1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

The influence of bottom currents on submarine channels has been widely recognized, for instance, by the formation of asymmetric channel‐levee systems and drifts. In contrast, it is often considered that submarine lobes can be only reworked by strong bottom currents and are not affected by bottom currents during their deposition. In this study, we analyse the potential effect of bottom currents on different hierarchical lobe architectures that formed during the lower Oligocene in the Rovuma Basin offshore East Africa. We characterize the stacking patterns, morphology and connectivity of different hierarchy lobes using well data and three‐dimensional seismic data. We found no direct influence of bottom currents on the lobe complexes and single lobes that show a unidirectional stacking pattern that is opposite to the direction of bottom currents. Lobe elements in single lobes display vertical accretion with no obvious relationship with bottom currents. Additionally, the first deposited single lobe morphology presents an asymmetric shape, with a thicker lobe margin on the downstream side of the bottom currents, but this is due to an initial low topography on the downstream side rather than bottom currents. The architectural distribution reflects that the topography present before the depositions of the submarine lobes was controlled by previous asymmetrical channel‐levee systems formed by the synchronous interaction of bottom currents and gravity flows. This asymmetric topography controls the subsequent deposition of lobes and results in the migration of single lobes in the upstream direction of bottom currents. Although weak to moderate bottom currents may not be able to substantially rework submarine lobes, our results demonstrate that they may control the geometry and evolution of submarine channels and thus indirectly affect the thickness and migration of lobes in more environments than previously thought.

,

Bottom currents play a key role in controlling the evolution of submarine lobes by creating asymmetrical channel‐levee systems that direct the migration of lobes in the upstream direction of the current.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12829
2024-01-22
2025-07-18
Loading full text...

Full text loading...

References

  1. Barker, P. F., & Thomas, E. (2004). Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth‐Science Reviews, 66(1–2, 143–162. https://doi.org/10.1016/j.earscirev.2003.10.003
    [Google Scholar]
  2. Bouma, A. H. (1985). Introduction to submarine fans and related turbidite systems (pp. 3–5). Springer. https://doi.org/10.1007/978‐1‐4612‐5114‐9_1
    [Google Scholar]
  3. Braga, J. C., Martin, J. M., & Wood, J. L. (2001). Submarine lobes and feeder channels of redeposited, temperate carbonate and mixed siliciclastic‐carbonate platform deposits (Vera Basin, Almeria, southern Spain). Sedimentology, 48(1), 99–116.
    [Google Scholar]
  4. Breitzke, M., Wiles, E., Krocker, R., Watkeys, M. K., & Jokat, W. (2017). Seafloor morphology in the Mozambique Channel: Evidence for long‐term persistent bottom‐current flow and deep‐reaching eddy activity. Marine Geophysical Research, 38, 241–269.
    [Google Scholar]
  5. Browne, G. H., & Slatt, R. M. (2002). Outcrop and behind‐outcrop characterization of a late Miocene slope fan system, Mt. Messenger Formation, New Zealand. AAPG Bulletin, 86(5), 841–862. https://doi.org/10.1306/61EEDBB6‐173E‐11D7‐8645000102C1865D
    [Google Scholar]
  6. Buscema, M. (1998). Back propagation neural networks. Substance use & Misuse, 33(2), 233–270.
    [Google Scholar]
  7. Carter, L., Carter, R. M., Nelson, C. S., Fulthorpe, C. S., & Neil, H. L. (1990). Evolution of Pliocene to Recent abyssal sediment waves on Bounty Channel levees, New Zealand. Marine Geology, 95(2), 97–109. https://doi.org/10.1016/0025‐3227(90)90043‐J
    [Google Scholar]
  8. Carter, L., & Carter, R. M. (1988). Late Quaternary development of left‐bank‐dominant levees in the Bounty Trough, New Zealand. Marine Geology, 78(3‐4), 185–197. https://doi.org/10.1016/0025‐3227(88)90108‐9
    [Google Scholar]
  9. Chen, Y. H., Yao, G. S., Lü, F. L., Tang, P., & Lu, Y. (2016). Tectonic‐sedimentary evolution and petroleum geology characteristics in Deepwater area in Rovuma basin, East Africa. Marine Origin Petroleum Geology, 21(2), 39–46.
    [Google Scholar]
  10. Collins, C., Hermes, J. C., Roman, R. E., & Reason, C. J. C. (2016). First dedicated hydrographic survey of the Comoros Basin. Journal of Geophysical Research: Oceans, 121(2), 1291–1305. https://doi.org/10.1002/2015JC011418
    [Google Scholar]
  11. Deptuck, M. E., Piper, D. J., Savoye, B., & Gervais, A. (2008). Dimensions and architecture of late Pleistocene submarine lobes off the northern margin of East Corsica. Sedimentology, 55(4), 869–898. https://doi.org/10.1111/j.1365‐3091.2007.00926.x
    [Google Scholar]
  12. Deptuck, M. E., & Sylvester, Z. (2018). Submarine fans and their channels, levees, and lobes. In A.Micallef, S.Krastel, & A.Savini (Eds.), Submarine geomorphology (pp. 273–299). Springer International Publishing.
    [Google Scholar]
  13. Fonnesu, M., Palermo, D., Galbiati, M., Marchesini, M., Bonamini, E., & Bendias, D. (2020). A new world‐class deep‐water play‐type, deposited by the syndepositional interaction of turbidity flows and bottom currents: The giant Eocene Coral Field in northern Mozambique. Marine and Petroleum Geology, 111, 179–201. https://doi.org/10.1016/j.marpetgeo.2019.07.047
    [Google Scholar]
  14. Fuhrmann, A., Kane, I. A., Clare, M. A., Ferguson, R. A., Schomacker, E., Bonamini, E., & Contreras, F. A. (2020). Hybrid turbidite‐drift channel complexes: An integrated multiscale model. Geology, 48(6), 562–568. https://doi.org/10.1130/G47179.1
    [Google Scholar]
  15. Fuhrmann, A., Kane, I. A., Schomacker, E., Clare, M. A., & Pontén, A. (2022). Bottom current modification of turbidite lobe complexes. Frontiers in Earth Science, 9, 752066. https://doi.org/10.3389/feart.2021.752066
    [Google Scholar]
  16. Galy, V., France‐Lanord, C., Beyssac, O., Faure, P., Kudrass, H., & Palhol, F. (2007). Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature, 450(7168), 407–410. https://doi.org/10.1038/nature06273
    [Google Scholar]
  17. Gervais, A., Savoye, B., Mulder, T., & Gonthier, E. (2006). Sandy modern turbidite lobes: A new insight from high resolution seismic data. Marine and Petroleum Geology, 23(4), 485–502. https://doi.org/10.1016/j.marpetgeo.2005.10.006
    [Google Scholar]
  18. Gong, C., Wang, Y., Rebesco, M., Salon, S., & Steel, R. J. (2018). How do turbidity flows interact with contour currents in unidirectionally migrating deep‐water channels?Geology, 46(6), 551–554. https://doi.org/10.1130/G40204.1
    [Google Scholar]
  19. Gong, C., Wang, Y., Steel, R. J., Peakall, J., Zhao, X., & Sun, Q. (2016). Flow processes and sedimentation in unidirectionally migrating deep‐water channels: From a three‐dimensional seismic perspective. Sedimentology, 63(3), 645–661. https://doi.org/10.1111/sed.12233
    [Google Scholar]
  20. Gong, C., Wang, Y., Zhu, W., Li, W., & Xu, Q. (2013). Upper Miocene to Quaternary unidirectionally migrating deep‐water channels in the Pearl River Mouth Basin, northern South China SeaUnidirectionally migrating deep‐water channels. AAPG Bulletin, 97(2), 285–308. https://doi.org/10.1306/07121211159
    [Google Scholar]
  21. Goswami, P. K. (2017). Depositional processes in the distal part of a large alluvial fan's feeder channel in Himalayan foothills, India. Geological Journal, 52(5), 733–744.
    [Google Scholar]
  22. Guangya, Z. H. A. N. G., Xiaobing, L. I. U., Jian, Z. H. A. O., Zhixin, W. E. N., Diqiu, Z. H. A. N. G., Zhaoming, W. A. N. G., … Xi, C. H. E. N. (2018). Passive continental margin basin evolution of East Africa and the main controlling factors of giant gas fields: An example from the Rovuma Basin. Earth Science Frontiers, 25(2), 24.
    [Google Scholar]
  23. Jiajia, Z., & Shenghe, W. (2019). Research progress on the depositional architecture of submarine‐fan lobes. China Offshore Oil and Gas, 31(5), 88–106.
    [Google Scholar]
  24. Kane, I. A., & Clare, M. A. (2019). Dispersion, accumulation, and the ultimate fate of microplastics in deep‐marine environments: A review and future directions. Frontiers in Earth Science, 7, 80. https://doi.org/10.3389/feart.2019.00080
    [Google Scholar]
  25. Lamb, M. A., Anderson, K. S., & Graham, S. A. (2003). Stratigraphic architecture of a sand‐rich, deep‐sea depositional system: The Stevens Sandstone, San Joaquin basin, California (p. 64). American Association of Petroleum Geologists.
    [Google Scholar]
  26. Lee, S. H., Chough, S. K., Back, G. G., Kim, Y. B., & Sung, B. S. (1999). Gradual downslope change in high‐resolution acoustic characters and geometry of large‐scale submarine debris lobes in Ulleung Basin, East Sea (sea of Japan), Korea. Geo‐Marine Letters, 19, 254–261. https://doi.org/10.1007/s003670050116
    [Google Scholar]
  27. Li, W., Yue, D., Wang, W., Wang, W., Wu, S., Li, J., & Chen, D. (2019). Fusing multiple frequency‐decomposed seismic attributes with machine learning for thickness prediction and sedimentary facies interpretation in fluvial reservoirs. Journal of Petroleum Science and Engineering, 177, 1087–1102. https://doi.org/10.1016/j.petrol.2019.03.017
    [Google Scholar]
  28. Liu, Z. Y., Lü, M., Lu, J. M., Lü, D., Wang, Y., & Guo, G. (2017). Deepwater depositional system in the background of narrow shelf in the Ruvuma Basin, Eastern Africa. Marine Origin Petroleum Geology, 22(4), 27–34.
    [Google Scholar]
  29. Livermore, R., Eagles, G., Morris, P., & Maldonado, A. (2004). Shackleton Fracture Zone: No barrier to early circumpolar ocean circulation. Geology, 32(9), 797–800. https://doi.org/10.1130/G20537.1
    [Google Scholar]
  30. Lowe, D. R. (1982). Sediment gravity flows; II, depositional models with special reference to the deposits of high‐density turbidity currents. Journal of Sedimentary Research, 52(1), 279–297. https://doi.org/10.1306/212F7F31‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  31. Lu, Y. (2017). Development characteristics and formation mechanism of deep‐water gravity flow sediments[D]. University of Chinese Academy of Sciences (Institute of Oceanography, Chinese Academy of Sciences).
    [Google Scholar]
  32. Lu, Y., Luan, X., Shi, B., Ran, W., Lü, F., Wang, X., Cao, Q., Xu, X., Sun, H., & Yao, G. (2021). Migrated hybrid turbidite‐contourite channel‐lobe complex of the late Eocene Rovuma Basin, East Africa. Acta Oceanologica Sinica, 40, 81–94.
    [Google Scholar]
  33. Luan, X., Lu, Y., Fan, G., & Ran, W. (2021). Deep‐water sedimentation controlled by interaction between bottom current and gravity flow: A case study of Rovuma Basin, East Africa. Journal of African Earth Sciences, 180, 104228. https://doi.org/10.1016/j.jafrearsci.2021.104228
    [Google Scholar]
  34. Maselli, V., Kroon, D., Iacopini, D., Wade, B. S., Pearson, P. N., & De Haas, H. (2020). Impact of the east African rift system on the routing of the deep‐water drainage network offshore Tanzania, western Indian Ocean. Basin Research, 32(5), 789–803.
    [Google Scholar]
  35. Menard, H. W., Jr. (1955). Deep‐sea channels, topography, and sedimentation. AAPG Bulletin, 39(2), 236–255. https://doi.org/10.1306/5CEAE136‐16BB‐11D7‐8645000102C1865D
    [Google Scholar]
  36. Miramontes, E., Eggenhuisen, J. T., Jacinto, R. S., Poneti, G., Pohl, F., Normandeau, A., … Hernández‐Molina, F. J. (2020). Channel‐levee evolution in combined contour current–turbidity current flows from flume‐tank experiments. Geology, 48(4), 353–357. https://doi.org/10.1130/G47111.1
    [Google Scholar]
  37. Miramontes, E., Garreau, P., Caillaud, M., Jouet, G., Pellen, R., Hernández‐Molina, F. J., … Cattaneo, A. (2019). Contourite distribution and bottom currents in the NW Mediterranean Sea: Coupling seafloor geomorphology and hydrodynamic modelling. Geomorphology, 333, 43–60. https://doi.org/10.1016/j.geomorph.2019.02.030
    [Google Scholar]
  38. Miramontes, E., Penven, P., Fierens, R., Droz, L., Toucanne, S., Jorry, S. J., … Raisson, F. (2019). The influence of bottom currents on the Zambezi Valley morphology (Mozambique Channel, SW Indian Ocean): In situ current observations and hydrodynamic modelling. Marine Geology, 410, 42–55. https://doi.org/10.1016/j.margeo.2019.01.002
    [Google Scholar]
  39. Miramontes, E., Thiéblemont, A., Babonneau, N., Penven, P., Raisson, F., Droz, L., … Jouet, G. (2021). Contourite and mixed turbidite‐contourite systems in the Mozambique Channel (SW Indian Ocean): Link between geometry, sediment characteristics and modelled bottom currents. Marine Geology, 437, 106502. https://doi.org/10.1016/j.margeo.2021.106502
    [Google Scholar]
  40. Mulder, T., & Etienne, S. (2010). Lobes in deep‐sea turbidite systems: State of the art. Sedimentary Geology, 3(229), 75–80. https://doi.org/10.1016%2Fj.sedgeo.2010.06.011
    [Google Scholar]
  41. Mulder, T., Faugères, J. C., & Gonthier, E. (2008). Mixed turbidite–contourite systems. Developments in Sedimentology, 60, 435–456. https://doi.org/10.1016/S0070‐4571(08)10021‐8
    [Google Scholar]
  42. Mutti, E. (1977). Distinctive thin‐bedded turbidite facies and related depositional environments in the Eocene Hecho Group (South‐Central Pyrenees, Spain). Sedimentology, 24(1), 107–131. https://doi.org/10.1111/j.1365‐3091.1977.tb00122.x
    [Google Scholar]
  43. Mutti, E., & Carminatti, M. (2012). Deep‐water sands of the Brazilian offshore basins. Search and Discovery Article, 30219, 23–26.
    [Google Scholar]
  44. Mutti, E., Cunha, R. S., Bulhoes, E. M., Arienti, L. M., & Viana, A. R. (2014). Contourites and turbidites of the Brazilian marginal basins. Search and Discovery Article, 51069, 1–46.
    [Google Scholar]
  45. Mutti, E., & Normark, W. R. (1987). Comparing examples of modern and ancient turbidite systems: Problems and concepts. In J. K.Leggett & G. G.Zuffa (Eds.), Marine clastic sedimentology Graham and Trotman (pp. 1–38).
    [Google Scholar]
  46. Normark, W. R. (1970). Growth patterns of deep‐sea fans. AAPG Bulletin, 54(11), 2170–2195. https://doi.org/10.1306/5D25CC79‐16C1‐11D7‐8645000102C1865D
    [Google Scholar]
  47. Normark, W. R. (1978). Fan valleys, channels, and depositional lobes on modern submarine fans: Characters for recognition of sandy turbidite environments. AAPG Bulletin, 62(6), 912–931. https://doi.org/10.1306/C1EA4F72‐16C9‐11D7‐8645000102C1865D
    [Google Scholar]
  48. Picot, M., Droz, L., Marsset, T., Dennielou, B., & Bez, M. (2016). Controls on turbidite sedimentation: Insights from a quantitative approach of submarine channel and lobe architecture (Late Quaternary Congo Fan). Marine and Petroleum Geology, 72, 423–446. https://doi.org/10.1016/j.marpetgeo.2016.02.004
    [Google Scholar]
  49. Prélat, A., Covault, J. A., Hodgson, D. M., Fildani, A., & Flint, S. S. (2010). Intrinsic controls on the range of volumes, morphologies, and dimensions of submarine lobes. Sedimentary Geology, 232(1–2), 66–76. https://doi.org/10.1016/j.sedgeo.2010.09.010
    [Google Scholar]
  50. Prélat, A., & Hodgson, D. M. (2013). The full range of turbidite bed thickness patterns in submarine lobes: Controls and implications. Journal of the Geological Society, 170(1), 209–214. https://doi.org/10.1144/jgs2012‐056
    [Google Scholar]
  51. Prélat, A., Hodgson, D. M., & Flint, S. S. (2009). Evolution, architecture and hierarchy of distributary deep‐water deposits: A high‐resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology, 56(7), 2132–2154. https://doi.org/10.1111/j.1365‐3091.2009.01073.x
    [Google Scholar]
  52. Quanbin, C. A. O., Pengcheng, T. A. N. G., & Fuliang, L. Y. U. (2018). Formation conditions and controlling factors of gas‐bearing turbidite sand reservoirs in deep water deposits in the Rovuma Basin, East Africa. Marine Origin Petroleum Geology, 23(3), 65–72.
    [Google Scholar]
  53. Reading, H. G., & Richards, M. (1994). Turbidite systems in deep‐water basin margins classified by grain size and feeder system. AAPG Bulletin, 78(5), 792–822. https://doi.org/10.1306/A25FE3BF‐171B‐11D7‐8645000102C1865D
    [Google Scholar]
  54. Rebesco, M., Hernández‐Molina, F. J., Van Rooij, D., & Wåhlin, A. (2014). Contourites and associated sediments controlled by deep‐water circulation processes: State‐of‐the‐art and future considerations. Marine Geology, 352, 111–154. https://doi.org/10.1016/j.margeo.2014.03.011
    [Google Scholar]
  55. Rumelhart, D. E., Hinton, G. E., & McClelland, J. L. (1986). A general framework for parallel distributed processing. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1(45–76), 26.
    [Google Scholar]
  56. Saller, A., Werner, K., Sugiaman, F., Cebastiant, A., May, R., Glenn, D., & Barker, C. (2008). Characteristics of Pleistocene deep‐water fan lobes and their application to an upper Miocene reservoir model, offshore East Kalimantan, Indonesia. AAPG Bulletin, 92(7), 919–949. https://doi.org/10.1306/03310807110
    [Google Scholar]
  57. Salman, G., & Abdula, I. (1995). Development of the Mozambique and Ruvuma sedimentary basins, offshore Mozambique. Sedimentary Geology, 96(1–2), 7–41. https://doi.org/10.1016/0037‐0738(95)00125‐R
    [Google Scholar]
  58. Sansom, P. (2018). Hybrid turbidite–contourite systems of the Tanzanian margin. Petroleum Geoscience, 24(3), 258–276.
    [Google Scholar]
  59. Shanmugam, G. (2016). Submarine fans: A critical retrospective (1950–2015). Journal of Palaeogeography, 5(2), 110–184. https://doi.org/10.1016/j.jop.2015.08.011
    [Google Scholar]
  60. Shanmugam, G., & Moiola, R. J. (1988). Submarine fans: Characteristics, models, classification, and reservoir potential. Earth‐Science Reviews, 24(6), 383–428. https://doi.org/10.1016/0012‐8252(88)90064‐5
    [Google Scholar]
  61. Smelror, M., Larssen, G. B., Olaussen, S., Rømuld, A., & Williams, R. (2018). Late triassic to early cretaceous palynostratigraphy of Kong Karls Land, Svalbard, Arctic Norway, with correlations to Franz Josef Land, Arctic Russia. Norwegian Journal of Geology, 98, 1–31. https://doi.org/10.17850/njg004
    [Google Scholar]
  62. Spychala, Y. T., Eggenhuisen, J. T., Tilston, M., & Pohl, F. (2020). The influence of basin setting and turbidity current properties on the dimensions of submarine lobe elements. Sedimentology, 67(7), 3471–3491. https://doi.org/10.1111/sed.12751
    [Google Scholar]
  63. Steel, E., Buttles, J., Simms, A. R., Mohrig, D., & Meiburg, E. (2017). The role of buoyancy reversal in turbidite deposition and submarine fan geometry. Geology, 45(1), 35–38. https://doi.org/10.1130/G38446.1
    [Google Scholar]
  64. Straub, K. M., & Pyles, D. R. (2012). Quantifying the hierarchical organization of compensation in submarine fans using surface statistics. Journal of Sedimentary Research, 82(11), 889–898. https://doi.org/10.2110/jsr.2012.73
    [Google Scholar]
  65. Sullivan, M., Jensen, G., Goulding, F., Jennette, D., Foreman, L., & Stern, D. (2000). Architectural analysis of deep‐water outcrops: Implications for exploration and development of the Diana sub‐basin, western Gulf of Mexico. https://doi.org/10.5724/gcs.00.15.1010
  66. Thiéblemont, A., Hernández‐Molina, F. J., Ponte, J. P., Robin, C., Guillocheau, F., Cazzola, C., & Raisson, F. (2020). Seismic stratigraphic framework and depositional history for Cretaceous and Cenozoic contourite depositional systems of the Mozambique Channel, SW Indian Ocean. Marine Geology, 425, 106192. https://doi.org/10.1016/j.margeo.2020.106192
    [Google Scholar]
  67. Walker, R. G. (1978). Deep‐water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps. AAPG Bulletin, 62(6), 932–966. https://doi.org/10.1306/C1EA4F77‐16C9‐11D7‐8645000102C1865D
    [Google Scholar]
  68. Walker, R. G. (1980). Modern and ancient submarine fans: Reply. AAPG Bulletin, 64(7), 1101–1108. https://doi.org/10.1306/61EEDBB6‐173E‐11D7‐8645000102C1865D
    [Google Scholar]
  69. Yu, L. I. N., Shenghe, W. U., Xing, W. A. N. G., Xiaoming, Z., Yun, L., Yao, L., & Jiajia, Z. (2014). Research on reservoir architecture models of deep‐water turbidite lobes. Natural Gas Geoscience, 25(8), 1197–1204.
    [Google Scholar]
  70. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693. https://doi.org/10.1126/science.1059412
    [Google Scholar]
  71. Zhang, J., Wu, S., Hu, G., Fan, T. E., Yu, B., Lin, P., & Jiang, S. (2018). Sea‐level control on the submarine fan architecture in a Deepwater sequence of The Niger Delta Basin. Marine and Petroleum Geology, 94, 179–197. https://doi.org/10.1016/j.marpetgeo.2018.04.002
    [Google Scholar]
  72. Zhang, J. J., Wu, S. H., Fan, T. E., Fan, H. J., Jiang, L., Chen, C., … Lin, P. (2016). Research on the architecture of submarine‐fan lobes in The Niger Delta Basin, offshore West Africa. Journal of Palaeogeography, 5(3), 185–204. https://doi.org/10.1016/j.jop.2016.05.005
    [Google Scholar]
/content/journals/10.1111/bre.12829
Loading
/content/journals/10.1111/bre.12829
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error