1887
Volume 35, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

[

Summary diagram illustrating the contrasts in the styles and magnitude of salt tectonic processes across different structural domains for different post‐salt sediment fluxes and progradation rates: (a) high flux, (b) medium flux and (c) low flux. The differences are primarily controlled by the relationship between the rates of sediment progradation rate (V) and salt flow (V).

, Abstract

Continental rifted margins can be associated with widespread and thick salt deposits, which are often formed during the final stages of rifting, prior to breakup. These salt‐bearing margins are typically characterized by pronounced post‐rift salt tectonics with variable and complex structural styles and evolution. We use a lithosphere‐scale geodynamic numerical model to investigate the role of varying post‐rift sediment fluxes and progradation rates on rifted margin salt tectonics. We focus on a single, intermediate, rifted margin type and salt basin geometry to explore scenarios with different: (i) constant and (ii) time‐varying post‐salt sediment fluxes. We demonstrate that these promote significant contrasts in the style and magnitude of salt tectonics in the proximal, transitional and distal margin domains. The differences are primarily controlled by the relationship between the rates of sediment progradation () and salt flow (). When  > , the salt is rapidly buried and both vertical and lateral salt flow are suppressed across the entire margin. When  < , the salt flows vertically and seaward faster than sediments prograde producing major diapirism in the proximal domain and major distal nappe advance, but only moderate overburden extension and distal diapirism. When  ~ , there is moderate proximal diapirism and distal nappe advance, but major updip extension and downdip shortening, which produces major distal diapirism. Modelling results are comparable to various natural systems and help improve our understanding of the controls and dynamics of salt tectonics along salt‐bearing rifted margins.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12802
2023-11-12
2025-03-16
Loading full text...

Full text loading...

/deliver/fulltext/bre/35/6/bre12802.html?itemId=/content/journals/10.1111/bre.12802&mimeType=html&fmt=ahah

References

  1. Albertz, M., Beaumont, C., Shimeld, J. W., Ings, S. J., & Gradmann, S. (2010). An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: 1. Comparison of observations with geometrically simple numerical models. Tectonics, 29(4), TC4017.
    [Google Scholar]
  2. Allen, J., & Beaumont, C. (2016). Continental margin syn‐rift salt tectonics at intermediate width margins. Basin Research, 28(5), 598–633.
    [Google Scholar]
  3. Allen, J., Beaumont, C., & Deptuck, M. E. (2020). Feedback between synrift lithospheric extension, sedimentation and salt tectonics on wide, weak continental margins. Petroleum Geoscience, 26(1), 16–35.
    [Google Scholar]
  4. Baby, G., Guillocheau, F., Braun, J., Robin, C., & Dall'Asta, M. (2020). Solid sedimentation rates history of the southern African continental margins: Implications for the uplift history of the South African Plateau. Terra Nova, 32(1), 53–65.
    [Google Scholar]
  5. Davison, I., Anderson, L., & Nuttall, P. (2012). Salt deposition, loading and gravity drainage in the Campos and Santos salt basins. Geological Society of London Special Publications, 363(1), 159–174.
    [Google Scholar]
  6. Deptuck, M. E., & Kendell, K. L. (2017). A review of Mesozoic‐Cenozoic salt tectonics along the Scotian margin, eastern Canada. In J. I.Soto, J.Flinch, & G.Tari (Eds.), Permo‐Triassic salt provinces of Europe, North Africa and the Atlantic margins (pp. 287–312). Elsevier.
    [Google Scholar]
  7. do Amarante, F. B., Jackson, C. A. L., Pichel, L. M., Scherer, C. M. D. S., & Kuchle, J. (2021). Pre‐salt rift morphology controls salt tectonics in the Campos Basin, offshore SE Brazil. Basin Research, 33(5), 2837–2861.
    [Google Scholar]
  8. Epin, M. E., Manatschal, G., Sapin, F., & Rowan, M. G. (2021). The tectono‐magmatic and subsidence evolution during lithospheric breakup in a salt‐rich rifted margin: Insights from a 3D seismic survey from southern Gabon. Marine and Petroleum Geology, 128, 105005.
    [Google Scholar]
  9. Erdős, Z., Huismans, R. S., van der Beek, P., & Thieulot, C. (2014). Extensional inheritance and surface processes as controlling factors of mountain belt structure. Journal of Geophysical Research: Solid Earth, 119(12), 9042–9061.
    [Google Scholar]
  10. Gemmer, L., Ings, S. J., Medvedev, S., & Beaumont, C. (2004). Salt tectonics driven by differential sediment loading: Stability analysis and finite‐element experiments. Basin Research, 16(2), 199–218.
    [Google Scholar]
  11. Gleason, G. C., & Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics, 247(1–4), 1–23.
    [Google Scholar]
  12. Goteti, R., Beaumont, C., & Ings, S. J. (2013). Factors controlling early stage salt tectonics at rifted continental margins and their thermal consequences. Journal of Geophysical Research: Solid Earth, 118(6), 3190–3220.
    [Google Scholar]
  13. Hudec, M. R., & Jackson, M. P. (2004). Regional restoration across the Kwanza Basin, Angola: Salt tectonics triggered by repeated uplift of a metastable passive margin. AAPG Bulletin, 88(7), 971–990.
    [Google Scholar]
  14. Hudec, M. R., & Jackson, M. P. (2007). Terra infirma: Understanding salt tectonics. Earth‐Science Reviews, 82(1–2), 1–28.
    [Google Scholar]
  15. Hudec, M. R., & Norton, I. O. (2019). Upper Jurassic structure and evolution of the Yucatán and Campeche subbasins, southern Gulf of Mexico. AAPG Bulletin, 103(5), 1133–1151.
    [Google Scholar]
  16. Hudec, M. R., Norton, I. O., Jackson, M. P., & Peel, F. J. (2013). Jurassic evolution of the Gulf of Mexico salt basin. AAPG Bulletin, 97(10), 1683–1710.
    [Google Scholar]
  17. Jackson, M. P., & Hudec, M. R. (2017). Salt tectonics: Principles and practice. Cambridge University Press.
    [Google Scholar]
  18. Jackson, M. P., Hudec, M. R., Jennette, D. C., & Kilby, R. E. (2008). Evolution of the cretaceous Astrid thrust belt in the ultradeep‐water lower Congo Basin, Gabon. AAPG Bulletin, 92(4), 487–511.
    [Google Scholar]
  19. Karato, S. I., & Wu, P. (1993). Rheology of the upper mantle: A synthesis. Science, 260(5109), 771–778.
    [Google Scholar]
  20. Kukla, P. A., Strozyk, F., & Mohriak, W. U. (2018). South Atlantic salt basins–Witnesses of complex passive margin evolution. Gondwana Research, 53, 41–57.
    [Google Scholar]
  21. Lentini, M. R., Fraser, S. I., Sumner, H. S., & Davies, R. J. (2010). Geodynamics of the central South Atlantic conjugate margins: Implications for hydrocarbon potential. Petroleum Geoscience, 16(3), 217–229.
    [Google Scholar]
  22. Marton, L. G., Tari, G. C., & Lehmann, C. T. (2000). Evolution of the Angolan passive margin, West Africa, with emphasis on post‐salt structural styles. Geophysical Monograph‐American Geophysical Union, 115, 129–150.
    [Google Scholar]
  23. Mohriak, W. U., & Leroy, S. (2013). Architecture of rifted continental margins and break‐up evolution: Insights from the South Atlantic, North Atlantic and Red Sea–Gulf of Aden conjugate margins. Geological Society, London, Special Publications, 369(1), 497–535.
    [Google Scholar]
  24. Peel, F. J. (2014). The engines of gravity‐driven movement on passive margins: Quantifying the relative contribution of spreading vs. gravity sliding mechanisms. Tectonophysics, 633, 126–142.
    [Google Scholar]
  25. Peel, F. J., Travis, C. J., & Hossack, J. R. (1995). Genetic structural provinces and salt tectonics of the Cenozoic offshore US Gulf of Mexico: A preliminary analysis. In M. P. A.Martin, D. G.Roberts, & S.Snelson (Eds.), Salt tectonics: A global perspective. AAPG Memoir (Vol. 65, pp. 153–175). American Association of Petroleum Geologists.
    [Google Scholar]
  26. Pichel, L. M., Huismans, R. S., Gawthorpe, R., Faleide, J. I., & Theunissen, T. (2022a). Late‐syn‐ to post‐rift salt tectonics on wide rifted margins—Insights from geodynamic modelling. Tectonics, 41, e2021TC007158.
    [Google Scholar]
  27. Pichel, L. M., Huismans, R. S., Gawthorpe, R., Faleide, J. I., & Theunissen, T. (2022b). Coupling crustal‐scale rift architecture with passive margin salt tectonics: A geodynamic modeling approach. Journal of Geophysical Research: Solid Earth, 127(11), e2022JB025177.
    [Google Scholar]
  28. Pichel, L. M., Huuse, M., Redfern, J., & Finch, E. (2019). The influence of base‐salt relief, rift topography and regional events on salt tectonics offshore Morocco. Marine and Petroleum Geology, 103, 87–113.
    [Google Scholar]
  29. Pichel, L. M., Jackson, C. A. L., Peel, F., & Dooley, T. P. (2020). Base‐salt relief controls salt‐tectonic structural style, São Paulo Plateau, Santos Basin, Brazil. Basin Research, 32(3), 453–484.
    [Google Scholar]
  30. Pichel, L. M., Jackson, C. A. L., Peel, F., & Ferrer, O. (2021). The Merluza graben: How a failed spreading center influenced margin structure, and salt deposition and tectonics in the Santos Basin, Brazil. Tectonics, 40(10), e2020TC006640.
    [Google Scholar]
  31. Pichel, L. M., Legeay, E., Ringenbach, J.‐C., & Callot, J.‐P. (2023). The salt‐bearing rifted margins in West Africa—Regional structural variability and salt tectonics between Gabon and Namibia. Basin Research, in review.
    [Google Scholar]
  32. Pichel, L. M., Peel, F., Jackson, C. A.‐L., & Huuse, M. (2018). Geometry and kinematics of salt‐detached ramp syncline basins. Journal of Structural Geology, 115, 208–230. https://doi.org/10.1016/j.jsg.2018.07.016
    [Google Scholar]
  33. Quirk, D. G., Schødt, N., Lassen, B., Ings, S. J., Hsu, D., Hirsch, K. K., & Von Nicolai, C. (2012). Salt tectonics on passive margins: Examples from Santos, Campos and kwanza basins. Geological Society, London, Special Publications, 363(1), 207–244.
    [Google Scholar]
  34. Rowan, M. G. (2014). Passive‐margin salt basins: Hyperextension, evaporite deposition, and salt tectonics. Basin Research, 26(1), 154–182.
    [Google Scholar]
  35. Rowan, M. G. (2020). The South Atlantic and Gulf of Mexico salt basins: Crustal thinning, subsidence and accommodation for salt and presalt strata. Geological Society, London, Special Publications, 476(1), 333–363.
    [Google Scholar]
  36. Rowan, M. G., Peel, F. J., & Vendeville, B. C. (2004). Gravity‐driven fold‐belts on passive margins. In K. R.McClay (Ed.), Thrust tectonics and hydrocarbon systems. AAPG Memoir (Vol. 82, pp. 157–182). American Association of Petroleum Geologists.
    [Google Scholar]
  37. Tari, G., Molnar, J., & Ashton, P. (2003). Examples of salt tectonics from West Africa: A comparative approach. Geological Society, London, Special Publications, 207(1), 85–104.
    [Google Scholar]
  38. Tari, G., Novotny, B., Jabour, H., & Hafid, M. (2017). Salt tectonics along the Atlantic margin of NW Africa (Morocco and Mauritania). In J. I.Soto, J.Flinch, & G.Tari (Eds.), Permo‐Triassic salt provinces of Europe, North Africa and the Atlantic margins (pp. 331–351). Elsevier.
    [Google Scholar]
  39. Theunissen, T., & Huismans, R. S. (2019). Long‐term coupling and feedback between tectonics and surface processes during non‐volcanic rifted margin formation. Journal of Geophysical Research: Solid Earth, 124(11), 12323–12347.
    [Google Scholar]
  40. Thieulot, C. (2011). FANTOM: Two‐and three‐dimensional numerical modelling of creeping flows for the solution of geological problems. Physics of the Earth and Planetary Interiors, 188(1–2), 47–68.
    [Google Scholar]
  41. Uranga, R. M., Ferrer, O., Zamora, G., Muñoz, J. A., & Rowan, M. G. (2022). Salt tectonics of the offshore Tarfaya Basin, Moroccan Atlantic margin. Marine and Petroleum Geology, 138, 105521.
    [Google Scholar]
  42. Wu, Y., Louden, K. E., Funck, T., Jackson, H. R., & Dehler, S. A. (2006). Crustal structure of the Central Nova Scotia margin off eastern Canada. Geophysical Journal International, 166(2), 878–906.
    [Google Scholar]
/content/journals/10.1111/bre.12802
Loading
/content/journals/10.1111/bre.12802
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): numerical modelling; progradation; rifted margins; salt tectonics; sediment loading

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error