1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

Convergent margins play a fundamental role in the construction and modification of Earth's lithosphere and are characterized by poorly understood episodic processes that occur during the progression from subduction to terminal collision. On the northern margin of the active Arabia‐Eurasia collision zone, the Greater Caucasus Mountains provide an opportunity to study a protracted convergent margin that spanned most of the Phanerozoic and culminated in Cenozoic continental collision. However, the main episodes of lithosphere formation and deformation along this margin remain enigmatic. Here, we use detrital zircon U–Pb geochronology from Paleozoic and Mesozoic (meta)sedimentary rocks in the Greater Caucasus, along with select zircon U–Pb and Hf isotopic data from coeval igneous rocks, to link key magmatic and depositional episodes along the Caucasus convergent margin. Devonian to Early Carboniferous rocks were deposited prior to Late Carboniferous accretion of the Greater Caucasus crystalline core onto the Laurussian margin. Permian to Triassic rocks document a period of northward subduction and forearc deposition south of a continental margin volcanic arc in the Northern Caucasus and Scythian Platform. Jurassic rocks record the opening of the Caucasus Basin as a back‐arc rift during southward migration of the arc front into the Lesser Caucasus. Cretaceous rocks have few Jurassic‐Cretaceous zircons, indicating a period of relative magmatic quiescence and minimal exhumation within this basin. Late Cenozoic closure of the Caucasus Basin juxtaposed the Lesser Caucasus arc to the south against the crystalline core of the Greater Caucasus to the north and led to the formation of a hypothesized terminal suture. We expect this suture to be within ~20 km of the southern range front of the Greater Caucasus because all analysed rocks to the north exhibit a provenance affinity with the crystalline core of the Greater Caucasus.

,

Detrital zircon geochronology delineates four phases of deposition in the Greater Caucasus: (1) Devonian to Early Carboniferous deposition prior to Late Carboniferous accretion, (2) Permian to Triassic deposition in the forearc of a volcanic arc, (3) Jurassic deposition during back‐arc extension and magmatism, and (4) Cretaceous deposition during tectonic quiescence.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12825
2024-01-17
2025-04-26
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12825.html?itemId=/content/journals/10.1111/bre.12825&mimeType=html&fmt=ahah

References

  1. Adamia, S. A., Alania, V., Chabukiani, A., Kutelia, Z., & Sadradze, N. (2011). Great Caucasus (Cavcasioni): A long‐lived north‐Tethyan back‐arc basin. Turkish Journal of Earth Sciences, 20, 611–628.
    [Google Scholar]
  2. Adamia, S. A., Lordkipanidze, M., & Zakariadze, G. S. (1977). Evolution of an active continental margin as exemplified by the Alpine history of the Caucasus. Tectonophysics, 40, 183–199.
    [Google Scholar]
  3. Adamia, S. A., Zakariadze, G., Chkhotua, T., Sadradze, N., Tsereteli, N., Chabukiani, A., & Gventsadze, A. (2011). Geology of the Caucasus: A review. Turkish Journal of Earth Sciences, 20, 489–544.
    [Google Scholar]
  4. Agard, P., Omrani, J., Jolivet, L., & Mouthereau, F. (2005). Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94, 401–419. https://doi.org/10.1007/s00531‐005‐0481‐4
    [Google Scholar]
  5. Alexandre, P., Chalot‐Prat, F., Saintot, A., Wijbrans, J., Stephenson, R., Wilson, M., Kitchka, A., & Stovba, S. (2004). The 40Ar/39Ar dating of magmatic activity in the Donbas Fold Belt and the Scythian Platform (Eastern European Craton). Tectonics, 23, TC5002. https://doi.org/10.1029/2003TC001582
    [Google Scholar]
  6. Attia, S., Paterson, S. R., Saleeby, J., & Cao, W. (2021). Detrital zircon provenance and depositional links of Mesozoic Sierra Nevada intra‐arc strata. Geosphere, 17, 1422–1453. https://doi.org/10.1130/GES02296.1
    [Google Scholar]
  7. Avdeev, B., & Niemi, N. A. (2011). Rapid Pliocene exhumation of the central Greater Caucasus constrained by low‐temperature thermochronometry. Tectonics, 30, TC2009. https://doi.org/10.1029/2010TC002808
    [Google Scholar]
  8. Balázs, A., Faccenna, C., Gerya, T., Ueda, K., & Funiciello, F. (2022). The dynamics of forearc – back‐arc basin subsidence: Numerical models and observations from Mediterranean subduction zones. Tectonics, 41, e2021TC007078. https://doi.org/10.1029/2021TC007078
    [Google Scholar]
  9. Balgord, E. A., Yonkee, W. A., Wells, M. L., Gentry, A., & Laskowski, A. K. (2021). Arc tempos, tectonic styles, and sedimentation patterns during evolution of the North American Cordillera: Constraints from the retroarc detrital zircon archive. Earth‐Science Reviews, 216, 103557. https://doi.org/10.1016/j.earscirev.2021.103557
    [Google Scholar]
  10. Bouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273, 48–57. https://doi.org/10.1016/j.epsl.2008.06.010
    [Google Scholar]
  11. Busby, C. J. (2011). Extensional and transtensional continental arc basins: Case studies from the southwestern United States. In C.Busby, & A.Azor (Eds.), Tectonics of sedimentary basins (pp. 382–404). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781444347166.ch19
    [Google Scholar]
  12. Cawood, P. A., Hawkesworth, C. J., & Dhuime, B. (2012). Detrital zircon record and tectonic setting. Geology, 40, 875–878. https://doi.org/10.1130/G32945.1
    [Google Scholar]
  13. Cawood, P. A., Hawkesworth, C. J., & Dhuime, B. (2013). The continental record and the generation of continental crust. GSA Bulletin, 125, 14–32. https://doi.org/10.1130/B30722.1
    [Google Scholar]
  14. Cecil, M. R., Rusmore, M. E., Gehrels, G. E., Woodsworth, G. J., Stowell, H. H., Yokelson, I. N., Chisom, C., Trautman, M., & Homan, E. (2018). Along‐strike variation in the magmatic tempo of the Coast Mountains batholith, British Columbia, and implications for processes controlling episodicity in arcs. Geochemistry, Geophysics, Geosystems, 19, 4274–4289. https://doi.org/10.1029/2018GC007874
    [Google Scholar]
  15. Chapman, J. B., Shields, J. E., Ducea, M. N., Paterson, S. R., Attia, S., & Ardill, K. E. (2021). The causes of continental arc flare ups and drivers of episodic magmatic activity in cordilleran orogenic systems. Lithos, 398–399, 106307. https://doi.org/10.1016/j.lithos.2021.106307
    [Google Scholar]
  16. Copeland, P. (2020). On the use of geochronology of detrital grains in determining the time of deposition of clastic sedimentary strata. Basin Research, 32, 1532–1546. https://doi.org/10.1111/bre.12441
    [Google Scholar]
  17. Corradino, M., Balazs, A., Faccenna, C., & Pepe, F. (2022). Arc and forearc rifting in the Tyrrhenian subduction system. Scientific Reports, 12, 4728. https://doi.org/10.1038/s41598‐022‐08562‐w
    [Google Scholar]
  18. Coutts, D. S., Matthews, W. A., & Hubbard, S. M. (2019). Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geoscience Frontiers, 10, 1421–1435. https://doi.org/10.1016/j.gsf.2018.11.002
    [Google Scholar]
  19. Cowgill, E., Forte, A. M., Niemi, N., Avdeev, B., Tye, A., Trexler, C., Javakhishvili, Z., Elashvili, M., & Godoladze, T. (2016). Relict basin closure and crustal shortening budgets during continental collision: An example from Caucasus sediment provenance. Tectonics, 35, 2016TC004295. https://doi.org/10.1002/2016TC004295
    [Google Scholar]
  20. Cowgill, E., Niemi, N. A., Forte, A. M., & Trexler, C. C. (2018). Reply to comment by Vincent et al. Tectonics, 37, 1017–1028. https://doi.org/10.1002/2017TC004793
    [Google Scholar]
  21. Cumberpatch, Z. A., Soutter, E. L., Kane, I. A., Casson, M., & Vincent, S. J. (2020). Evolution of a mixed siliciclastic‐carbonate deep‐marine system on an unstable margin: The Cretaceous of the Eastern Greater Caucasus. Basin Research, 33, 612–637. https://doi.org/10.1111/bre.12488
    [Google Scholar]
  22. Darin, M. H., & Umhoefer, P. J. (2022). Diachronous initiation of Arabia–Eurasia collision from eastern Anatolia to the southeastern Zagros Mountains since middle Eocene time. International Geology Review, 64, 2653–2681. https://doi.org/10.1080/00206814.2022.2048272
    [Google Scholar]
  23. DeCelles, P. G., Ducea, M. N., Kapp, P., & Zandt, G. (2009). Cyclicity in Cordilleran orogenic systems. Nature Geoscience, 2, 251–257. https://doi.org/10.1038/ngeo469
    [Google Scholar]
  24. DeGraaff‐Surpless, K., Graham, S. A., Wooden, J. L., & McWilliams, M. O. (2002). Detrital zircon provenance analysis of the Great Valley group, California: Evolution of an arc‐forearc system. GSA Bulletin, 114, 1564–1580. https://doi.org/10.1130/0016‐7606(2002)114<1564:DZPAOT>2.0.CO;2
    [Google Scholar]
  25. Dewey, J. F. (1977). Suture zone complexities: A review. Tectonophysics, 40, 53–67. https://doi.org/10.1016/0040‐1951(77)90029‐4
    [Google Scholar]
  26. Dewey, J. F., & Bird, J. M. (1970). Mountain belts and the new global tectonics. Journal of Geophysical Research, 75, 2625–2647. https://doi.org/10.1029/JB075i014p02625
    [Google Scholar]
  27. Dewey, J. F., & Horsfield, B. (1970). Plate tectonics, orogeny and continental growth. Nature, 225, 521–525. https://doi.org/10.1038/225521a0
    [Google Scholar]
  28. Dewey, J. F., Pitman, W. C., Ryan, W. B. F., & Bonnin, J. (1973). Plate tectonics and the evolution of the alpine system. GSA Bulletin, 84, 3137–3180. https://doi.org/10.1130/0016‐7606(1973)84<3137:PTATEO>2.0.CO;2
    [Google Scholar]
  29. Dickinson, W. R. (1971). Plate tectonic models for orogeny at continental margins. Nature, 232, 41–42. https://doi.org/10.1038/232041a0
    [Google Scholar]
  30. Dickinson, W. R., & Gehrels, G. E. (2009). Use of U‐Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado plateau Mesozoic database. Earth and Planetary Science Letters, 288, 115–125. https://doi.org/10.1016/j.epsl.2009.09.013
    [Google Scholar]
  31. Ducea, M. N., & Barton, M. D. (2007). Igniting flare‐up events in Cordilleran arcs. Geology, 35, 1047–1050. https://doi.org/10.1130/G23898A.1
    [Google Scholar]
  32. Ducea, M. N., Saleeby, J. B., & Bergantz, G. (2015). The architecture, chemistry, and evolution of continental magmatic arcs. Annual Review of Earth and Planetary Sciences, 43, 299–331. https://doi.org/10.1146/annurev‐earth‐060614‐105049
    [Google Scholar]
  33. Ershov, A. V., Brunet, M.‐F., Nikishin, A. M., Bolotov, S. N., Nazarevich, B. P., & Korotaev, M. V. (2003). Northern Caucasus basin: Thermal history and synthesis of subsidence models. Sedimentary Geology, 156, 95–118. https://doi.org/10.1016/S0037‐0738(02)00284‐1
    [Google Scholar]
  34. Faccenna, C., Funiciello, F., Giardini, D., & Lucente, P. (2001). Episodic back‐arc extension during restricted mantle convection in the Central Mediterranean. Earth and Planetary Science Letters, 187, 105–116. https://doi.org/10.1016/S0012‐821X(01)00280‐1
    [Google Scholar]
  35. Forte, A. M., Cowgill, E., Bernardin, T., Kreylos, O., & Hamann, B. (2010). Late Cenozoic deformation of the Kura fold‐thrust belt, southern Greater Caucasus. Geological Society of America Bulletin, 122, 465–486. https://doi.org/10.1130/B26464.1
    [Google Scholar]
  36. Forte, A. M., Cowgill, E., & Whipple, K. X. (2014). Transition from a singly vergent to doubly vergent wedge in a young orogen: The Greater Caucasus. Tectonics, 33, 2014TC003651–2101. https://doi.org/10.1002/2014TC003651
    [Google Scholar]
  37. Forte, A. M., Gutterman, K. R., van Soest, M. C., & Gallagher, K. (2022). Building a young mountain range: Insight into the growth of the Greater Caucasus Mountains from detrital zircon (U‐Th)/He thermochronology and 10Be erosion rates. Tectonics, 41, e2021TC006900. https://doi.org/10.1029/2021TC006900
    [Google Scholar]
  38. Gamkrelidze, I. P. (1986). Geodynamic evolution of the Caucasus and adjacent areas in alpine time. Tectonophysics, 127, 261–277. https://doi.org/10.1016/0040‐1951(86)90064‐8
    [Google Scholar]
  39. Gamkrelidze, P. D., & Kakhazdze, I. R. (1959). Geological map of the USSR, Caucasus series sheet K‐38‐VII, scale 1:200,000. Ministry of Geology and Mineral Protection USSR.
    [Google Scholar]
  40. Gansser, A. (1980). The significance of the Himalayan suture zone. Tectonophysics, 62, 37–52. https://doi.org/10.1016/0040‐1951(80)90134‐1
    [Google Scholar]
  41. Geguchadze, S. H., Gvineria, L. C., Kalinin, E. V., & Beradze, R. P. (1985a). Geological map of the Georgian SSR, sheet K‐38‐25‐G, scale 1:50,000. USSR Ministry of Geology.
    [Google Scholar]
  42. Geguchadze, S. H., Gvineria, L. C., Kalinin, E. V., & Beradze, R. P. (1985b). Geological map of the Georgian SSR, sheet K‐38‐26‐V, scale 1:50,000. USSR Ministry of Geology.
    [Google Scholar]
  43. Geguchadze, S. H., Gvineria, L. C., Kalinin, E. V., & Beradze, R. P. (1985c). Geological map of the Georgian SSR, sheet K‐38‐37‐V, scale 1:50,000. USSR Ministry of Geology.
    [Google Scholar]
  44. Geguchadze, S. H., Gvineria, L. C., Kalinin, E. V., & Beradze, R. P. (1985d). Geological map of the Georgian SSR, sheet K‐38‐38‐B, scale 1:50,000. USSR Ministry of Geology.
    [Google Scholar]
  45. Geguchadze, S. H., Gvineria, L. C., Kalinin, E. V., & Beradze, R. P. (1985e). Geological map of the Georgian SSR, sheet K‐38‐38‐G, scale 1:50,000. USSR Ministry of Geology.
    [Google Scholar]
  46. Geguchadze, S. H., Gvineria, L. C., Kalinin, E. V., & Beradze, R. P. (1985f). Geological map of the Georgian SSR, sheet K‐38‐38‐V, scale 1:50,000. USSR Ministry of Geology.
    [Google Scholar]
  47. Gehrels, G. (2014). Detrital zircon U‐Pb geochronology applied to tectonics. Annual Review of Earth and Planetary Sciences, 42, 127–149. https://doi.org/10.1146/annurev‐earth‐050212‐124012
    [Google Scholar]
  48. Gehrels, G., & Pecha, M. (2014). Detrital zircon U‐Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America. Geosphere, 10, 49–65. https://doi.org/10.1130/GES00889.1
    [Google Scholar]
  49. Gehrels, G., Rusmore, M., Woodsworth, G., Crawford, M., Andronicos, C., Hollister, L., Patchett, J., Ducea, M., Butler, R., Klepeis, K., Davidson, C., Friedman, R., Haggart, J., Mahoney, B., Crawford, W., Pearson, D., & Girardi, J. (2009). U‐Th‐Pb geochronology of the Coast Mountains batholith in North‐Coastal British Columbia: Constraints on Age and Tectonic Evolution. GSA Bulletin, 121, 1341–1361. https://doi.org/10.1130/B26404.1
    [Google Scholar]
  50. Gehrels, G., Valencia, V., & Pullen, A. (2006). Detrital zircon geochronology by laser‐ablation multicollector ICPMS at the Arizona LaserChron center. The Paleontological Society Papers, 12, 67–76. https://doi.org/10.1017/S1089332600001352
    [Google Scholar]
  51. Gehrels, G., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems, 9, Q03017. https://doi.org/10.1029/2007GC001805
    [Google Scholar]
  52. Gerasimov, V. Y., Garanin, V. K., Pis'mennyi, A. N., & Enna, N. L. (2015). New data on the Mesozoic magmatism of the Bechasyn zone, in the Greater Caucasus, and estimation of the age of the regional metamorphism. Moscow University Geology Bulletin, 70, 327–337. https://doi.org/10.3103/S0145875215040031
    [Google Scholar]
  53. Gudjabidze, G. E. (2003). Geological Map of Georgia, scale: 1:500,000. Georgian State Department of Geology and National Oil Company “SAQNAVTOBI”.
  54. Gusmeo, T., Cavazza, W., Alania, V. M., Enukidze, O. V., Zattin, M., & Corrado, S. (2021). Structural inversion of back‐arc basins–the Neogene Adjara‐Trialeti fold‐and‐thrust belt (SW Georgia) as a far‐field effect of the Arabia‐Eurasia collision. Tectonophysics, 803, 228702. https://doi.org/10.1016/j.tecto.2020.228702
    [Google Scholar]
  55. Hanel, M., Gurbanov, A., & Lippolt, H. (1992). Age and genesis of granitoids from the Main‐range and Bechasyn zones of the western Great Caucasus: Neues Jahrbuch fur Mineralogie. Monatshefte, 12, 529.
    [Google Scholar]
  56. Hässig, M., Moritz, R., Ulianov, A., Popkhadze, N., Galoyan, G., & Enukidze, O. (2020). Jurassic to Cenozoic magmatic and geodynamic evolution of the eastern Pontides and Caucasus belts, and their relationship with the eastern Black Sea basin opening. Tectonics, 39, e2020TC006336. https://doi.org/10.1029/2020TC006336
    [Google Scholar]
  57. Hawkesworth, C. J., Cawood, P. A., Dhuime, B., & Kemp, T. I. S. (2017). Earth's continental lithosphere through time. Annual Review of Earth and Planetary Sciences, 45, 169–198. https://doi.org/10.1146/annurev‐earth‐063016‐020525
    [Google Scholar]
  58. Hempton, M. R. (1985). Structure and deformation history of the Bitlis suture near Lake Hazar, southeastern Turkey. GSA Bulletin, 96, 233–243. https://doi.org/10.1130/0016‐7606(1985)96<233:SADHOT>2.0.CO;2
    [Google Scholar]
  59. Hess, J. C., Aretz, J., Gurbanov, A. G., Emmermann, R., & Lippolt, H. J. (1995). Subduction‐related Jurassic andesites in the northern Great Caucasus. Geologische Rundschau, 84, 319–333. https://doi.org/10.1007/BF00260443
    [Google Scholar]
  60. Horstwood, M. S. A., Košler, J., Gehrels, G., Jackson, S. E., McLean, N. M., Paton, C., Pearson, N. J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J. F., Condon, D. J., & Schoene, B. (2016). Community‐derived standards for LA‐ICP‐MS U‐(Th‐)Pb geochronology – Uncertainty propagation, age interpretation and data reporting. Geostandards and Geoanalytical Research, 40, 311–332. https://doi.org/10.1111/j.1751‐908X.2016.00379.x
    [Google Scholar]
  61. Iizuka, T., Campbell, I. H., Allen, C. M., Gill, J. B., Maruyama, S., & Makoka, F. (2013). Evolution of the African continental crust as recorded by U–Pb, Lu–Hf and O isotopes in detrital zircons from modern rivers. Geochimica et Cosmochimica Acta, 107, 96–120. https://doi.org/10.1016/j.gca.2012.12.028
    [Google Scholar]
  62. Jackson, J. (1992). Partitioning of strike‐slip and convergent motion between Eurasia and Arabia in eastern Turkey and the Caucasus: Journal of geophysical research. Solid Earth, 97, 12471–12479. https://doi.org/10.1029/92JB00944
    [Google Scholar]
  63. Javakhishvili, I., Shengelia, D., Shumlyanskyy, L., Tsutsunava, T., Chichinadze, G., & Beridze, G. (2021). Metamorphism of the Dizi series rocks (the Greater Caucasus): Petrography, mineralogy and evolution of metamorphic assemblages. Baltica, 34, 185–202. https://doi.org/10.5200/baltica.2021.2.5
    [Google Scholar]
  64. Kandelaki, D. N., & Kakhazdze, I. R. (1957). Geological map of the USSR, Caucasus series sheet K‐38‐XV, scale 1:200,000. Ministry of Geology and Mineral Protection USSR.
    [Google Scholar]
  65. Kapp, P., & DeCelles, P. G. (2019). Mesozoic–Cenozoic geological evolution of the Himalayan‐Tibetan orogen and working tectonic hypotheses. American Journal of Science, 319, 159–254. https://doi.org/10.2475/03.2019.01
    [Google Scholar]
  66. Karig, D. E. (1971). Origin and development of marginal basins in the western Pacific. Journal of Geophysical Research (1896‐1977), 76, 2542–2561. https://doi.org/10.1029/JB076i011p02542
    [Google Scholar]
  67. Kazmin, V. G. (2006). Tectonic evolution of the Caucasus and fore‐Caucasus in the late Paleozoic. Doklady Earth Sciences, 406, 1–3. https://doi.org/10.1134/S1028334X06010016
    [Google Scholar]
  68. Koshnaw, R. I., Stockli, D. F., & Schlunegger, F. (2018). Timing of the Arabia‐Eurasia continental collision—Evidence from detrital zircon U‐Pb geochronology of the Red Bed Series strata of the northwest Zagros hinterland, Kurdistan region of Iraq. Geology, 47, 47–50. https://doi.org/10.1130/G45499.1
    [Google Scholar]
  69. Levander, A., Bezada, M. J., Niu, F., Humphreys, E. D., Palomeras, I., Thurner, S. M., Masy, J., Schmitz, M., Gallart, J., Carbonell, R., & Miller, M. S. (2014). Subduction‐driven recycling of continental margin lithosphere. Nature, 515, 253–256. https://doi.org/10.1038/nature13878
    [Google Scholar]
  70. Magni, V. (2019). The effects of back‐arc spreading on arc magmatism. Earth and Planetary Science Letters, 519, 141–151. https://doi.org/10.1016/j.epsl.2019.05.009
    [Google Scholar]
  71. Magni, V., Faccenna, C., van Hunen, J., & Funiciello, F. (2014). How collision triggers backarc extension: Insight into Mediterranean style of extension from 3‐D numerical models. Geology, 42, 511–514. https://doi.org/10.1130/G35446.1
    [Google Scholar]
  72. Mayringer, F., Treloar, P. J., Gerdes, A., Finger, F., & Shengelia, D. (2011). New age data from the Dzirula Massif, Georgia: Implications for the evolution of the Caucasian Variscides. American Journal of Science, 311, 404–441. https://doi.org/10.2475/05.2011.02
    [Google Scholar]
  73. McDougall, I., & Harrison, T. M. (1999). Geochronology and Thermochronology by the 40Ar/39Ar Method (p. 286). Oxford University Press.
    [Google Scholar]
  74. McQuarrie, N., & van Hinsbergen, D. J. J. (2013). Retrodeforming the Arabia‐Eurasia collision zone: Age of collision versus magnitude of continental subduction. Geology, 41, 315–318. https://doi.org/10.1130/G33591.1
    [Google Scholar]
  75. Mitchell, J., & Westaway, R. (1999). Chronology of Neogene and Quaternary uplift and magmatism in the Caucasus: Constraints from K–Ar dating of volcanism in Armenia. Tectonophysics, 304, 157–186. https://doi.org/10.1016/S0040‐1951(99)00027‐X
    [Google Scholar]
  76. Mosar, J., Kangarli, T., Bochud, M., Glasmacher, U. A., Rast, A., Brunet, M.‐F., & Sosson, M. (2010). Cenozoic‐recent tectonics and uplift in the Greater Caucasus: A perspective from Azerbaijan. Geological Society, London, Special Publications, 340, 261–280. https://doi.org/10.1144/SP340.12
    [Google Scholar]
  77. Mosar, J., Mauvilly, J., Koiava, K., Gamkrelidze, I., Enna, N., Lavrishev, V., & Kalberguenova, V. (2022). Tectonics in the Greater Caucasus (Georgia – Russia): From an intracontinental rifted basin to a doubly verging fold‐and‐thrust belt. Marine and Petroleum Geology, 140, 105630. https://doi.org/10.1016/j.marpetgeo.2022.105630
    [Google Scholar]
  78. Mumladze, T., Forte, A. M., Cowgill, E. S., Trexler, C. C., Niemi, N. A., Burak Yıkılmaz, M., & Kellogg, L. H. (2015). Subducted, detached, and torn slabs beneath the Greater Caucasus. GeoResJ, 5, 36–46. https://doi.org/10.1016/j.grj.2014.09.004
    [Google Scholar]
  79. Nalivkin, D. V. (1976). Geologic map of the Caucasus. Ministry of Geology, USSR.
    [Google Scholar]
  80. Natal'in, B. A., & Şengör, A. M. C. (2005). Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: The pre‐history of the Palaeo‐Tethyan closure. Tectonophysics, 404, 175–202. https://doi.org/10.1016/j.tecto.2005.04.011
    [Google Scholar]
  81. Nelson, D. R. (2001). An assessment of the determination of depositional ages for Precambrian clastic sedimentary rocks by U–Pb dating of detrital zircons. Sedimentary Geology, 141–142, 37–60. https://doi.org/10.1016/S0037‐0738(01)00067‐7
    [Google Scholar]
  82. Nikishin, A., Ziegler, P., Bolotov, S., & Fokin, P. (2011). Late Palaeozoic to Cenozoic evolution of the Black Sea‐southern Eastern Europe region: A view from the Russian platform. Turkish Journal of Earth Sciences, 20, 571–634.
    [Google Scholar]
  83. Okay, A. İ., & Nikishin, A. M. (2015). Tectonic evolution of the southern margin of Laurasia in the Black Sea region. International Geology Review, 57, 1051–1076. https://doi.org/10.1080/00206814.2015.1010609
    [Google Scholar]
  84. Okay, A. I., Şengör, A. M. C., & Görür, N. (1994). Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology, 22, 267–270. https://doi.org/10.1130/0091‐7613(1994)022<0267:KHOTOO>2.3.CO;2
    [Google Scholar]
  85. Okrostsvaridze, A., Lee, Y.‐H., Tormey, D., & Skhirtladze, I. (2022). U‐Pb zircon chronological constraints for three stages of synorogenic plutonic magmatism of the Greater Caucasus Svaneti segment, Georgia. Episodes, 46, 195–209. https://doi.org/10.18814/epiiugs/2022/022023
    [Google Scholar]
  86. Paterson, S. R., & Ducea, M. N. (2015). Arc magmatic tempos: Gathering the evidence. Elements, 11, 91–98. https://doi.org/10.2113/gselements.11.2.91
    [Google Scholar]
  87. Potapenko, Y. Y. (1964). Geological map of the USSR, Caucasus series sheet K‐38‐I, scale 1:200,000. Ministry of Geology and Mineral Protection USSR.
    [Google Scholar]
  88. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., al‐Aydrus, A., Prilepin, M., Guseva, T., … Karam, G. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111, B05411. https://doi.org/10.1029/2005JB004051
    [Google Scholar]
  89. Rolland, Y., Sosson, M., Adamia, S., & Sadradze, N. (2011). Prolonged Variscan to Alpine history of an active Eurasian margin (Georgia, Armenia) revealed by 40Ar/39Ar dating. Gondwana Research, 20, 798–815. https://doi.org/10.1016/j.gr.2011.05.007
    [Google Scholar]
  90. Safonova, I., Maruyama, S., Hirata, T., Kon, Y., & Rino, S. (2010). LA ICP MS U‐Pb ages of detrital zircons from Russia largest rivers: Implications for major granitoid events in Eurasia and global episodes of supercontinent formation. Journal of Geodynamics, 50, 134–153. https://doi.org/10.1016/j.jog.2010.02.008
    [Google Scholar]
  91. Saintot, A., Brunet, M.‐F., Yakovlev, F., Sébrier, M., Stephenson, R., Ershov, A., Chalot‐Prat, F., & McCann, T. (2006). The Mesozoic‐Cenozoic tectonic evolution of the Greater Caucasus. Geological Society, London, Memoirs, 32, 277–289. https://doi.org/10.1144/GSL.MEM.2006.032.01.16
    [Google Scholar]
  92. Şengör, A. M. C. (1986). The dual nature of the Alpine‐Himalayan system: Progress, problems and prospects. Tectonophysics, 127, 177–195. https://doi.org/10.1016/0040‐1951(86)90060‐0
    [Google Scholar]
  93. Şengör, A. M. C., Yılmaz, Y., & Sungurlu, O. (1984). Tectonics of the Mediterranean Cimmerides: Nature and evolution of the western termination of Palaeo‐Tethys. Geological Society, London, Special Publications, 17, 77–112. https://doi.org/10.1144/GSL.SP.1984.017.01.04
    [Google Scholar]
  94. Sharman, G. R., & Malkowski, M. A. (2020). Needles in a haystack: Detrital zircon UPb ages and the maximum depositional age of modern global sediment. Earth‐Science Reviews, 203, 103109. https://doi.org/10.1016/j.earscirev.2020.103109
    [Google Scholar]
  95. Sokhadze, G., Floyd, M., Godoladze, T., King, R., Cowgill, E. S., Javakhishvili, Z., Hahubia, G., & Reilinger, R. (2018). Active convergence between the Lesser and Greater Caucasus in Georgia: Constraints on the tectonic evolution of the Lesser–Greater Caucasus continental collision. Earth and Planetary Science Letters, 481, 154–161. https://doi.org/10.1016/j.epsl.2017.10.007
    [Google Scholar]
  96. Somin, M. L. (2011). Pre‐Jurassic basement of the Greater Caucasus: Brief overview. Turkish Journal of Earth Sciences, 20, 546–610.
    [Google Scholar]
  97. Spencer, C. J., Kirkland, C. L., & Taylor, R. J. M. (2016). Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology. Geoscience Frontiers, 7, 581–589. https://doi.org/10.1016/j.gsf.2015.11.006
    [Google Scholar]
  98. Stahl, T. A., Cowgill, E., Boichenko, G., Vasey, D. A., & Godoladze, T. (2022). Recent surface rupturing earthquakes along the south flank of the Greater Caucasus near Tbilisi, Georgia. Bulletin of the Seismological Society of America, 112, 2170–2188. https://doi.org/10.1785/0120210267
    [Google Scholar]
  99. Stampfli, G. M. (2013). Response to the comments on “The formation of Pangea” by D.A. Ruban. Tectonophysics, 608, 1445–1447. https://doi.org/10.1016/j.tecto.2013.09.004
    [Google Scholar]
  100. Stephenson, R., & Schellart, W. P. (2010). The Black Sea back‐arc basin: Insights to its origin from geodynamic models of modern analogues. Geological Society, London, Special Publications, 340, 11–21. https://doi.org/10.1144/SP340.2
    [Google Scholar]
  101. Stern, R. J. (2002). Subduction zones. Reviews of Geophysics, 40, 3‐1–3‐38. https://doi.org/10.1029/2001RG000108
    [Google Scholar]
  102. Sukhishvili, L., Forte, A. M., Merebashvili, G., Leonard, J., Whipple, K. X., Javakhishvili, Z., Heimsath, A., & Godoladze, T. (2021). Active deformation and Plio‐Pleistocene fluvial reorganization of the western Kura fold–thrust belt, Georgia: Implications for the evolution of the Greater Caucasus Mountains. Geological Magazine, 158, 583–597. https://doi.org/10.1017/S0016756820000709
    [Google Scholar]
  103. Sundell, K. E., Gehrels, G. E., & Pecha, M. E. (2021). Rapid U‐Pb geochronology by laser ablation multi‐collector ICP‐MS. Geostandards and Geoanalytical Research, 45, 37–57. https://doi.org/10.1111/ggr.12355
    [Google Scholar]
  104. Sundell, K. E., & Macdonald, F. A. (2022). The tectonic context of hafnium isotopes in zircon. Earth and Planetary Science Letters, 584, 117426. https://doi.org/10.1016/j.epsl.2022.117426
    [Google Scholar]
  105. Tetreault, J. L., & Buiter, S. J. H. (2012). Geodynamic models of terrane accretion: Testing the fate of Island arcs, oceanic plateaus, and continental fragments in subduction zones. Journal of Geophysical Research: Solid Earth, 117, B08403. https://doi.org/10.1029/2012JB009316
    [Google Scholar]
  106. Tibaldi, A., Russo, E., Bonali, F. L., Alania, V., Chabukiani, A., Enukidze, O., & Tsereteli, N. (2017). 3‐D anatomy of an active fault‐propagation fold: A multidisciplinary case study from Tsaishi, western Caucasus (Georgia). Tectonophysics, 717, 253–269. https://doi.org/10.1016/j.tecto.2017.08.006
    [Google Scholar]
  107. Tikhomirov, P. L., Chalot‐Prat, F., & Nazarevich, B. P. (2004). Triassic volcanism in the Eastern Fore‐Caucasus: Evolution and geodynamic interpretation. Tectonophysics, 381, 119–142. https://doi.org/10.1016/j.tecto.2003.10.014
    [Google Scholar]
  108. Trexler, C. C., Cowgill, E., Niemi, N. A., Vasey, D. A., & Godoladze, T. (2022). Tectonostratigraphy and major structures of the Georgian Greater Caucasus: Implications for structural architecture, along‐strike continuity, and orogen evolution. Geosphere, 18, 211–240. https://doi.org/10.1130/GES02385.1
    [Google Scholar]
  109. Trexler, C. C., Cowgill, E., Spencer, J. Q. G., & Godoladze, T. (2020). Rate of active shortening across the southern thrust front of the Greater Caucasus in western Georgia from kinematic modeling of folded river terraces above a listric thrust. Earth and Planetary Science Letters, 544, 116362. https://doi.org/10.1016/j.epsl.2020.116362
    [Google Scholar]
  110. Tsereteli, N., Tibaldi, A., Alania, V., Gventsadse, A., Enukidze, O., Varazanashvili, O., & Müller, B. I. R. (2016). Active tectonics of Central‐Western Caucasus, Georgia. Tectonophysics, 691, 328–344. https://doi.org/10.1016/j.tecto.2016.10.025
    [Google Scholar]
  111. Tye, A. R., Niemi, N. A., Safarov, R. T., Kadirov, F. A., & Babayev, G. R. (2020). Sedimentary response to a collision orogeny recorded in detrital zircon provenance of Greater Caucasus foreland basin sediments. Basin Research, 33, 933–967. https://doi.org/10.1111/bre.12499
    [Google Scholar]
  112. van Hinsbergen, D. J. J., Torsvik, T. H., Schmid, S. M., Maţenco, L. C., Maffione, M., Vissers, R. L. M., Gürer, D., & Spakman, W. (2020). Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research, 81, 79–229. https://doi.org/10.1016/j.gr.2019.07.009
    [Google Scholar]
  113. Vasey, D. (2023a). dyvasey/dz‐caucasus: v1.0.0. https://doi.org/10.5281/zenodo.8298263
  114. Vasey, D. (2023b). dyvasey/geoscripts: Geoscripts v0.2.0. https://doi.org/10.5281/zenodo.8290580
  115. Vasey, D. A., Cowgill, E., & Cooper, K. M. (2021). A preliminary framework for magmatism in modern continental back‐arc basins and its application to the Triassic‐Jurassic tectonic evolution of the Caucasus. Geochemistry, Geophysics, Geosystems, 22, e2020GC009490. https://doi.org/10.1029/2020GC009490
    [Google Scholar]
  116. Vasey, D. A., Cowgill, E., Roeske, S. M., Niemi, N. A., Godoladze, T., Skhirtladze, I., & Gogoladze, S. (2020). Evolution of the Greater Caucasus basement and formation of the Main Caucasus Thrust, Georgia. Tectonics, 39, e2019TC005828. https://doi.org/10.1029/2019TC005828
    [Google Scholar]
  117. Vasey, D. A., Garcia, L., Cowgill, E., Trexler, C. C., & Godoladze, T. (2023). Episodic evolution of a protracted convergent margin revealed by detrital zircon geochronology in the Greater Caucasus. https://doi.org/10.5061/dryad.5dv41nsc1.
  118. Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9, 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
    [Google Scholar]
  119. Vermeesch, P. (2021a). Maximum depositional age estimation revisited. Geoscience Frontiers, 12, 843–850. https://doi.org/10.1016/j.gsf.2020.08.008
    [Google Scholar]
  120. Vermeesch, P. (2021b). On the treatment of discordant detrital zircon U–Pb data. Geochronology, 3, 247–257. https://doi.org/10.5194/gchron‐3‐247‐2021
    [Google Scholar]
  121. Vincent, S. J., Braham, W., Lavrishchev, V. A., Maynard, J. R., & Harland, M. (2016). The formation and inversion of the western Greater Caucasus Basin and the uplift of the western Greater Caucasus: Implications for the wider Black Sea region. Tectonics, 35, 2948–2962. https://doi.org/10.1002/2016TC004204
    [Google Scholar]
  122. Vincent, S. J., Carter, A., Lavrishchev, V. A., Rice, S. P., Barabadze, T. G., & Hovius, N. (2011). The exhumation of the western Greater Caucasus: A thermochronometric study. Geological Magazine, 148, 1–21. https://doi.org/10.1017/S0016756810000257
    [Google Scholar]
  123. Vincent, S. J., Morton, A. C., Carter, A., Gibbs, S., & Barabadze, T. G. (2007). Oligocene uplift of the Western Greater Caucasus: An effect of initial Arabia–Eurasia collision. Terra Nova, 19, 160–166. https://doi.org/10.1111/j.1365‐3121.2007.00731.x
    [Google Scholar]
  124. Vincent, S. J., Saintot, A., Mosar, J., Okay, A. I., & Nikishin, A. M. (2018). Comment on “relict basin closure and crustal shortening budgets during continental collision: An example from Caucasus sediment provenance” by Cowgill et al. (2016b). Tectonics, 37, 1006–1016. https://doi.org/10.1002/2017TC004515
    [Google Scholar]
  125. Vincent, S. J., Somin, M. L., Carter, A., Vezzoli, G., Fox, M., & Vautravers, B. (2020). Testing models of Cenozoic exhumation in the Western Greater Caucasus. Tectonics, 39, e2018TC005451. https://doi.org/10.1029/2018TC005451
    [Google Scholar]
  126. von Raumer, J. F., Bussy, F., Schaltegger, U., Schulz, B., & Stampfli, G. M. (2013). Pre‐Mesozoic alpine basements—Their place in the European Paleozoic framework. GSA Bulletin, 125, 89–108. https://doi.org/10.1130/B30654.1
    [Google Scholar]
  127. Walker, J. D., Geissman, J. W., Bowring, S. A., & Babcock, L. E. (2013). The Geological Society of America geologic time scale. GSA Bulletin, 125, 259–272. https://doi.org/10.1130/B30712.1
    [Google Scholar]
  128. Wang, C. Y., Campbell, I. H., Stepanov, A. S., Allen, C. M., & Burtsev, I. N. (2011). Growth rate of the preserved continental crust: II. Constraints from Hf and O isotopes in detrital zircons from greater Russian Rivers. Geochimica et Cosmochimica Acta, 75, 1308–1345. https://doi.org/10.1016/j.gca.2010.12.010
    [Google Scholar]
  129. Whitmeyer, S. J., & Karlstrom, K. E. (2007). Tectonic model for the Proterozoic growth of North America. Geosphere, 3, 220–259. https://doi.org/10.1130/GES00055.1
    [Google Scholar]
  130. Wirth, E. A., Sahakian, V. J., Wallace, L. M., & Melnick, D. (2022). The occurrence and hazards of great subduction zone earthquakes. Nature Reviews Earth and Environment, 3, 125–140. https://doi.org/10.1038/s43017‐021‐00245‐w
    [Google Scholar]
  131. Zonenshain, L. P., & Le Pichon, X. (1986). Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back‐arc basins. Tectonophysics, 123, 181–211. https://doi.org/10.1016/0040‐1951(86)90197‐6
    [Google Scholar]
/content/journals/10.1111/bre.12825
Loading
/content/journals/10.1111/bre.12825
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error