1887
Volume 35, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

The recent article of Loreto et al. (2021) reported new stratigraphic and structural data of the Tyrrhenian backarc basin and used them to propose a new model of crustal architecture of the basin including oceanic sectors. However, we want to open a discussion on the inconsistencies between the interpreted tectonic structures, as well as the age of faults and the data observations. In particular, data analyses and interpretations of the authors do not fully support the structural and isopach maps and models presented. Furthermore, the authors have not discussed previous published data/interpretations on timing and structural style of the rifting of the region.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12817
2023-11-12
2025-05-13
Loading full text...

Full text loading...

References

  1. Alvarez, W., & Shimabukuro, D. H. (2009). The geological relationships between Sardinia and Calabria during Alpine and Hercynian times. Italian Journal of Geosciences, 128, 257–268.
    [Google Scholar]
  2. Boillot, G., Girardeau, J., & Komprobst, J. (1988). The rifting of the Galicia margin: Crustal thinning and emplacement of mantle rocks on the seafloor. In Proceedings of the Ocean Drilling Program. Scientific Results (Vol. 103, pp. 741–756). Ocean Drilling Program.
    [Google Scholar]
  3. Condie, K. C. (2005). 2—The crust. Earth as an evolving planetary system (3rd ed., pp. 13–58). Academic Press. ISBN: 9780120883929. https://doi.org/10.1016/B978‐012088392‐9/50002
    [Google Scholar]
  4. Dewey, J. F., Helman, M. I., Turco, E., Hutton, D. H. W., & Knott, S. D. (1989). Kinematics of the western Mediterranean. In M. P.Coward, D.Dietrich, & R. G.Park (Eds.), Alpine tectonics (Vol. 45, pp. 265–283). Geological Society Special Publication.
    [Google Scholar]
  5. Doglioni, C., Innocenti, F., Morellato, C., Procaccianti, D., & Scrocca, D. (2004). On the Tyrrhenian Sea opening. Memorie Descrittive Della Carta Geologica D'Italia, 44, 147–164.
    [Google Scholar]
  6. Florio, G., Fedi, M., & Cella, F. (2011). Insights on the spreading of the Tyrrhenian Sea from the magnetic anomaly pattern. Terra Nova, 23, 127–133. https://doi.org/10.1111/j.1365‐3121.2011.00992.x
    [Google Scholar]
  7. Fossen, H. (2012). Structural geology. Cambridge University Press. ISBN: 978‐0521516648.
    [Google Scholar]
  8. Gomez de la Pena, L., Ranero, C., Gracia, E., Perea, H., Booth‐Rea, G., & Azanon, J. M. (2018). Is the Iberian‐African plates boundary well defined in the Alboran Basin of the westernmost Mediterranean? EGU General Assembly Conference Abstracts, 20, 11933.
  9. Grevemeyer, I., Ranero, C. R., & Ivandic, M. (2018). Structure of oceanic crust and serpentinization at subduction trenches. Geosphere, 14(2), 395–418. https://doi.org/10.1130/ges01537.1
    [Google Scholar]
  10. Gueguen, E., Doglioni, C., & Fernandez, M. (1997). Lithospheric boudinage in the western Mediterranean back‐arc basin. Terra Nova, 9, 184–187.
    [Google Scholar]
  11. Hsü, K. J., Montadert, L., Bernoulli, D., Cita, M. B., Erickson, A., Garrison, R. E., Kidd, R. B., Mèlierés, F., Müller, C., & Wright, R. (1977). History of the Mediterranean salinity crisis. Nature, 267(5610), 399–403. https://doi.org/10.1038/267399a0
    [Google Scholar]
  12. Iannace, P., Milia, A., & Torrente, M. M. (2013). 4D geologic evolution in the Gaeta Bay sedimentary infill (Eastern Tyrrhenian Sea). Geoacta, 12, 201–212.
    [Google Scholar]
  13. Iannace, P., Torrente, M. M., & Milia, A. (2018). Tectono‐stratigraphic evolution of the Southern Campania Margin: A key area for the evolution of the Tyrrhenian‐Apennine system. Oil & Gas Science and Technology – Revue d'IFP Energies nouvelles, 73, 39, 1–17. https://doi.org/10.2516/ogst/2018035
    [Google Scholar]
  14. Jolivet, L., & Faccenna, C. (2000). Mediterranean extension and the Africa‐Eurasia collision. Tectonics, 19, 1095–1106. https://doi.org/10.1029/2000TC900018
    [Google Scholar]
  15. Kastens, K., Mascle, J., Auroux, C., Bonatti, E., Broglia, C., Channell, J., Curzi, P., Emeis, K.‐C., Glaçon, G., Hasegawa, S., Hieke, W., Mascle, G., Mccoy, F., Mckenzie, J., Mendelson, J., Müller, C., Réhault, J.‐P., Robertson, A., Sartori, R., … Torii, M. (1988). ODP Leg 107 in the Tyrrhenian Sea: Insights into passive margin and back‐arc basin evolution. Geological Society of America Bulletin, 100(7), 1140–1156. https://doi.org/10.1130/0016‐7606(1988)100<1140:OLITTS>2.3.CO;2
    [Google Scholar]
  16. Kastens, K. A., & Mascle, J. (1990). The geological evolution of the Tyrrhenian Sea: An introduction to the scientific results of ODP Leg 107. In K. A.Kastens, J.Mascle, C.Aroux, E.Bonatti, C.Broglia, J.Channel, P.Curzi, K.‐C.Emeis, G.Glaçon, S.Hagesawa, W.Hieke, F.McCoy, J.McKenzie, G.Mascle, J.Mendelson, C.Müller, J.‐P.Réhault, A.Robertson, R.Sartori, …, M.Torii (Eds.), Proceedings of the ocean drilling program, scientific results (Vol. 107, pp. 3–26). Ocean Drilling Program.
    [Google Scholar]
  17. Lavier, L. L., & Manatschal, G. (2006). A mechanism to thin the continental lithosphere at magma‐poor margins. Nature, 440, 324–328. https://doi.org/10.1038/nature04608
    [Google Scholar]
  18. Loreto, M. F., Zitellini, N., Ranero, C. R., Camilla Palmiotto, C. R., & Prada, M. (2021). Extensional tectonics during the Tyrrhenian back‐arc basin formation and a new morpho‐tectonic map. Basin Research, 33, 138–158. https://doi.org/10.1111/bre.12458
    [Google Scholar]
  19. Lymer, G., Lofi, J., Gaullier, V., Maillard, A., Thinon, I., Sage, F., Chanier, F., Hieke, W., & Vendeville, B. C. (2018). The Western Tyrrhenian Sea revisited: New evidence for a rifted basin during the Messinian Salinity Crisis. Marine Geology, 398, 1–21. https://doi.org/10.1016/j.margeo.2017.12.009
    [Google Scholar]
  20. Malinverno, A., & Ryan, W. B. (1986). Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics, 5(2), 227–245. https://doi.org/10.1029/TC005i002p002275
    [Google Scholar]
  21. Mascle, J., & Rehault, J. P. (1990). A revised seismic stratigraphy of the Tyrrhenian Sea: Implications for the basin evolution. In K. A.Kastens, J.Mascle, C.Aroux, E.Bonatti, C.Broglia, J.Channel, P.Curzi, K.‐C.Emeis, G.Glaçon, S.Hagesawa, W.Hieke, F.McCoy, J.McKenzie, G.Mascle, J.Mendelson, C.Müller, J.‐P.Réhault, A.Robertson, R.Sartori, …, M.Torii (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 107). Ocean Drilling Program.
    [Google Scholar]
  22. Mattei, M., Cipollari, P., Cosentino, D., Argentieri, A., Rossetti, F., Speranza, F., & di Bella, L. (2002). The Miocene tectono‐sedimentary evolution of the southern Tyrrhenian Sea: Stratigraphy, structural and palaeomagnetic data from the on‐shore Amantea basin (Calabrian Arc, Italy). Basin Research, 14(2), 147–168. https://doi.org/10.1046/j.1365‐2117.2002.00173.x
    [Google Scholar]
  23. Milia, A., Iannace, P., Tesauro, M., & Torrente, M. M. (2017). Upper plate deformation as marker for the Northern STEP fault of the Ionian slab (Tyrrhenian Sea, Central Mediterranean). Tectonophysics, 710–711, 127–148. https://doi.org/10.1016/j.tecto.2016.08.017
    [Google Scholar]
  24. Milia, A., Iannace, P., Tesauro, M., & Torrente, M. M. (2018). Marsili and Cefalù basins: The evolution of a rift system in the southern Tyrrhenian Sea (Central Mediterranean). Global and Planetary Change, 171, 225–237 (I.F. 3,915). https://doi.org/10.1016/j.gloplacha.2017.12.003
    [Google Scholar]
  25. Milia, A., Iannace, P., & Torrente, M. M. (2021). The meeting place of backarc and foreland rifting: The example of the offshore western Sicily (Central Mediterranean). Global and Planetary Change, 198, 103408. https://doi.org/10.1016/j.gloplacha.2020.103408
    [Google Scholar]
  26. Milia, A., & Torrente, M. M. (2014). Early‐stage rifting of the southern Tyrrhenian region: The Calabria‐Sardinia breakup. Journal of Geodynamics, 81, 17–29. https://doi.org/10.1016/j.jgs2014‐046
    [Google Scholar]
  27. Milia, A., & Torrente, M. M. (2015a). Tectono‐stratigraphic signature of a rapid multistage subsiding rift basin in the Tyrrhenian‐Apennine hinge zone (Italy): A possible interaction of upper plate with subducting slab. Journal of Geodynamics, 86, 42–60. https://doi.org/10.1016/j.jog.2015.02.005
    [Google Scholar]
  28. Milia, A., & Torrente, M. M. (2015b). Rift and supradetachment basins during extension: Insight from Tyrrhenian rift. Journal of the Geological Society, 72, 5–8. https://doi.org/10.1144/jgs2014‐046
    [Google Scholar]
  29. Milia, A., & Torrente, M. M. (2018). Extensional Messinian basins in the Central Mediterranean (Calabria, Italy): New stratigraphic and tectonic insights. Oil & Gas Science and Technology – Revue d'IFP Energies nouvelles, 73, 45, 1–12. https://doi.org/10.2516/ogst/2018035
    [Google Scholar]
  30. Milia, A., & Torrente, M. M. (2022). Coeval Miocene development of thrust belt‐backarc and forearc extension during the subduction of a continental margin (Western‐Central Mediterranean Sea). Journal of Geodynamics, 149, 101882. https://doi.org/10.1016/j.jog.2021.101882
    [Google Scholar]
  31. Milia, A., Torrente, M. M., Massa, B., & Iannace, P. (2013). Progressive changes in rifting directions in the Campania margin (Italy): New constrains for the Tyrrhenian Sea opening. Global and Planetary Change, 109, 3–17. https://doi.org/10.1016/j.gloplacha.2013.07.003
    [Google Scholar]
  32. Milia, A., Torrente, M. M., & Tesauro, M. (2017). From stretching to mantle exhumation in a triangular backarc basin (Vavilov basin, Tyrrhenian Sea, western Mediterranean). Tectonophysics, 710–711, 108–126. https://doi.org/10.1016/j.tecto.2016.10.017
    [Google Scholar]
  33. Milia, A., Turco, E., Pierantoni, P. P., & Schettino, A. (2009). Four‐dimensional tectonostratigraphic evolution of the southeastern peri‐Tyrrhenian basins (Margin of Calabria, Italy). Tectonophysics, 476, 41–56.
    [Google Scholar]
  34. Milia, A., Valente, A., Cavuoto, G., & Torrente, M. M. (2017). Miocene progressive forearc extension in the Central Mediterranean. Tectonophysics, 710–711, 232–248. https://doi.org/10.1016/j.tecto.2016.10.002
    [Google Scholar]
  35. Mohn, G., Manatschal, G., Beltrando, M., Masini, E., & Kusznir, N. (2012). Necking of continental crust in magma‐poor rifted margins: Evidence from the fossil Alpine Tethys margins. Tectonics, 31(1), 1–28. https://doi.org/10.1029/2011TC002961
    [Google Scholar]
  36. Morley, C. K. (1995). Developments in the structural geology of rifts over the last decade and their impact on hydrocarbon exploration. Geological Society, London, Special Publications, 80(1), 1–32. https://doi.org/10.1144/gsl.sp.1995.080.01.01
    [Google Scholar]
  37. Mutter, J. C., & Larson, R. L. (1989). Extension of the Exmouth Plateau, offshore northwestern Australia: Deep seismic reflection/refraction evidence for simple and pure shear mechanisms. Geology, 17(1), 15–18. https://doi.org/10.1130/0091‐7613(1989)017<0015:EOTEPO>2.3.CO;2
    [Google Scholar]
  38. Nicolosi, I., Speranza, F., & Chiappini, M. (2006). Ultrafast oceanic spreading of the Marsili Basin, southern Tyrrhenian Sea: Evidence from magnetic anomaly analysis. Geology, 34(9), 717–720. https://doi.org/10.1130/G22555.1
    [Google Scholar]
  39. Patacca, E., Sartori, R., & Scandone, P. (1990). Tyrrhenian basin and Apenninic arcs: Kinematic relations since late Tortonian times. Memorie Società Geologica Italiana, 45, 425–451.
    [Google Scholar]
  40. Pepe, F., Sulli, A., Bertotti, G., & Catalano, R. (2005). Structural highs formation and their relationship to sedimentary basins in the north Sicily continental margin (southern Tyrrhenian Sea): Implication for the Drepano Thrust Front. Tectonophysics, 409, 1–18.
    [Google Scholar]
  41. Péron‐Pinvidic, G., & Manatscal, G. (2009). The final rifting evolution at deep magma‐poor passive margins from Iberia‐Newfoundland: A new point of view. International Journal of Earth Sciences (Geologische Rundschau), 98, 1581–1597. https://doi.org/10.1007/s00531‐008‐0337‐9
    [Google Scholar]
  42. Prada, M., Ranero, C. R., Sallares, V., Zitellini, N., & Grevemeyer, I. (2016). Mantle exhumation and sequence of magmatic events in the Magnaghi‐Vavilov Basin (Central Tyrrhenian, Italy): New constraints from geological and geophysical observations. Tectonophysics, 689, 133–142. https://doi.org/10.1016/j.tecto.2016.01.041
    [Google Scholar]
  43. Prada, M., Sallares, V., Ranero, C. R., Vendrell, M. G., Grevemeyer, I., Zitellini, N., & de Franco, R. (2014). Seismic structure of the Central Tyrrhenian basin: Geophysical constraints on the nature of the main crustal domains. Journal of Geophysical Research: Solid Earth, 119(1), 52–70. https://doi.org/10.1002/2013JB010527
    [Google Scholar]
  44. Prada, M., Sallares, V., Ranero, C. R., Vendrell, M. G., Grevemeyer, I., Zitellini, N., & de Franco, R. (2015). The complex 3‐D transition from continental crust to backarc magmatism and exhumed mantle in the Central Tyrrhenian basin. Geophysical Journal International, 203(1), 63–78. https://doi.org/10.1093/gji/ggv271
    [Google Scholar]
  45. Reston, T. J., & McDermott, K. G. (2011). Successive detachment faults and mantle unroofing at magma‐poor rifted margins. Geology, 39(11), 1071–1074. https://doi.org/10.1130/G32428.1
    [Google Scholar]
  46. Rosenbaum, G., & Lister, G. S. (2004). Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides. Tectonics, 23(1), 1–17. https://doi.org/10.1029/2003TC001518
    [Google Scholar]
  47. Sartori, R. (1990). The main results of ODP Leg 107 in the frame of neogene to recent geology of Perityrrhenian areas. In K. A.Kastens, J.Mascle, C.Aroux, E.Bonatti, C.Broglia, J.Channel, P.Curzi, K.‐C.Emeis, G.Glaçon, S.Hagesawa, W.Hieke, F.McCoy, J.McKenzie, G.Mascle, J.Mendelson, C.Müller, J.‐P.Réhault, A.Robertson, R.Sartori, …, M.Torii (Eds.), Proceedings of the Ocean Drilling Program Scientific Results 107 (pp. 715–730). Ocean Drilling Program.
    [Google Scholar]
  48. Sartori, R., Carrara, G., Torelli, L., & Zitellini, N. (2001). Neogene evolution of the southwestern Tyrrhenian Sea (Sardinia Basin and western Bathyal plain). Marine Geology, 175(1–4), 47–66. https://doi.org/10.1016/S0025‐3227(01)00116‐5
    [Google Scholar]
  49. Sartori, R., Torelli, L., Zitellini, N., Carrara, G., Magaldi, M., & Mussoni, P. (2004). Crustal features along a W‐E Tyrrhenian transect from Sardinia to Campania margins (Central Mediterranean). Tectonophysics, 383(3–4), 171–192. https://doi.org/10.1016/j.tecto.2004.02.008
    [Google Scholar]
  50. Torelli, L., Cornini, S., Brancolini, G., & Zitellini, N. (1990). The Sardinia Channel (Central Mediterranean): A structural analysis of a submarine orogenic chain. Studi Geologici Camerti, n. speciale, 35–36.
    [Google Scholar]
  51. Watts, A. B., Platt, J. P., & Buhl, P. (1993). Tectonic evolution of the Alboran Sea basin. Basin Research, 5(3), 153–177. https://doi.org/10.1111/j.1365‐2117.1993.tb00063.x
    [Google Scholar]
  52. Whitmarsh, R. B., Manatschal, G., & Minshull, T. A. (2001). Evolution of magma‐poor continental margins from rifting to seafloor spreading. Nature, 413, 150–154. https://doi.org/10.1038/35093085
    [Google Scholar]
  53. Wortel, M. J. R., & Spakman, W. (2000). Subduction and slab detachment in the Mediterranean‐Carpathian region. Science, 290, 1910–1917. https://doi.org/10.1126/science.290.5498.1910
    [Google Scholar]
/content/journals/10.1111/bre.12817
Loading
/content/journals/10.1111/bre.12817
Loading

Data & Media loading...

  • Article Type: Article Commentary
Keyword(s): backarc basin; normal fault; Tyrrhenian Sea

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error