1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

Source‐to‐sink sedimentary systems associated with volcanic rifted margins serve as important archives for basin development by recording lithospheric changes affecting the depositional systems. Distinguishing between sediment transport processes and their sediment source(s) can guide the interpretation of a basin's history, and thereby inform regional paleogeographic reconstructions. In this contribution, we integrate and utilize wireline geophysical logs, detailed petrographic observations from side‐wall cores, and seismic analysis to describe and decipher a Maastrichtian to Danian‐aged basin‐floor depositional system in the deep outer Møre Basin, mid‐Norwegian margin. Well 6302/6‐1 (Tulipan) is a spatially isolated borehole drilled in 2001 that penetrates Maastrichtian and younger strata. A succession of hitherto undescribed carbonates and sandstones in the outer Møre Basin was discovered. It is investigated for sediment transport, provenance, and depositional processes on the basin floor surrounded by structural highs and ridges. The strata from the lower parts form a basin‐floor apron consisting of redeposited carbonate sourced from a westerly sub‐aerial high. The apron transitions vertically from mixed siliciclastic and carbonate into a purely siliciclastic fan with intercalated sandstone and mudstone, providing a rare high‐resolution record of how depositional environments experience a complete shift in dominant processes. The development coincides with similar latest Cretaceous‐earliest Palaeocene sequences recorded south of this region (e.g., well 219/20‐1) and may have been influenced by regional uplift associated with the onset of magmatism in the Northeast Atlantic. This study improves our understanding of a late, pre‐breakup source‐to‐sink sedimentary system developed near the breakup axis of an infant ocean, and documents what is possibly the northernmost chalk deposit in the Chalk Group.

,

Interplay between siliciclastic and carbonate depositional systems.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12827
2024-01-19
2025-07-11
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12827.html?itemId=/content/journals/10.1111/bre.12827&mimeType=html&fmt=ahah

References

  1. Amorosi, A. (1997). Detecting compositional, spatial, and temporal attributes of glaucony: A tool for provenance research. Sedimentary Geology, 109(1), 135–153.
    [Google Scholar]
  2. Amy, L. A., & Talling, P. J. (2006). Anatomy of turbidites and linked debrites based on long distance (120× 30 km) bed correlation, Marnoso Arenacea Formation, Northern Apennines, Italy. Sedimentology, 53(1), 161–212.
    [Google Scholar]
  3. Anderskouv, K., & Surlyk, F. (2011). Upper Cretaceous chalk facies and depositional history recorded in the Mona‐1 core, Mona Ridge, Danish North Sea. GEUS Bulletin, 25, 1–60.
    [Google Scholar]
  4. Anderskouv, K., Surlyk, F., Huuse, M., Lykke‐Andersen, H., Bjerager, M., & Tang, C. (2010). Sediment waves with a biogenic twist in Pleistocene cool water carbonates, Great Australian Bight. Marine Geology, 278(1–4), 122–139.
    [Google Scholar]
  5. Andresen, N., Reijmer, J. J., & Droxler, A. (2003). Timing and distribution of calciturbidites around a deeply submerged carbonate platform in a seismically active setting (Pedro Bank, Northern Nicaragua Rise, Caribbean Sea). International Journal of Earth Sciences, 92(4), 573–592.
    [Google Scholar]
  6. Bjørkum, P. A., & Walderhaug, O. (1990). Geometrical arrangement of calcite cementation within shallow marine sandstones. Earth‐Science Reviews, 29(1–4), 145–161.
    [Google Scholar]
  7. Blystad, P., Brekke, H., Færseth, R. B., Larsen, B. T., Skogseid, J., & Tørudbakken, B. (1995). Structural elements of the Norwegian continental shelf: The Norwegian Sea region, Stavanger. The Norwegian Petroleum Directorate, NPD‐Bulletin (trykt utg.), 8, 1–64.
    [Google Scholar]
  8. Booth, J., Swiecicki, T., & Wilcockson, P. (1993). The tectono‐stratigraphy of the Solan Basin, west of Shetland. In Proceedings Geological Society, London, Petroleum Geology Conference Series (Vol. 4, pp. 987–998). Geological Society of London.
    [Google Scholar]
  9. Boulesteix, K., Poyatos‐Moré, M., Flint, S. S., Taylor, K. G., Hodgson, D. M., & Hasiotis, S. T. (2019). Transport and deposition of mud in deep‐water environments: Processes and stratigraphic implications. Sedimentology, 66(7), 2894–2925.
    [Google Scholar]
  10. Brekke, H. (2000). The tectonic evolution of the Norwegian Sea Continental Margin with emphasis on the Vøring and Møre Basins. Geological Society, London, Special Publications, 167(1), 327–378.
    [Google Scholar]
  11. Chiarella, D., Longhitano, S. G., & Tropeano, M. (2017). Types of mixing and heterogeneities in siliciclastic‐carbonate sediments. Marine and Petroleum Geology, 88, 617–627.
    [Google Scholar]
  12. Dade, W. B., & Huppert, H. E. (1994). Predicting the geometry of channelized deep‐sea turbidites. Geology, 22(7), 645–648.
    [Google Scholar]
  13. Dalland, A., Worsley, D., & Ofstad, K. (1988). A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore mid‐and northern Norway. NPD Bulletin, 4, 1–65.
    [Google Scholar]
  14. Damholt, T., & Surlyk, F. (2004). Laminated–bioturbated cycles in Maastrichtian chalk of the North Sea: Oxygenation fluctuations within the Milankovitch frequency band. Sedimentology, 51(6), 1323–1342.
    [Google Scholar]
  15. de Castro, S., Hernández‐Molina, F. J., Rodríguez‐Tovar, F. J., Llave, E., Ng, Z. L., Nishida, N., & Mena, A. (2020). Contourites and bottom current reworked sands: Bed facies model and implications. Marine Geology, 428, 106267.
    [Google Scholar]
  16. Doré, A., Lundin, E., Jensen, L., Birkeland, Ø., Eliassen, P., & Fichler, C. (1999). Principal tectonic events in the evolution of the northwest European Atlantic margin. In Proceedings geological society, London, petroleum geology conference series (Vol. 5, pp. 41–61). Geological Society of London.
    [Google Scholar]
  17. Doré, A., Lundin, E., Kusznir, N., & Pascal, C. (2008). Potential mechanisms for the genesis of Cenozoic domal structures on the NE Atlantic margin: Pros, cons and some new ideas. Geological Society, London, Special Publications, 306(1), 1–26.
    [Google Scholar]
  18. Dutton, S. P., White, C. D., Willis, B. J., & Novakovic, D. (2002). Calcite cement distribution and its effect on fluid flow in a deltaic sandstone, frontier formation, Wyoming. AAPG Bulletin, 86(12), 2007–2021.
    [Google Scholar]
  19. Eberli, G. P., Bernoulli, D., Vecsei, A., Sekti, R., Grasmueck, M., Lüdmann, T., Anselmetti, F. S., Mutti, M., & Porta, G. D. (2019). A Cretaceous carbonate delta drift in the Montagna della Maiella, Italy. Sedimentology, 66(4), 1266–1301.
    [Google Scholar]
  20. Eberli, G. P., & Betzler, C. (2019). Characteristics of modern carbonate contourite drifts. Sedimentology, 66(4), 1163–1191.
    [Google Scholar]
  21. Eldholm, O. (1991). Magmatic tectonic evolution of a volcanic rifted margin. Marine Geology, 102(1–4), 43–61.
    [Google Scholar]
  22. Eldholm, O., & Grue, K. (1994). North Atlantic volcanic margins: Dimensions and production rates. Journal of geophysical research: Solid Earth, 99(B2), 2955–2968.
    [Google Scholar]
  23. Faugères, J.‐C., & Mulder, T. (2011). Contour currents and contourite drifts, developments in sedimentology (Vol. 63, pp. 149–214). Elsevier.
    [Google Scholar]
  24. Fonneland, H. C., Lien, T., Martinsen, O. J., Pedersen, R. B., & Košler, J. (2004). Detrital zircon ages: A key to understanding the deposition of deep marine sandstones in the Norwegian Sea. Sedimentary Geology, 164(1–2), 147–159.
    [Google Scholar]
  25. Fonnesu, M., Palermo, D., Galbiati, M., Marchesini, M., Bonamini, E., & Bendias, D. (2020). A new world‐class deep‐water play‐type, deposited by the syndepositional interaction of turbidity flows and bottom currents: The giant Eocene Coral Field in northern Mozambique. Marine and Petroleum Geology, 111, 179–201.
    [Google Scholar]
  26. Gaina, C., Gernigon, L., & Ball, P. (2009). Palaeocene–Recent plate boundaries in the NE Atlantic and the formation of the Jan Mayen microcontinent. Journal of the Geological Society, 166(4), 601–616.
    [Google Scholar]
  27. Gernigon, L., Franke, D., Geoffroy, L., Schiffer, C., Foulger, G. R., & Stoker, M. (2019). Crustal fragmentation, magmatism, and the diachronous opening of the Norwegian‐Greenland Sea. Earth‐Science Reviews, 206, 102839.
    [Google Scholar]
  28. Gernigon, L., Gaina, C., Olesen, O., Ball, P., Péron‐Pinvidic, G., & Yamasaki, T. (2012). The Norway Basin revisited: From continental breakup to spreading ridge extinction. Marine and Petroleum Geology, 35(1), 1–19.
    [Google Scholar]
  29. Gernigon, L., Zastrozhnov, D., Planke, S., Manton, B., Abdelmalak, M. M., Olessen, O., Maharjan, D., Faleide, J. I., & Myklebust, R. (2021). A digital compilation of structural and magmatic elements of the Mid‐Norwegian continental margin (version 1.0). Norwegian Journal of Geology, 101, 1–74.
    [Google Scholar]
  30. Goodchild, M., Henry, K., Hinkley, R., & Imbus, S. (1999). The victory gas field, west of Shetland. In Proceedings geological society, London, Petroleum Geology Conference series (Vol. 5, pp. 713–724). Geological Society of London.
    [Google Scholar]
  31. Grunnaleite, I., & Gabrielsen, R. H. (1995). Structure of the Møre Basin, mid‐Norway continental margin. Tectonophysics, 252(1–4), 221–251.
    [Google Scholar]
  32. Handford, C. R., & Loucks, R. G. (1993). Carbonate depositional sequences and systems tracts–responses of carbonate platforms to relative sea‐level changes: Chapter 1. In AAPG Memoir, carbonate sequence stratigraphy: Recent developments and applications. AAPG.
    [Google Scholar]
  33. Helland‐Hansen, W., Sømme, T. O., Martinsen, O. J., Lunt, I., & Thurmond, J. (2016). Deciphering Earth's natural hourglasses: Perspectives on source‐to‐sink analysis. Journal of Sedimentary Research, 86(9), 1008–1033.
    [Google Scholar]
  34. Kjennerud, T., & Vergara, L. (2005). Cretaceous to Palaeogene 3D palaeobathymetry and sedimentation in the Vøring Basin, Norwegian Sea. In Proceedings Geological Society London, Petroleum Geology Conference series (Vol. 6, pp. 815–831), Geological Society of London.
    [Google Scholar]
  35. Kjoberg, S., Schmiedel, T., Planke, S., Svensen, H. H., Millett, J. M., Jerram, D. A., Galland, O., Lecomte, I., Schofield, N., & Haug, Ø. T. (2017). 3D structure and formation of hydrothermal vent complexes at the Paleocene‐Eocene transition, the Møre Basin, mid‐Norwegian margin. Interpretation, 5(3), SK65–SK81.
    [Google Scholar]
  36. Lamers, E., & Carmichael, S. (1999), The Paleocene deepwater sandstone play West of Shetland. In Proceedings Geological Society, London, Petroleum geology conference series (Vol. 5, pp. 645–659). Geological Society of London.
    [Google Scholar]
  37. Lebedeva‐Ivanova, N., Polteau, S., Bellwald, B., Planke, S., Berndt, C., & Stokke, H. H. (2018). Toward one‐meter resolution in 3D seismic. The Leading Edge, 37(11), 818–828.
    [Google Scholar]
  38. Loucks, R. G., Kerans, C., Janson, X., Rojano, M. M., Shipp, R., Weimer, P., & Posamentier, H. (2011). Lithofacies analysis and stratigraphic architecture of a deep‐water carbonate debris apron: Lower Cretaceous (latest Aptian to latest Albian) Tamabra Formation, Poza Rica field area, Mexico. In Mass‐transport deposits in deepwater settings (pp. 367–390). SEPM (Society for Sedimentary Geology) Special Publication.
    [Google Scholar]
  39. Mahdi, S., & Ayress, M. (2006). A biostratigraphical evaluation of the Pleistocene to Late Cretaceous interval in well 6302/6‐1, Tulipan Prospect, NOCS. Ichron/Statoil.
    [Google Scholar]
  40. Martinsen, O., Lien, T., & Jackson, C. (2005). Cretaceous and Palaeogene turbidite systems in the North Sea and Norwegian Sea Basins: Source, staging area and basin physiography controls on reservoir development. In Proceedings Geological Society, London, Petroleum Geology Conference series (Vol. 6, pp. 1147–1164). Geological Society of London.
    [Google Scholar]
  41. Millett, J. M., Manton, B. M., Zastrozhnov, D., Planke, S., Maharjan, D., Bellwald, B., Gernigon, L., Faleide, J. I., Jolley, D. W., & Walker, F. (2022). Basin structure and prospectivity of the NE Atlantic volcanic rifted margin: Cross‐border examples from the Faroe–Shetland, Møre and Southern Vøring basins. Geological Society, London, Special Publications, 495(1), SP495‐2019‐2012.
    [Google Scholar]
  42. Moraes, M. A. S., Maciel, W. B., Braga, M. S. S., & Viana, A. R. (2007). Bottom‐current reworked Palaeocene‐Eocene deep‐water reservoirs of the Campos Basin, Brazil. Geological Society Special Publication, 276, 81–94.
    [Google Scholar]
  43. Mosar, J., Eide, E. A., Osmundsen, P. T., Sommaruga, A., & Torsvik, T. H. (2002). Greenland–Norway separation: A geodynamic model for the North Atlantic. Norwegian Journal of Geology, 82, 282.
    [Google Scholar]
  44. Mount, J. (1985). Mixed siliciclastic and carbonate sediments: A proposed first‐order textural and compositional classification. Sedimentology, 32(3), 435–442.
    [Google Scholar]
  45. Mullins, H. T., & Cook, H. E. (1986). Carbonate apron models: Alternatives to the submarine fan model for paleoenvironmental analysis and hydrocarbon exploration. Sedimentary Geology, 48(1–2), 37–79.
    [Google Scholar]
  46. Payros, A., & Pujalte, V. (2008). Calciclastic submarine fans: An integrated overview. Earth‐Science Reviews, 86(1), 203–246.
    [Google Scholar]
  47. Peron‐Pinvidic, G., Gernigon, L., Gaina, C., & Ball, P. (2012). Insights from the Jan Mayen system in the Norwegian‐Greenland Sea‐II. Architecture of a microcontinent. Geophysical Journal International, 191(2), 413–435.
    [Google Scholar]
  48. Peron‐Pinvidic, G., & Osmundsen, P. T. (2018). The Mid Norwegian‐NE Greenland conjugate margins: Rifting evolution, margin segmentation, and breakup. Marine and Petroleum Geology, 98, 162–184.
    [Google Scholar]
  49. Picot, M., Droz, L., Marsset, T., Dennielou, B., & Bez, M. (2016). Controls on turbidite sedimentation: Insights from a quantitative approach of submarine channel and lobe architecture (Late Quaternary Congo Fan). Marine and Petroleum Geology, 72, 423–446.
    [Google Scholar]
  50. Planke, S., Berndt, C., & Alvarez Zarikian, C. A. (2022). International Ocean discovery program expedition 396 preliminary report mid‐Norwegian margin magmatism and paleoclimate implications. International Ocean Discovery Program (IODP). https://doi.org/10.14379/iodp.pr.396.2022
  51. Playton, T. E., Janson, X., & Kerans, C. (2011). Carbonate slopes. In N. P.James & R. W.Dalrymple (Eds.), Facies models (Vol. 4, pp. 449–476). Geoscience Canda.
    [Google Scholar]
  52. Podladchikov, Y., Rüpke, L., Schmalholz, S., & Simon, N. (2006). Late syn‐rift (65–55 Ma) uplift in the Voring Basin, Norwegian Sea‐was it a ‘hot’ or a ‘cold’ event? In Proceedings AGU Fall Meeting Abstracts (Vol. 2006, T52C‐04). AGU.
    [Google Scholar]
  53. Polanco, S., Blum, M., Salles, T., Frederick, B. C., Farrington, R., Ding, X., Mather, B., Mallard, C., & Moresi, L. (2023). The flexural isostatic response of climatically driven sea‐level changes on continental‐scale deltas. EGUsphere, 2023, 1–30.
    [Google Scholar]
  54. Polteau, S., Mazzini, A., Hansen, G., Planke, S., Jerram, D. A., Millett, J., Abdelmalak, M. M., Blischke, A., & Myklebust, R. (2019). The pre‐breakup stratigraphy and petroleum system of the Southern Jan Mayen Ridge revealed by seafloor sampling. Tectonophysics, 760, 152–164.
    [Google Scholar]
  55. Ravnås, R., Nøttvedt, A., Steel, R., & Windelstad, J. (2000). Syn‐rift sedimentary architectures in the Northern North Sea. Geological Society, London, Special Publications, 167(1), 133–177.
    [Google Scholar]
  56. Ravnås, R., & Steel, R. (1997). Contrasting styles of Late Jurassic syn‐rift turbidite sedimentation: A comparative study of the Magnus and Oseberg areas, northern North Sea. Marine and Petroleum Geology, 14(4), 417–449.
    [Google Scholar]
  57. Ravnås, R., & Steel, R. (1998). Architecture of Marine Rift‐Basin successions. AAPG Bulletin, 82(1), 110–146.
    [Google Scholar]
  58. Rebesco, M., Hernández‐Molina, F. J., Van Rooij, D., & Wåhlin, A. (2014). Contourites and associated sediments controlled by deep‐water circulation processes: State‐of‐the‐art and future considerations. Marine Geology, 352, 111–154.
    [Google Scholar]
  59. Reijmer, J. J., Palmieri, P., Groen, R., & Floquet, M. (2015). Calciturbidites and calcidebrites: Sea‐level variations or tectonic processes?Sedimentary Geology, 317, 53–70.
    [Google Scholar]
  60. Reolid, J., Betzler, C., & Lüdmann, T. (2019). Facies and sedimentology of a carbonate delta drift (Miocene, Maldives). Sedimentology, 66(4), 1243–1265.
    [Google Scholar]
  61. Roberts, A. M., Corfield, R. I., Kusznir, N. J., Matthews, S. J., Hansen, E.‐K., & Hooper, R. J. (2009). Mapping palaeostructure and palaeobathymetry along the Norwegian Atlantic continental margin: Møre and Vøring basins. Petroleum Geoscience, 15(1), 27–43.
    [Google Scholar]
  62. Schlager, W., Reijmer, J. J., & Droxler, A. (1994). Highstand shedding of carbonate platforms. Journal of Sedimentary Research, 64(3b), 270–281.
    [Google Scholar]
  63. Schmiedel, T., Kjoberg, S., Planke, S., Magee, C., Galland, O., Schofield, N., Jackson, C. A.‐L., & Jerram, D. A. (2017). Mechanisms of overburden deformation associated with the emplacement of the Tulipan sill, mid‐Norwegian margin. Interpretation, 5(3), SK23–SK38.
    [Google Scholar]
  64. Scholle, P. A., Albrechtsen, T., & Tirsgaard, H. (1998). Formation and diagenesis of bedding cycles in uppermost Cretaceous chalks of the Dan Field, Danish North Sea. Sedimentology, 45(2), 223–243.
    [Google Scholar]
  65. Simm, R., & Bacon, M. (2014). Seismic amplitude: An interpreter's handbook. Cambridge University Press.
    [Google Scholar]
  66. Skogseid, J., & Eldholm, O. (1987). Early Cenozoic crust at the Norwegian continental margin and the conjugate Jan Mayen Ridge. Journal of geophysical research: Solid Earth, 92(B11), 11471–11491.
    [Google Scholar]
  67. Skogseid, J., Planke, S., Faleide, J. I., Pedersen, T., Eldholm, O., & Neverdal, F. (2000). NE Atlantic continental rifting and volcanic margin formation. Geological Society, London, Special Publications, 167(1), 295–326.
    [Google Scholar]
  68. Slootman, A., De Boer, P. L., Cartigny, M. J., Samankassou, E., & Moscariello, A. (2019). Evolution of a carbonate delta generated by gateway‐funnelling of episodic currents. Sedimentology, 66(4), 1302–1340.
    [Google Scholar]
  69. Sømme, T. O., Huwe, S. I., Martinsen, O. J., Sandbakken, P. T., Skogseid, J., & Valore, L. A. (2023). Stratigraphic expression of the Paleocene‐Eocene Thermal Maximum climate event during long‐lived transient uplift—An example from a shallow to deep‐marine clastic system in the Norwegian Sea. Frontiers in Earth Science, 11, 1–30.
    [Google Scholar]
  70. Sømme, T. O., Skogseid, J., Embry, P., & Løseth, H. (2019). Manifestation of tectonic and climatic perturbations in deep‐time stratigraphy–an example from the Paleocene succession offshore western Norway. Frontiers in Earth Science, 7, 303.
    [Google Scholar]
  71. Southern, S. J., Kane, I. A., Warchoł, M. J., Porten, K. W., & McCaffrey, W. D. (2017). Hybrid event beds dominated by transitional‐flow facies: Character, distribution and significance in the Maastrichtian Springar Formation, north‐west Vøring Basin, Norwegian Sea. Sedimentology, 64(3), 747–776.
    [Google Scholar]
  72. Stoker, M. S. (2016). Cretaceous tectonostratigraphy of the Faroe–Shetland region. Scottish Journal of Geology, 52(1), 19–41.
    [Google Scholar]
  73. Stokke, E. W., Jones, M. T., Riber, L., Haflidason, H., Midtkandal, I., Schultz, B. P., & Svensen, H. H. (2021). Rapid and sustained environmental responses to global warming: The Paleocene–Eocene Thermal Maximum in the eastern North Sea. Climate of the Past, 17(5), 1989–2013.
    [Google Scholar]
  74. Surlyk, F., Dons, T., Clausen, C. K., & Higham, J. (2003). Upper cretaceous. The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea. Geological Society, London, 213, 233.
    [Google Scholar]
  75. Surlyk, G. (1997). A cool‐water carbonate ramp with bryozoan mounds: Late Cretaceous‐Danian of the Danish Basin. Special Publication‐SEPM, 56, 293–308.
    [Google Scholar]
  76. Talling, P., J., Masson, D. G., Sumner, E. J., & Malgesini, G. (2012). Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59(7), 1937–2003.
    [Google Scholar]
  77. Theissen‐Krah, S., Zastrozhnov, D., Abdelmalak, M., Schmid, D., Faleide, J., & Gernigon, L. (2017). Tectonic evolution and extension at the Møre Margin–Offshore mid‐Norway. Tectonophysics, 721, 227–238.
    [Google Scholar]
  78. Triplehorn, D. M. (1966). Morphology, internal structure, and origin of glauconite pellets. Sedimentology, 6(4), 247–266.
    [Google Scholar]
  79. Tropeano, M., Spalluto, L., Meloni, D., Moretti, M., & Sabato, L. (2022). ‘Isolated base‐of‐slope aprons’: An oxymoron for shallow‐marine fan‐shaped, temperate‐water, carbonate bodies along the south‐East Salento escarpment (Pleistocene, Apulia, southern Italy). Sedimentology, 69(1), 345–371.
    [Google Scholar]
  80. Vergara, L., Wreglesworth, I., Trayfoot, M., & Richardsen, G. (2001). The distribution of Cretaceous and Paleocene deep‐water reservoirs in the Norwegian Sea basins. Petroleum Geoscience, 7(4), 395–408.
    [Google Scholar]
  81. Walker, F., Schofield, N., Millett, J., Jolley, D., Planke, S., & Holford, S. (2022). Paleogene drainage system evolution in the NE Faroe‐Shetland Basin. Journal of the Geological Society, 179. https://doi.org/10.1144/jgs2021‐121
    [Google Scholar]
  82. Wien, S. T., & Kjennerud, T. (2005). 3D cretaceous to Cenozoic palaeobathymetry of the northern North Sea. In Norwegian petroleum society special publications (Vol. 12, pp. 241–253). Elsevier.
    [Google Scholar]
  83. Zastrozhnov, D., Gernigon, L., Gogin, I., Planke, S., Abdelmalak, M. M., Polteau, S., Faleide, J. I., Manton, B., & Myklebust, R. (2020). Regional structure and polyphased Cretaceous‐Paleocene rift and basin development of the mid‐Norwegian volcanic passive margin. Marine and Petroleum Geology, 115, 104269.
    [Google Scholar]
  84. Zuffa, G. G. (1980). Hybrid arenites; their composition and classification. Journal of Sedimentary Research, 50(1), 21–29.
    [Google Scholar]
/content/journals/10.1111/bre.12827
Loading
/content/journals/10.1111/bre.12827
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error