1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

Clarifying the role of mountain‐building processes in the filling history of large hinterland basins is an essential aspect of basin–mountain system research. We consider the case of the Triassic South Ordos Basin (SOB) to clarify these points. Located in the south‐western North China Block (NCB), the SOB which preserves the most complete Triassic deposition on the north of the Qinling Orogenic Belt (QB) is crucial for understanding the detailed tectonic processes of the QB. Sedimentological, petrological and zircon U–Pb geochronological signatures from the three parts (eastern, central and western) in the SOB indicate that the sediment source migrated both temporally and spatially. Stratigraphic correlation identified two fluvial progradational episodes from south to north in the fluvial–deltaic–lacustrine sedimentary system, one in the eastern SOB and the other in the central SOB. The Late Triassic detrital zircons in the central SOB with distinguishing Neoproterozoic ages were derived from the southern margin of the NCB and the QB. The western SOB exhibited the sediment source shifted from pre‐Triassic North Qilian Belt sedimentary cover to basement from the Middle‐to‐Late Triassic based on a zircon age transition from ca. 2000 to ca. 430 Ma. Late Triassic sediment sources also included the southern margin of the NCB and the QB. Differing provenances from east to west were also confirmed using thin section and heavy mineral analyses. Regional comparisons of zircon age distributions in the eastern SOB with published data indicate that detritus from the QB was first transported to the eastern SOB and then to the central and western SOB. Spatiotemporal changes in the sediment source and sedimentary filling transitions in the three parts of the SOB suggest that the QB underwent asynchronous uplift that began in the east during the Early Triassic and propagated westward, reaching its maximum extent in the early Late Triassic.

,

Tectonic dynamics model of time‐transgressive tectono‐sedimentary responses in the SOB and adjacent areas during the (a) Early Triassic, (b) early Middle Triassic, (c) late Middle Triassic and (d) Late Triassic. Solid coloured arrows represent different provenance regions: green (QB and SOB); blue (NQLB); red (Alxa Block); and purple (northern NCB).

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12826
2024-01-18
2025-05-19
Loading full text...

Full text loading...

References

  1. Belousova, E., Griffin, W., O'Reilly, S. Y., & Fisher, N. (2002). Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143, 602–622. https://doi.org/10.1007/s00410‐002‐0364‐7
    [Google Scholar]
  2. Boucot, A., Xu, C., & Scotese, C. (2013). Phanerozoic paleoclimate: An atlas of lithologic indicators of climate, volume 11: Society for sedimentary geology concepts in sedimentology and paleontology. SEPM Society for Sedimentary Geology.
    [Google Scholar]
  3. Cao, X. Z., Li, S. Z., Xu, L. Q., Guo, L. L., Liu, L. P., Zhao, S. J., Liu, X., & Dai, L. M. (2015). Mesozoic–Cenozoic evolution and mechanism of tectonic geomorphology in the central North China block: Constraint from apatite fission track thermochronology. Journal of Asian Earth Sciences, 114, 41–53. https://doi.org/10.1016/j.jseaes.2015.03.041
    [Google Scholar]
  4. Cawood, P. A., Hawkesworth, C. J., & Dhuime, B. (2012). Detrital zircon record and tectonic setting. Geology, 40, 875–878. https://doi.org/10.1130/G32945.1
    [Google Scholar]
  5. Chen, Y. (2010). Indosinian tectonic setting, magmatism and metallogenesis in Qinling Orogen, central China. Geology in China, 37, 854–865. https://doi.org/10.3969/j.issn.1000‐3657.2010.04.003
    [Google Scholar]
  6. Chen, A. Q., Zou, H., James, G. O., Yang, S., Hou, M. C., Jiang, X. W., Xu, S. L., & Zhang, X. X. (2020). Source‐to‐sink of late carboniferous Ordos Basin: Constraints on crustal accretion margins converting to orogenic belts bounding the North China block. Geoscience Frontiers, 11, 2031–2052. https://doi.org/10.1016/j.gsf.2020.05.008
    [Google Scholar]
  7. Chen, J. L., He, S. P., Wang, H. L., Xu, X. Y., Zeng, Z. X., Wang, Z. Q., & Yan, Q. R. (2006). Zircon LA‐ICPMS U‐Pb age of mafic dykes in the area between the Qinling and the Qilian orogenic belts and its geological implications. Acta Petrologica et Mineralogica, 25, 455–462 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000‐6524.2006.06.001
    [Google Scholar]
  8. Chen, J. L., Li, H. B., Wang, H. L., He, S. P., Zeng, Z. X., Xu, X. Y., & Li, X. M. (2007). LA‐ICPMS zircon U‐Pb dating of a quartz diorite pluton from Wangjiacha, the junction area between the Qinling and Qilian orogenic belts and its tectonic significance. Journal of Jilin University (Earth Science Edition), 37, 423–432. (in Chinese with English abstract).
    [Google Scholar]
  9. Chen, S. C., Wang, Y. T., Yu, J. J., Hu, Q. Q., Zhang, J., Wang, R. T., Gao, W. H., & Wang, C. A. (2020). Petrogenesis of Triassic granitoids in the Fengxian–Taibai ore cluster, Western Qinling Orogen, central China: Implications for tectonic evolution and polymetallic mineralization. Ore Geology Reviews, 123, 103577. https://doi.org/10.1016/j.oregeorev.2020.103577
    [Google Scholar]
  10. Chen, X. H., George, G., Yin, A., Li, L., & Jiang, R. B. (2012). Paleozoic and Mesozoic basement Magmatisms of eastern Qaidam Basin, Northern Qinghai‐Tibet Plateau: LA‐ICP‐MS Zircon U‐Pb geochronology and its geological significance. Acta Geologica Sinica ‐ English Edition, 86, 350–369. https://doi.org/10.1111/j.1755‐6724.2012.00665
    [Google Scholar]
  11. Darby, B. J., & Gehrels, G. (2006). Detrital zircon reference for the North China block. Journal of Asian Earth Sciences, 26, 637–648. https://doi.org/10.1016/j.jseaes.2004.12.005
    [Google Scholar]
  12. Delavault, H., Dhuime, B., Hawkesworth, C. J., Cawood, P. A., & Marschall, H. (2016). Tectonic settings of continental crust formation: Insights from Pb isotopes in feldspar inclusions in zircon. Geology, 44, 819–822. https://doi.org/10.1130/G38117.1
    [Google Scholar]
  13. Dhuime, B., Hawkesworth, C. J., Storey, C. D., & Cawood, P. A. (2011). From sediments to their source rocks: Hf and Nd isotopes in recent river sediments. Geology, 39, 407–410. https://doi.org/10.1130/G31785.1
    [Google Scholar]
  14. Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. Provenance of Arenites, 148, 333–361.
    [Google Scholar]
  15. Dickinson, W. R., & Suczek, C. A. (1979). Plate tectonics and sandstone compositions. AAPG Bulletin, 63, 2164–2182.
    [Google Scholar]
  16. Ding, X., Jiang, H., Sun, Y., Li, Y., Li, M., Chen, L., & Chen, J. (2021). Provenance systems and types of sand bodies during upper Triassic Chang 8 time of the Yanchang formation, Ordos Basin, China. Arabian Journal of Geosciences, 14, 1149. https://doi.org/10.1007/s12517‐021‐07531‐3
    [Google Scholar]
  17. Dong, Y., Neubauer, F., Genser, J., Sun, S., Yang, Z., Zhang, F., Cheng, B., Liu, X., Zhang, G. (2018). Timing of orogenic exhumation processes of the qinling orogen: Evidence from 40Ar/39Ar dating. Tectonics, 37, 4037–4067. https://doi.org/10.1029/2017TC004765
    [Google Scholar]
  18. Dong, Y. P., Yang, Z., Liu, X. M., Sun, S. S., Li, W., Cheng, B., Zhang, F. F., Zhang, X. N., He, D. F., & Zhang, G. W. (2016). Mesozoic intracontinental orogeny in the Qinling Mountains, central China. Gondwana Research, 30, 144–158. https://doi.org/10.1016/j.gr.2015.05.004
    [Google Scholar]
  19. Dong, Y. P., Yang, Z., Liu, X. M., Zhang, X. N., He, D. F., Li, W., Zhang, F. F., Sun, S. S., Zhang, H. F., & Zhang, G. W. (2014). Neoproterozoic amalgamation of the northern Qinling terrain to the North China craton: Constraints from geochronology and geochemistry of the Kuanping ophiolite. Precambrian Research, 255, 77–95. https://doi.org/10.1016/j.precamres.2014.09.008
    [Google Scholar]
  20. Dong, Y. P., Zhang, G. W., Neubauer, F., Liu, X. M., Genser, J., & Hauzenberger, C. (2011). Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41, 213–237. https://doi.org/10.1016/j.jseaes.2011.03.002
    [Google Scholar]
  21. Dong, Y. P., Zhang, X. N., Liu, X. M., Li, W., Chen, Q., Zhang, G. W., Zhang, H. F., Yang, Z., Sun, S. S., & Zhang, F. F. (2015). Propagation tectonics and multiple accretionary processes of the Qinling Orogen. Journal of Asian Earth Sciences, 104, 84–98. https://doi.org/10.1016/j.jseaes.2014.10.007
    [Google Scholar]
  22. Feng, K. L., Tian, J. C., Teng, J., Wang, F., Feng, Z. X., & Xiao, L. (2019). Application of comprehensive analysis of multi‐layered system in the study of sedimentary characteristics—Take the middle Triassic series Zhifang formation in the Ordos Basin as an example. Acta Geologica Sinica ‐ English Edition, 93, 59–63. https://doi.org/10.1111/1755‐6724.14195
    [Google Scholar]
  23. Gao, C. (2012). Sedimentary evolution of palaeo‐mesozoic sedimentary basins in central and northern Shanxi. Taiyuan University of Technology (in Chinese with English abstract).
    [Google Scholar]
  24. Gao, Y., Jiang, Z. X., Best, J. L., & Zhang, J. G. (2020). Soft‐sediment deformation structures as indicators of tectono‐volcanic activity during evolution of a lacustrine basin: A case study from the upper Triassic Ordos Basin, China. Marine and Petroleum Geology, 115, 104250. https://doi.org/10.1016/j.marpetgeo.2020.104250
    [Google Scholar]
  25. Garzanti, E. (2017). The maturity myth in sedimentology and provenance analysis. Journal of Sedimentary Research, 87, 353–365. https://doi.org/10.2110/jsr.2017.17
    [Google Scholar]
  26. Garzanti, E., & Andò, S. (2007). Chapter 20 heavy mineral concentration in Modern Sands: Implications for provenance interpretation. In M. A.Mange & D. T.Wright (Eds.), Developments in sedimentology (Vol. 183, pp. 517–545). Elsevier.
    [Google Scholar]
  27. Garzanti, E., & Hu, X. (2015). Latest cretaceous Himalayan tectonics: Obduction, collision or Deccan‐related uplift?Gondwana Research, 28, 165–178. https://doi.org/10.1016/j.gr.2014.03.010
    [Google Scholar]
  28. Garzanti, E., Vermeesch, P., Padoan, M., Resentini, A., Vezzoli, G., & Andò, S. (2014). Provenance of passive‐margin sand (southern Africa). Journal of Geology, 122, 17–42. https://doi.org/10.1086/674803
    [Google Scholar]
  29. Gilder, S. A., Leloup, P. H., Courtillot, V., Chen, Y., Coe, R. S., Zhao, X. X., Xiao, W. J., Nadir, H., Jean‐Pascal, C., & Zhu, R. X. (1999). Tectonic evolution of the Tancheng‐Lujiang (Tan‐Lu) fault via middle Triassic to early Cenozoic paleomagnetic data. Journal of Geophysical Research‐Solid Earth, 104, 15365–15390. https://doi.org/10.1029/1999jb900123
    [Google Scholar]
  30. Gong, J. H., Zhang, J. X., & Yu, S. Y. (2011). The origin of Longshoushan group and associated rocks in the southern part of the Alxa block: Constraint from LA‐ICP‐MS U‐Pb zircon dating. Acta Petrologica et Mineralogica, 30, 795–818 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000‐6524.2011.05.005
    [Google Scholar]
  31. Guo, P., Liu, C. Y., Wang, J. Q., & Deng, Y. (2018). Detrital zircon geochronology of the Jurassic strata in the western Ordos Basin, North China: Constraints on the provenance and its tectonic implication. Geological Journal, 53, 1482–1499. https://doi.org/10.1002/gj.2968
    [Google Scholar]
  32. Guo, W. W., Tong, J. N., He, Q., Hounslow, M. W., Song, H. Y., Dal Corso, J., Wignall, P. B., Ramezani, J., Tian, L., & Chu, D. L. (2022). Late Permian–Middle Triassic magnetostratigraphy in North China and its implications for terrestrial‐marine correlations. Earth and Planetary Science Letters, 585, 117519. https://doi.org/10.1016/j.epsl.2022.117519
    [Google Scholar]
  33. He, C., Ji, L. M., Wu, Y. D., Su, A., & Zhang, M. Z. (2016). Characteristics of hydrothermal sedimentation process in the Yanchang formation, South Ordos Basin, China: Evidence from element geochemistry. Sedimentary Geology, 345, 33–41. https://doi.org/10.1016/j.sedgeo.2016.09.001
    [Google Scholar]
  34. He, S. P., Wang, H. L., Chen, J. L., Xu, X. Y., Zhang, H. F., & Ren, G. M. (2006). Zircon U‐Pb chronology of Longshan rock group by LA‐ICP‐MS and its geological significance. Acta Geologica Sinica, 80, 1668–1675 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:0001‐5717.2006.11.004
    [Google Scholar]
  35. He, S. P., Wang, H. L., Xu, X. Y., Zhang, H. F., & Ren, G. M. (2007). A LA‐ICP‐MS U‐Pb chronological study of zircons from Hongtubu basic volcanic rocks and its geological significance in the east segment of north Qilian Orogenic Belt. Advances in Earth Science, 22, 143–151 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1001‐8166.2007.02.004
    [Google Scholar]
  36. He, X. L., Yin, C. Q., Long, X. P., Qian, J. H., Wang, L. J., & Qiao, H. Z. (2017). Archean to Paleoproterozoic continental crust growth in the Western block of North China: Constraints from zircon Hf isotopic and whole‐rock Nd isotopic data. Precambrian Research, 303, 105–116. https://doi.org/10.1016/j.precamres.2017.02.018
    [Google Scholar]
  37. Horton, B. (2018). Tectonic regimes of the central and southern Andes: Responses to variations in plate coupling during subduction. Tectonics, 37, 402–429. https://doi.org/10.1002/2017TC004624
    [Google Scholar]
  38. Hu, F. Y., Liu, S. W., Ducea, M. N., Chapman, J. B., Wu, F. Y., & Kusky, T. (2020). Early Mesozoic magmatism and tectonic evolution of the Qinling Orogen: Implications for oblique continental collision. Gondwana Research, 88, 296–332. https://doi.org/10.1016/j.gr.2020.07.006
    [Google Scholar]
  39. Hu, F. Y., Liu, S. W., Zhang, W. Y., Deng, Z. B., & Chen, X. (2016). A westward propagating slab tear model for late Triassic Qinling Orogenic Belt geodynamic evolution: Insights from the petrogenesis of the Caoping and Shahewan intrusions (Vol. 262, pp. 486–506). Lithos. https://doi.org/10.1016/j.lithos.2016.07.034
    [Google Scholar]
  40. Hu, X. M., Garzanti, E., Wang, J. G., Huang, W. T., An, W., & Webb, A. (2016). The timing of India‐Asia collision onset – Facts, theories, controversies. Earth‐Science Reviews, 160, 264–299. https://doi.org/10.1016/j.earscirev.2016.07.014
    [Google Scholar]
  41. Huang, B. C., Yan, Y. G., Piper, J. D. A., Zhang, D. H., Yi, Z. Y., Yu, S., & Zhou, T. H. (2018). Paleomagnetic constraints on the paleogeography of the east Asian blocks during late Paleozoic and early Mesozoic times. Earth Science Reviews, 186, 8–36. https://doi.org/10.1016/j.earscirev.2018.02.004
    [Google Scholar]
  42. Hubert, J. F. (1962). A zircon‐tourmaline‐rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. Journal of Sedimentary Research, 32, 440–450. https://doi.org/10.1306/74D70CE5‐2B21‐11D7‐8648000102C1865D
    [Google Scholar]
  43. Ji, L., & Meng, F. (2006). Palynology of Yanchang formation of middle and late Triassic in eastern Gansu Province and its Paleoclimatic significance. Journal of China University of Geosciences, 17, 209–220.
    [Google Scholar]
  44. Jiao, S. J., Fitzsimons, I. C. W., Zi, J. W., Evans, N. J., Mcdonald, B. J., & Guo, J. H. (2020). Texturally Controlled U–Th–Pb Monazite Geochronology Reveals Paleoproterozoic UHT Metamorphic Evolution in the Khondalite Belt, North China Craton. Journal of Petrology, 61, 1–20. https://doi.org/10.1093/petrology/egaa023
    [Google Scholar]
  45. Kusky, T. M., Windley, B. F., Wang, L., Wang, Z. S., Li, X. Y., & Zhu, P. M. (2014). Flat slab subduction, trench suction, and craton destruction: Comparison of the North China, Wyoming, and Brazilian cratons. Tectonophysics, 630, 208–221. https://doi.org/10.1016/j.tecto.2014.05.028
    [Google Scholar]
  46. Li, H. Y., He, B., Xu, Y. G., & Huang, X. L. (2010). U–Pb and Hf isotope analyses of detrital zircons from Late Paleozoic sediments: Insights into interactions of the North China Craton with surrounding plates. Journal of Asian Earth Sciences, 39, 335–346. https://doi.org/10.1016/j.jseaes.2010.05.002
    [Google Scholar]
  47. Li, H. Y., & Huang, X. L. (2013). Constraints on the paleogeographic evolution of the North China craton during the late Triassic–Jurassic. Journal of Asian Earth Sciences, 70‐71, 308–320, 320. https://doi.org/10.1016/j.jseaes.2013.03.028
    [Google Scholar]
  48. Li, Q., Wu, S. H., Xia, D. L., You, X. L., Zhang, H. M., & Lu, H. (2020). Major and trace element geochemistry of the lacustrine organic‐rich shales from the upper Triassic Chang 7 member in the southwestern Ordos Basin, China: Implications for paleoenvironment and organic matter accumulation. Marine and Petroleum Geology, 111, 852–867. https://doi.org/10.1016/j.marpetgeo.2019.09.003
    [Google Scholar]
  49. Ling, W. L., Duan, R. C., Liu, X. M., Cheng, J. P., Mao, X. W., Peng, L. H., Liu, Z. X., Yang, H. M., & Ren, B. F. (2010). U‐Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance. Chinese Science Bulletin, 55, 2440–2448. https://doi.org/10.1007/s11434‐010‐3095‐6
    [Google Scholar]
  50. Liu, C. F., Wu, C., Song, Z. J., Liu, W. C., & Zhang, H. Y. (2019). Petrogenesis and tectonic significance of early Paleozoic magmatism in the northern margin of the Qilian block, northeastern Tibetan plateau. Lithosphere, 11, 365–385. https://doi.org/10.1130/L1047.1
    [Google Scholar]
  51. Liu, C. Y., Zhao, H. G., Zhao, J. F., Wang, J. Q., Zhang, D. D., & Yang, M. H. (2008). Temporo‐spatial coordinates of evolution of the Ordos Basin and its mineralization responses. Acta Geologica Sinica ‐ English Edition, 82, 1229–1243. https://doi.org/10.1111/j.1755‐6724.2008.tb00725.x
    [Google Scholar]
  52. Liu, J., Zhang, P., Lease, R. O., Zheng, D., Wan, J., Wang, W., & Zhang, H. (2013). Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the north Qinling range–Weihe graben: Insights from apatite fission track thermochronology. Tectonophysics, 584, 281–296. https://doi.org/10.1016/j.tecto.2012.01.025
    [Google Scholar]
  53. Liu, J. N., Yin, C. Q., Zhang, J., Qian, J. H., Li, S., Xu, K. Y., Wu, S. J., & Xia, Y. F. (2020). Tectonic evolution of the Alxa block and its affinity: Evidence from the U‐Pb geochronology and Lu‐Hf isotopes of detrital zircons from the Longshoushan Belt. Precambrian Research, 344, 105733. https://doi.org/10.1016/j.precamres.2020.105733
    [Google Scholar]
  54. Liu, S., Ruan, Z., Yang, Z. H., Wu, Y. X., Li, Y. J., & Han, S. Y. (2019). Provenance evolution of southern margin of Ordos Basin during the middle‐later Triassic and its geological implication. Journal of Palaeogeography, 21, 939–958 (in Chinese with English abstract). https://doi.org/10.7605/gdlxb.2019.06.064
    [Google Scholar]
  55. Liu, S. F., Su, S., & Zhang, G. W. (2013). Early Mesozoic basin development in North China: Indications of cratonic deformation. Journal of Asian Earth Sciences, 62, 221–236. https://doi.org/10.1016/j.jseaes.2012.09.011
    [Google Scholar]
  56. Liu, S. F., Tao, Q., Li, W. P., Dou, G. X., & Wu, P. (2015). Oblique closure of the northeastern paleo‐Tethys in Central China. Tectonics, 34, 413–434. https://doi.org/10.1002/2014TC003784
    [Google Scholar]
  57. Liu, X., Han, W., Zhang, Q., Li, Y., Johnson, L., Ma, Y., & Li, W. (2021). Sedimentary and geochronological studies on tuff levels from Triassic strata in the Nanzhao Basin, North Qinling Orogenic Belt, and their geological significance. Geological Journal, 56, 1531–1548. https://doi.org/10.1002/gj.3992
    [Google Scholar]
  58. Liu, Y. Q., Kuang, H. W., Peng, N., Xu, H., Zhang, P., Wang, N. S., An, W., Wang, Y., Liu, M., & Hu, X. F. (2015). Mesozoic basins and associated palaeogeographic evolution in North China. Journal of Palaeogeography, 4, 189–202. https://doi.org/10.3724/SP.J.1261.2015.00073
    [Google Scholar]
  59. Liu, Y. S., Gao, S., Hu, Z. C., Gao, C. G., Zong, K. Q., & Wang, D. B. (2010). Continental and oceanic crust recycling‐induced melt–peridotite interactions in the trans‐North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51, 537–571. https://doi.org/10.1093/petrology/egp082
    [Google Scholar]
  60. Liu, Y. S., Hu, Z. C., Gao, S., Günther, D., Xu, J., Gao, C. G., & Chen, H. H. (2008). In situ analysis of major and trace elements of anhydrous minerals by LA‐ICP‐MS without applying an internal standard. Chemical Geology, 257, 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    [Google Scholar]
  61. Meinhold, G., Hashemi Azizi, S. H., & Berndt, J. (2020). Permian–Triassic magmatism in response to Palaeotethys subduction and pre‐Late Triassic arrival of northeast Gondwana‐derived continental fragments at the southern Eurasian margin: Detrital zircon evidence from Triassic sandstones of Central Iran. Gondwana Research, 83, 118–131. https://doi.org/10.1016/j.gr.2020.02.001
    [Google Scholar]
  62. Meng, Q. R., Wu, G. L., Fan, L. G., & Wei, H. H. (2019). Tectonic evolution of early Mesozoic sedimentary basins in the North China block. Earth Science Reviews, 190, 416–438. https://doi.org/10.1016/j.earscirev.2018.12.003
    [Google Scholar]
  63. Nie, L. J. (2014). Study on geochemical characteristics and zircon U‐Pb data of the Niutou River Granite Rock, Tianshui area. Master thesis. Chang'an University (in Chinese with English abstract).
    [Google Scholar]
  64. Pei, X. Z., Li, Z. C., Li, R. B., Pei, L., Liu, C. J., Gao, J. M., Wei, F. H., Wu, S. K., Wang, Y. C., & Chen, Y. X. (2012). LA‐ICP‐MS U‐Pb ages of detrital zircons from the meta‐detrital rocks of the early Palaeozoic Huluhe group in eastern part of Qilian orogenic belt: Constraints of material source and sedimentary age. Earth Science Frontiers, 19, 205–224. (in Chinese with English abstract).
    [Google Scholar]
  65. Peng, H., Wang, J., Liu, C., Zhang, S., Zattin, M., Wu, N., & Feng, Q. (2019). Thermochronological constraints on the Meso‐Cenozoic tectonic evolution of the Haiyuan‐Liupanshan region, northeastern Tibetan plateau. Journal of Asian Earth Sciences, 183, 103966. https://doi.org/10.1016/j.jseaes.2019.103966
    [Google Scholar]
  66. Qiu, X. W., Liu, C. Y., Mao, G. Z., Deng, Y., Wang, F. F., & Wang, J. Q. (2014). Late Triassic tuff intervals in the Ordos basin, Central China: Their depositional, petrographic, geochemical characteristics and regional implications. Journal of Asian Earth Sciences, 80, 148–160. https://doi.org/10.1016/j.jseaes.2013.11.004
    [Google Scholar]
  67. Qiu, X. W., Liu, C. Y., Wang, F. F., Deng, Y., & Mao, G. Z. (2015). Trace and rare earth element geochemistry of the upper Triassic mudstones in the southern Ordos Basin, Central China. Geological Journal, 50, 399–413. https://doi.org/10.1002/gj.2542
    [Google Scholar]
  68. Santosh, M., Teng, X. M., He, X. F., Tang, L., & Yang, Q. Y. (2016). Discovery of Neoarchean suprasubduction zone ophiolite suite from Yishui complex in the North China craton. Gondwana Research, 38, 1–27. https://doi.org/10.1016/j.gr.2015.10.017
    [Google Scholar]
  69. Shaanxi Bureau of Geology and Mineral Resources (BGMR) . (1980). Regional geology of the Ningxia Province. Geological Publishing House (in Chinese without English abstract).
    [Google Scholar]
  70. Shanxi Bureau of Geology and Mineral Resources (BGMR) . (1989). Regional geology of the Ningxia Province. Geological Publishing House (in Chinese without English abstract).
    [Google Scholar]
  71. Song, S. G., Niu, Y. L., Su, L., & Xia, X. H. (2013). Tectonics of the north Qilian orogen, NW China. Gondwana Research, 23, 1378–1401. https://doi.org/10.1016/j.gr.2012.02.004
    [Google Scholar]
  72. Sun, J. P., & Dong, Y. P. (2020). Ordovician tectonic shift in the western North China craton constrained by stratigraphic and geochronological analyses. Basin Research, 32, 1413–1440.
    [Google Scholar]
  73. Sun, J. P., Yang, L., Dong, Y., Yang, X., Peng, Y., & Zhao, J. (2020). Permian tectonic evolution of the southwestern Ordos Basin, North China: Integrating constraints from sandstone petrology and detrital zircon geochronology. Geological Journal, 55, 8068–8091.
    [Google Scholar]
  74. Sun, Y. W., Li, X., Liu, Q. Y., Zhang, M. D., Li, P., Zhang, R., & Shi, X. (2020). In search of the inland Carnian Pluvial Event: Middle–Upper Triassic transition profile and U–Pb isotopic dating in the Yanchang Formation in Ordos Basin, China. Geological Journal, 55, 4905–4919. https://doi.org/10.1002/gj.3691
    [Google Scholar]
  75. Tung, K. A., Yang, H. Y., Liu, D., Zhang, Y., Jian, X., Chi, E., Yuan, T., & Wan, Y. S. (2007). SHRIMP U‐Pb geochronology of the detrital zircons from the Longshoushan group and its tectonic significance. Chinese Science Bulletin, 52, 1414–1425. https://doi.org/10.1007/s11434‐007‐0189‐x
    [Google Scholar]
  76. von Eynatten, H., & Dunkl, I. (2012). Assessing the sediment factory: The role of single grain analysis. Earth‐Science Reviews, 115, 97–120. https://doi.org/10.1016/j.earscirev.2012.08.001
    [Google Scholar]
  77. Wan, Y. S., Dong, C. Y., Liu, D. Y., Kröner, A., Yang, C. H., Wang, W., Du, L. L., Xie, H. Q., & Ma, M. Z. (2012). Zircon ages and geochemistry of late Neoarchean syenogranites in the North China craton: A review. Precambrian Research, 222‐223, 265–289. https://doi.org/10.1016/j.precamres.2011.05.001
    [Google Scholar]
  78. Wan, Y. S., Zhao, X. Z., Wang, Z. J., Liu, D. Y., Kröner, A., Dong, C. Y., Xie, H. Q., Geng, Y. S., Zhang, Y. H., Fan, R. L., & Sun, H. Y. (2014). SHRIMP zircon dating and LA‐ICPMS Hf analysis of early Precambrian rocks from drill holes into the basement beneath the Central Hebei Basin, North China Craton. Geoscience Frontiers, 5, 471–484. https://doi.org/10.1016/j.gsf.2014.02.007
    [Google Scholar]
  79. Wang, J., Li, X., Liu, H., Deng, X., & Wanyan, R. (2017). Depocenter migration of the Ordos Basin in the late Triassic and its controls on shale distribution. Interpretation, 5, SF81–SF98. https://doi.org/10.1190/INT‐2016‐0101.1
    [Google Scholar]
  80. Wang, X. X., Wang, T., & Zhang, C. L. (2013). Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process. Journal of Asian Earth Sciences, 72, 129–151. https://doi.org/10.1016/j.jseaes.2012.11.037
    [Google Scholar]
  81. Wang, Y. (2011). Petrography characteristics of Huluhe group Hongtubao in Tianshui area, Gansu province, and their tectonic significance. Master thesis. Chang'an University (in Chinese with English abstract).
    [Google Scholar]
  82. Wang, Y., Zhou, L. Y., Liu, S. F., Li, J. Y., & Yang, T. N. (2018). Post‐cratonization deformation processes and tectonic evolution of the North China craton. Earth‐Science Reviews, 177, 320–365. https://doi.org/10.1016/j.earscirev.2017.11.017
    [Google Scholar]
  83. Wang, Z., & Wang, L. (1990a). Late early Triassic fossil plants from upper part of the Shiqianfeng Group in North China. Shanxi Geology, 5, 97–154.
    [Google Scholar]
  84. Wang, Z., & Wang, L. (1990b). A new plant assemblage from the bottom of the mid‐Triassic Ermaying formation. Shanxi Geology, 5, 303–318.
    [Google Scholar]
  85. Wei, F. H., Pei, X. Z., Li, R. B., Li, Z. C., Pei, L., Gao, J. M., Wang, Y. C., Liu, C. J., Wu, S. K., & Chen, Y. X. (2012). LA‐ICP‐MS zircon U‐Pb dating of early Paleozoic Huangmenchuan granodiorite in Tianshui area of Gansu Province and its tectonic significance. Geological Bulletin of China, 31, 1496–1509 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1671‐2552.2012.09.013
    [Google Scholar]
  86. Weibel, R., & Friis, H. (2007). Alteration of opaque heavy minerals as a reflection of the geochemical conditions in depositional and diagenetic environments. In M. A.Mange & D. T.Wright (Eds.), Developments in sedimentology (Vol. 58, pp. 277–303). Elsevier.
    [Google Scholar]
  87. Wu, W. Z., Ma, R. Y., Zhang, X. D., Ma, F. H., Pan, J. L., & Wang, Z. J. (2019). Geochemical characteristics, zircon U‐Pb ages of the gabbro in Xiji region in the eastern segment northern Qilian Mountains and their significance. Geological Review, 65, 211–220 (in Chinese with English abstract). https://doi.org/10.16509/j.georeview.2019.01.014
    [Google Scholar]
  88. Xia, X. P., Sun, M., Zhao, G. C., & Luo, Y. (2006). LA‐ICP‐MS U–Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Research, 144, 199–212. https://doi.org/10.1016/j.precamres.2005.11.004
    [Google Scholar]
  89. Xian, B. Z., Wang, J. H., Gong, C. L., Yin, Y., Chao, C. Z., Liu, J. P., Zhang, G. D., & Yan, Q. (2018). Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the South Ordos Basin (Vol. 368, pp. 68–82). Sedimentary Geology. https://doi.org/10.1016/j.sedgeo.2018.03.006
    [Google Scholar]
  90. Xiao, W. J., Windley, B. F., Hao, J., & Zhai, M. G. (2003). Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22, 1069. https://doi.org/10.1029/2002TC001484
    [Google Scholar]
  91. Xie, X., & Heller, P. L. (2013). U–Pb detrital zircon geochronology and its implications: The early late Triassic Yanchang formation, South Ordos Basin, China. Journal of Asian Earth Sciences, 64, 86–98.
    [Google Scholar]
  92. Xie, X. Y. (2016). Provenance and sediment dispersal of the Triassic Yanchang formation, Southwest Ordos Basin, China, and its implications. Sedimentary Geology, 335, 1–16. https://doi.org/10.1016/j.sedgeo.2015.12.016
    [Google Scholar]
  93. Xing, H. Q., Li, X. W., Xu, J. F., Mo, X. X., Shan, W., Yu, H. X., Hu, J. Q., Huang, X. F., & Dong, G. C. (2020). The genesis of felsic magmatism during the closure of the northeastern paleo‐Tethys Ocean: Evidence from the Heri batholith in west Qinling, China. Gondwana Research, 84, 38–51. https://doi.org/10.1016/j.gr.2020.02.014
    [Google Scholar]
  94. Xu, K. X. (2018). Precambrian Geochronology and Geochemistry of the Tectonic Conjunction of the Qinling‐Qilian Orogen: Evidence from the Longshan Complex. Master thesis. Northwest University (in Chinese with English abstract).
    [Google Scholar]
  95. Xu, Y., & He, D. (2022). Triassic provenance shifts and tectonic evolution of Southeast Ordos Basin, Central China. Palaeogeography, Palaeoclimatology, Palaeoecology, 598, 111002. https://doi.org/10.1016/j.palaeo.2022.111002
    [Google Scholar]
  96. Yan, X. (2001). Provenance analysis and sedimentary environment pattern restoration in Mesozoic Ordos Basin. Northwest University (in Chinese with English abstract).
    [Google Scholar]
  97. Yang, H., Fu, J. H., & Yuan, X. Q. (2016). Atlas of geological section of southern margin of Ordos Basin.
  98. Yang, W. T., Yang, J. H., Wang, X. F., & Du, Y. S. (2014). Uplift‐denudation history of the Qinling orogen: Constrained from the detrital‐zircon U–Pb geochronology. Journal of Asian Earth Sciences, 89, 54–65. https://doi.org/10.1016/j.jseaes.2014.03.025
    [Google Scholar]
  99. Zeng, C. F. (2016). Sedimentary characteristics and paleoenvironment of the Middle Triassic Zhifang Formation, Ordos Basin. PhD thesis. Chengdu Institute of Technology (in Chinese with English abstract).
    [Google Scholar]
  100. Zhai, M. G., & Santosh, M. (2011). The early Precambrian odyssey of the North China craton: A synoptic overview. Gondwana Research, 20, 6–25. https://doi.org/10.1016/j.gr.2011.02.005
    [Google Scholar]
  101. Zhang, B. H., Zhang, J., Zhang, Y. P., Zhao, H., Wang, Y. N., & Nie, F. J. (2016). Tectonic affinity of the Alxa Block, Northwest China: Constrained by detrital zircon U–Pb ages from the early Paleozoic strata on its southern and eastern margins. Sedimentary Geology, 339, 289–303. https://doi.org/10.1016/j.sedgeo.2016.02.017
    [Google Scholar]
  102. Zhang, K., Liu, R., Liu, Z. J., Li, B. L., Han, J. B., & Zhao, K. A. (2020). Influence of volcanic and hydrothermal activity on organic matter enrichment in the upper Triassic Yanchang formation, southern Ordos Basin, Central China. Marine and Petroleum Geology, 112, 104059. https://doi.org/10.1016/j.marpetgeo.2019.104059
    [Google Scholar]
  103. Zhang, S. H., Zhao, Y., Song, B., Yu, Y. Z., Min, H. J., & Wu, H. (2007). Carboniferous granitic plutons from the northern margin of the North China block: Implications for a late Palaeozoic active continental margin. Journal of the Geological Society, 164, 451–463. https://doi.org/10.1144/0016‐76492005‐190
    [Google Scholar]
  104. Zhang, Y., Chen, X., Shao, Z., Zhang, J., Zuza, A. V., Li, B., & Wang, Z. (2022). Ocean–continent transition of the northeastern Paleotethys during the Triassic: Constraints from Triassic sedimentary successions across the Qinling Orogen, Central China. Journal of Asian Earth Sciences, 232, 105264.
    [Google Scholar]
  105. Zhang, Y., Liu, J. C., Zhang, H. D., & Chen, Y. Y. (2016). Re‐discussion on the detrital zircon provenance of the lower Yanchang formation in the southern Ordos Basin. Open Geosciences, 8, 808–819. https://doi.org/10.1515/geo‐2016‐0037
    [Google Scholar]
  106. Zhang, Y., Meng, X., & Wang, D. (2020). Provenance analysis of the middle Triassic Ordos Basin: Constraints from zircon U‐Pb geochronology. Geochemistry, 80, 125521. https://doi.org/10.1016/j.chemer.2019.07.003
    [Google Scholar]
  107. Zhang, Y. P., Chen, X. H., Zhang, J., Shao, Z. G., Ding, W. C., Guo, X. G., Wang, D. R., Gu, W. P., Wang, Y., Xu, S. L., & Qin, X. (2019). Discussion on the initial timing of the Indosinian movement in the Ordos basin and the Sichuan basin:Constraints from growth strata evidence. Geology in China, 46, 1021–1038 (in Chinese with English abstract). https://doi.org/10.12029/gc20190505
    [Google Scholar]
  108. Zhao, G. C. (2001). Palaeoproterozoic assembly of the North China craton. Geological Magazine, 138, 87–91.
    [Google Scholar]
  109. Zhao, G. C., Sun, M., Wilde, S. A., & Li, S. Z. (2003). Assembly, accretion and breakup of the paleo‐Mesoproterozoic Columbia supercontinent: Records in the North China Craton. Gondwana Research, 6, 417–434. https://doi.org/10.1016/S1342‐937X(05)70996‐5
    [Google Scholar]
  110. Zhao, G. C., Sun, M., Wilde, S. A., & Li, S. Z. (2005). Late Archean to Paleoproterozoic evolution of the North China craton: Key issues revisited. Precambrian Research, 136, 177–202. https://doi.org/10.1016/j.precamres.2004.10.002
    [Google Scholar]
  111. Zhao, G. C., Wilde, S. A., Cawood, P. A., & Sun, M. (2001). Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution. Precambrian Research, 107, 45–73. https://doi.org/10.1016/s0301‐9268(00)00154‐6
    [Google Scholar]
  112. Zhao, G. C., & Zhai, M. G. (2013). Lithotectonic elements of Precambrian basement in the North China craton: Review and tectonic implications. Gondwana Research, 23, 1207–1240. https://doi.org/10.1016/j.gr.2012.08.016
    [Google Scholar]
  113. Zhao, J., Dong, Y., & Huang, B. (2020). Paleomagnetic constraints of the lower Triassic strata in south Qinling Belt: Evidence for a discrete terrane between the north and South China blocks. Tectonics, 39, e2019TC005698. https://doi.org/10.1029/2019tc005698
    [Google Scholar]
  114. Zhao, J. F., Zhou, Y. J., Wang, K., Li, X., Ma, Z. R., Ruan, Z. Z., Wang, D., & Xue, R. (2020). Provenance and paleogeography of Carboniferous–Permian strata in the Bayanhot Basin: Constraints from sedimentary records and detrital zircon geochronology. Geoscience Frontiers, 12, 101088. https://doi.org/10.1016/j.gsf.2020.09.017
    [Google Scholar]
  115. Zhao, X. D. (2020). Recovery of terrestrial ecosystems in the Ordos Basin of China after the end‐Permian mass‐extinction. PhD thesis. Hefei, University of Science and Technology of China (in Chinese with English Abstract).
    [Google Scholar]
  116. Zhao, X. D., Zheng, D. R., Xie, G. W., Jenkyns, H. C., Guan, C. G., Fang, Y. N., He, J., Yuan, X. Q., Xue, N. H., Wang, H., Li, S., Jarzembowski, E. A., Zhang, H. C., & Wang, B. (2020). Recovery of lacustrine ecosystems after the end‐Permian mass extinction. Geology, 48, 609–613. https://doi.org/10.1130/G47502.1
    [Google Scholar]
  117. Zhao, X. X. (1987). Palaeomagnetic constraints on the collision and rotation of north and South China. Nature, 327, 141–144. https://doi.org/10.1038/327141a0
    [Google Scholar]
  118. Zhao, Y. L. (2019). Characteristics and tectonic environment of huluhe volcanic rocks in the Xiangong of Baoji. Master thesis. Chang'an University (in Chinese with English abstract).
    [Google Scholar]
  119. Zheng, D., Chang, S.‐C., Wang, H., Fang, Y., Wang, J., Feng, C., Xie, G., Jarzembowski, E. A., Zhang, H., & Wang, B. (2018). Middle‐Late Triassic insect radiation revealed by diverse fossils and isotopic ages from China. Science Advances, 4, eaat1380. https://doi.org/10.1126/sciadv.aat1380
    [Google Scholar]
  120. Zhu, D. C., Wang, Q., Zhao, Z. D., Chung, S. L., Cawood, P. A., Niu, Y. L., Liu, S. A., Wu, F. Y., & Mo, X. X. (2015). Magmatic record of India‐Asia collision. Scientific Reports, 5, 14289. https://doi.org/10.1038/srep14289
    [Google Scholar]
  121. Zhu, R. X., Yang, Z. Y., Wu, H. N., Ma, X. H., Huang, B. C., Meng, Z. F., & Fang, D. J. (1998). Paleomagnetic constraints on the tectonic history of the major blocks of China duing the Phanerozoic. Science in China Series D: Earth Science, 41, 1–19. https://doi.org/10.1007/BF02984508
    [Google Scholar]
  122. Zhu, X. Y., Chen, F. K., Liu, B. X., Zhang, H., & Zhai, M. G. (2015). Geochemistry and zircon ages of mafic dikes in the south Qinling, Central China: Evidence for late Neoproterozoic continental rifting in the northern Yangtze block. International Journal of Earth Sciences, 104, 27–44. https://doi.org/10.1007/s00531‐014‐1056‐z
    [Google Scholar]
  123. Zhu, R. K., Cui, J. W., Deng, S. H., Luo, Z., Lu, Y. Z., & Qiu, Z. (2019). High‐precision dating and geological significance of chang 7 tuff zircon of the triassic yanchang formation, ordos basin in central China. Acta Geologica Sinica, 93(6), 1823–1834. https://doi.org/10.1111/1755‐6724.14329
    [Google Scholar]
  124. Zong, K. Q., Klemd, R., Yuan, Y., He, Z. Y., Guo, J. L., Shi, X. L., Liu, Y. S., Hu, Z. C., & Zhang, Z. M. (2017). The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900Ma) high‐grade metamorphism and continental arc formation in the southern Beishan Orogen, southern central Asian Orogenic Belt (CAOB). Precambrian Research, 290, 32–48. https://doi.org/10.1016/j.precamres.2016.12.010
    [Google Scholar]
  125. Zou, C. N., Wang, L., Li, Y., Tao, S. Z., & Hou, L. H. (2012). Deep‐lacustrine transformation of sandy debrites into turbidites, Upper Triassic, Central China. Sedimentary Geology, 265‐266, 143–155. https://doi.org/10.1016/j.sedgeo.2012.04
    [Google Scholar]
/content/journals/10.1111/bre.12826
Loading
/content/journals/10.1111/bre.12826
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error