Eds.), Modelling of magmatic and allied processes (pp. 181–208). Springer International Publishing. https://doi.org/10.1007/978‐3‐319‐06471‐0_9
    [Google Scholar]
  82. Siregar, E., Omosanya, K. O., Magee, C., & Johansen, S. E. (2019). Impacts of fault‐sill interactions on sill emplacement in the Vøring Basin, Norwegian North Sea. Journal of Structural Geology, 126, 156–174. https://doi.org/10.1016/j.jsg.2019.06.006
    [Google Scholar]
  83. Smallwood, J. R., & Maresh, J. (2002). The properties, morphology and distribution of igneous sills: Modelling, borehole data and 3D seismic from the Faroe‐Shetland area. Geological Society, London, Special Publications, 197(1), 271–306. https://doi.org/10.1144/GSL.SP.2002.197.01.11
    [Google Scholar]
  84. Song, X., Li, C., Yao, Y., & Shi, H. (2017). Magmatism in the evolution of the South China Sea: Geophysical characterization. Marine Geology, 394, 4–15. https://doi.org/10.1016/j.margeo.2017.07.021
    [Google Scholar]
  85. Subrahmanyam, D., & Rao, P. (2008). Seismic attributes—A review. Paper presented at 7th International Conference & Exposition on Petroleum Geophysics, Hyderabad, India.
  86. Sun, Q., Alves, T. M., Zhao, M., Sibuet, J.‐C., Calvès, G., & Xie, X. (2020). Post‐rift magmatism on the northern South China Sea margin. GSA Bulletin, 132(11–12), 2382–2396. https://doi.org/10.1130/B35471.1
    [Google Scholar]
  87. Sun, Q., Jackson, C. A. L., Magee, C., & Xie, X. (2019). Deeply buried ancient volcanoes control hydrocarbon migration in the South China Sea. Basin Research, 32(1), 146–162. https://doi.org/10.1111/bre.12372
    [Google Scholar]
  88. Svensen, H., Jamtveit, B., Planke, S., & Chevallier, L. (2006). Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. Journal of the Geological Society, 163(4), 671–682. https://doi.org/10.1144/1144‐764905‐037
    [Google Scholar]
  89. Svensen, H., Planke, S., Malthe‐Sørenssen, A., Jamtveit, B., Myklebust, R., Rasmussen Eidem, T., & Rey, S. S. (2004). Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429(6991), 542–545. https://doi.org/10.1038/nature02566
    [Google Scholar]
  90. Timm, C., Hoernle, K., Van Den Bogaard, P., Bindeman, I., & Weaver, S. (2009). Geochemical evolution of intraplate volcanism at Banks Peninsula, New Zealand: Interaction between asthenospheric and lithospheric melts. Journal of Petrology, 50(6), 989–1023. https://doi.org/10.1093/petrology/egp029
    [Google Scholar]
  91. Trude, J., Cartwright, J., Davies, R. J., & Smallwood, J. (2003). New technique for dating igneous sills. Geology, 31(9), 813–816. https://doi.org/10.1130/G19559.1
    [Google Scholar]
  92. Tulloch, A. J., Ramezani, J., Mortimer, N., Mortensen, J., van den Bogaard, P., & Maas, R. (2009). Cretaceous felsic volcanism in New Zealand and Lord Howe Rise (Zealandia) as a precursor to final Gondwana break‐up. Geological Society, London, Special Publications, 321(1), 89–118. https://doi.org/10.1144/SP321.5
    [Google Scholar]
  93. van der Meer, Q. H. A., Waight, T. E., Whitehouse, M. J., & Andersen, T. (2017). Age and petrogenetic constraints on the lower glassy ignimbrite of the Mount Somers Volcanic Group, New Zealand. New Zealand Journal of Geology and Geophysics, 60(3), 209–219. https://doi.org/10.1080/00288306.2017.1307232
    [Google Scholar]
  94. Velayatham, T., Holford, S. P., & Bunch, M. A. (2018). Ancient fluid flow recorded by remarkably long, buried pockmark trains observed in 3D seismic data, Exmouth Plateau, Northern Carnarvon Basin. Marine and Petroleum Geology, 95, 303–313. https://doi.org/10.1016/j.marpetgeo.2018.05.007
    [Google Scholar]
  95. Viskovic, G. P. D. (2010). Investigation of fluid migration pathways in the shallow subsurface of the Great South Basin, through the use of high‐resolution seimic imaging of fault and fracture systems. MSC thesis. University of Otago.
    [Google Scholar]
  96. Vlahović, I., Tišljar, J., Velić, I., & Matičec, D. (2005). Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and depositional dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(3), 333–360. https://doi.org/10.1016/j.palaeo.2005.01.011
    [Google Scholar]
  97. Wang, L., Sun, Z., Yang, J., Sun, Z., Zhu, J., Zhuo, H., & Stock, J. (2019). Seismic characteristics and evolution of post‐rift igneous complexes and hydrothermal vents in the Lingshui Sag (Qiongdongnan Basin), northwestern South China Sea. Marine Geology, 418, 106043. https://doi.org/10.1016/j.margeo.2019.106043
    [Google Scholar]
  98. Zhao, F., Alves, T. M., Wu, S., Li, W., Huuse, M., Mi, L., Sun, Q., & Ma, B. (2016). Prolonged post‐rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea). Earth and Planetary Science Letters, 445, 79–91. https://doi.org/10.1016/j.epsl.2016.04.001
    [Google Scholar]
/content/journals/10.1111/bre.12801
Loading
/content/journals/10.1111/bre.12801
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): fluid migration; gas chimney; Great South Basin; hydrothermal vent; pockmark

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error