1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117
PDF

Abstract

[

The siliciclastic lower Nanaimo Group records the initiation and depositional evolution of a forearc basin (Georgia Basin, Canada). Our research revises the traditional lithostratigraphic framework and proposes a new stratigraphic framework for the lower Nanaimo Group. We identify two major coalfields and two deep‐water sediment routing systems, and showcase the link between sedimentation and syntectonism.

, Abstract

The Cretaceous lower Nanaimo Group in the Georgia Basin, Canada comprises multiple depositional phases with distinct depocentres that accumulated in a tectonically active forearc basin setting. Basal coarse‐clastic strata are preserved in paleotopographic depressions and grade upwards into coal‐bearing coastal plains and shallow‐marine deposits. Coal‐bearing and shallow‐marine strata grade laterally into and are overlain by, regionally extensive mudstones and turbidites deposited in deep water. A glauconitic sandstone bed within the deep‐water strata is interpreted as a condensed section and underlies a major disconformity that developed during a pause in the deposition of the lower Nanaimo Group. A second major coarse‐clastic succession occurs hundreds of metres above the glauconite bed in the central Georgia Basin and comprises conglomerate, sandstone, mudstone and coal deposited in continental depositional environments. The shift in sedimentation from the northern Georgia Basin to the central Georgia Basin is interpreted to record the emergence of an island (Nanoose Uplift) in the central Georgia Basin that acted as a major sediment source to the adjacent depocentres. The stratigraphic break between the coal‐bearing coarse‐clastic strata in the northern Georgia Basin and the significantly younger coal‐bearing coarse‐clastic strata in the central Georgia Basin indicates that the lower Nanaimo Group was deposited in distinct depocentres. Between the older, coarse‐clastic strata in the north and younger, coarse‐clastic strata in the central Georgia Basin, we hypothesize that a major deepwater canyon system (Qualicum Canyon) existed and transferred sediment from the semi‐restricted Georgia Basin to the Pacific Ocean to the west. Development of the Qualicum Canyon and exposure of the Nanoose Uplift during deposition of the younger, central coarse‐clastic strata suggests that syntectonic activity drove basin uplift and erosion and this occurred throughout the deposition of the lower Nanaimo Group.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12830
2024-01-22
2025-06-21
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12830.html?itemId=/content/journals/10.1111/bre.12830&mimeType=html&fmt=ahah

References

  1. Aksoy, E., Türkmen, I., & Turan, M. (2005). Tectonics and sedimentation in convergent margin basins: An example from the tertiary Elaziǧ Basin, Eastern Turkey. Journal of Asian Earth Sciences, 25, 459–472.
    [Google Scholar]
  2. Alberts, D., Gehrels, G. E., Nelson, J., & Roeske, S. (2021). U‐Pb and Hf analyses of detrital zircons from Paleozoic and Cretaceous Strata on Vancouver Island, British Columbia: Constraints on the Paleozoic tectonic evolution of southern Wrangellia. Lithosphere, 2021, 7866944. https://doi.org/10.2113/2021/7866944
    [Google Scholar]
  3. Bain, H. (2016). Deep‐water stratigraphic evolution of the Nanaimo Group, Hornby and Denman Islands, British Columbia. University of Calgary, Calgary.
    [Google Scholar]
  4. Bain, H. A., & Hubbard, S. M. (2016). Stratigraphic evolution of a long‐lived Submarine Channel system in the late cretaceous Nanaimo Group, British Columbia, Canada. Sedimentary Geology, 337, 113–132. https://doi.org/10.1016/j.sedgeo.2016.03.010
    [Google Scholar]
  5. Bickford, C. G. C., & Kenyon, C. (1988). Coalfield geology of Eastern Vancouver Island. In Geological fieldwork 1987 (Ed. by, Paper 1988–1, 441–450). BC Ministry of Energy, Mines and Petroleum Resources.
    [Google Scholar]
  6. Cameron, B. E. B. (1988). Paleoenvironmental analysis of 61 samples from the upper Cretaceous Nanaimo Group, from Vancouver Island and adjacent Gulf Islands, geological survey of Canada. Unpublished Report BEB C, 26.
  7. Cathyl‐Bickford, C. G. (2001). Lithostratigraphy of the Comox and Trent River formations in the Comox coalfield, Vancouver Island (92f/7, 10, 11, 14). B.C. Geological Survey. Geofile, 8, 2001‐1.
    [Google Scholar]
  8. Cathyl‐Bickford, C. G., & Hoffman, G. L. (1998). Geological maps of the Nanaimo and Comox coalfields. B.C. Ministry of Energy and Mines Open File Report 1998‐7, 14 maps.
    [Google Scholar]
  9. Cawood, P. A., Hawkesworth, C. J., & Dhuime, B. (2012). Detrital zircon record and tectonic setting. Geology, 40, 875–878. https://doi.org/10.1130/g32945.1
    [Google Scholar]
  10. Coutts, D. S., Matthews, W. A., Englert, R. G., Brooks, M. D., Boivin, M.‐P., & Hubbard, S. M. (2020). Along‐strike variations in sediment provenance within the Nanaimo Basin reveal mechanisms of Forearc Basin sediment influx events. Lithosphere, 12, 180–197. https://doi.org/10.1002/2017TC004531
    [Google Scholar]
  11. Davies, G. F., & Woods, M. T. (1982). Late cretaceous genesis of the Kula plate. Earth and Planetary Science Letters, 58, 161–166.
    [Google Scholar]
  12. Degraaff‐Surpless, K., Graham, S. A., Wooden, J. L., & Mcwilliams, M. O. (2002). Detrtial zircon provenance analysis of the Great Valley Group, California: Evolution of an arc‐Forearc system. GSA Bulletin, 114, 1564–1580.
    [Google Scholar]
  13. Dickinson, W. R. (1995). Forearc basins. In C. J.Busby & R. V.Ingersoll (Eds.), Tectonics of sedimentary basins (pp. 405–426). Blackwell Science.
    [Google Scholar]
  14. Dickinson, W. R., & Seely, D. R. (1979). Structure and stratigraphy of Forearc regions. AAPG Bulletin, 63, 2–31.
    [Google Scholar]
  15. Engebretson, D. C., Cox, A., & Gordon, R. G. (1985). Relative motions between oceanic and continental plates in the Pacific Basin. Geological Society of America.
    [Google Scholar]
  16. England, T. D. J. (1989). Late Cretaceous to Paleogene evolution of the Georgia Basin, Southwestern British Columbia. Memorial University of Newfoundland.
    [Google Scholar]
  17. England, T. D. J., & Bustin, R. M. (1998). Architecture of the Georgia Basin southwestern British Columbia. Bulletin of Canadian Petroleum Geology, 46, 268–320.
    [Google Scholar]
  18. Englert, R. G., Hubbard, S. M., Coutts, D. S., & Matthews, W. A. (2018). Tectonically controlled initiation of contemporaneous deep‐water Channel systems along a Late Cretaceous continental margin, Western British Columbia, Canada. Sedimentology, 65, 2404–2438. https://doi.org/10.1111/sed.12472
    [Google Scholar]
  19. Enkin, R. J., Baker, J., & Mustard, P. S. (2001). Paleomagnetism of the Upper Cretaceous Nanaimo Group, Southwestern Canadian Cordillera. Canadian Journal of Earth Sciences, 38, 1403–1422. https://doi.org/10.1139/e01‐031
    [Google Scholar]
  20. Fildani, A., Hessler, A. M., & Graham, S. A. (2008). Trench‐Forearc interactions reflected in the sedimentary fill of Talara Basin, Northwest Peru. Basin Research, 20, 305–331.
    [Google Scholar]
  21. Girotto, K. D. (2022). Tectono‐stratigraphic model for the early evolution of the Late Cretaceous Nanaimo Group: Georgia Basin, British Columbia. Simon Fraser University.
    [Google Scholar]
  22. Gong, C., Steel, R. J., Wang, Y., Lin, C., & Olariu, C. (2016). Shelf‐margin architecture variability and its role in sediment‐budget partitioning into deep‐water areas. Earth‐Science Reviews, 154, 72–101.
    [Google Scholar]
  23. Haggart, J. W. (1991). Biostratigraphy of the Upper Cretaceous Nanaimo Group, Gulf Ilsands, British Columbia. In P. L.Smith (Ed.), A field guide to the paleontology of Southwestern Canada (pp. 222–257). Geological Association of Canada.
    [Google Scholar]
  24. Haggart, J. W., & Graham, R. (2018). The crinoid Marsupites in the Upper Cretaceous Nanaimo Group, British Columbia: Resolution of the Santonian–Campanian boundary in the North Pacific Province. Cretaceous Research, 87, 277–295. https://doi.org/10.1016/j.cretres.2017.05.029
    [Google Scholar]
  25. Haggart, J. W., Ward, P. D., & Orr, W. (2005). Turonian (Upper Cretaceous) Lithostratigraphy and biochronology, Southern Gulf Islands, British Columbia, and Northern San Juan Islands, Washington State. Canadian Journal of Earth Sciences, 42, 2001–2020.
    [Google Scholar]
  26. Haggart, J. W., Ward, P. D., Raub, T. D., Carter, E. S., & Kirschvink, J. L. (2009). Molluscan biostratigraphy and Paleomagnetism of Campanian Strata, Queen Charlotte Islands, British Columbia: Implications for Pacific Coast North America biochronology. Cretaceous Research, 30, 939–951. https://doi.org/10.1016/j.cretres.2009.02.005
    [Google Scholar]
  27. Hamblin, A. P. (2012). Upper cretaceous Nanaimo Group of Vancouver Island as a potential bedrock aquifer zone: Summary of previous literature and concepts. Geological Survey of Canada.
    [Google Scholar]
  28. Harrichhausen, N., Morell, K. D., Regalla, C., Lynch, E. M., & Leonard, L. J. (2022). Eocene terrane accretion in northern Cascadia recorded by brittle left‐lateral slip on the San Juan fault. Tectonics, 41(10), e2022TC007317.
    [Google Scholar]
  29. Huang, C., Dashtgard, S. E., Haggart, J. W., & Girotto, K. (2022). Synthesis of chronostratigraphic data and Methods in the Georgia Basin, Canada, with implications for convergent‐margin basin chronology. Earth‐Science Reviews, 231, 104076. https://doi.org/10.1016/j.earscirev.2022.104076
    [Google Scholar]
  30. Huang, C., Dashtgard, S. E., Kent, B. A. P., Gibson, H. D., & Matthews, W. A. (2019). Resolving the architecture and early evolution of a Forearc Basin (Georgia Basin, Canada) using detrital zircon. Scientific Reports, 9, 15360. https://doi.org/10.1038/s41598‐019‐51795‐5
    [Google Scholar]
  31. Johnstone, P. D., Mustard, P. S., & Maceachern, J. A. (2006). The basal unconformity of the Nanaimo Group, southwestern British Columbia: A Late Cretaceous storm‐swept rocky shoreline. Canadian Journal of Earth Sciences, 43, 1165–1181.
    [Google Scholar]
  32. Jones, M. T. (2016). Stratigraphy and architecture of shallow‐marine strata on an active margin, lower Nanaimo group. Simon Fraser University, Burnaby.
    [Google Scholar]
  33. Jones, M. T., Dashtgard, S. E., & Maceachern, J. A. (2018). A conceptual model for the preservation of thick, transgressive shoreline successions: Examples from the Forearc Nanaimo Basin, British Columbia, Canada. Journal of Sedimentary Research, 88, 811–826. https://doi.org/10.2110/jsr.2018.40
    [Google Scholar]
  34. Katnick, D. C., & Mustard, P. S. (2003). Geology of Denman and Hornby Islands, British Columbia: Implications for Nanaimo Basin evolution and formal definition of the Geoffery and spray formations, upper cretaceous Nanaimo Group. Canadian Journal of Earth Sciences, 40, 375–393.
    [Google Scholar]
  35. Kent, B. A. P., Dashtgard, S. E., Huang, C., Maceachern, J. A., Gibson, H. D., & Cathyl‐Huhn, G. (2020). Initiation and early evolution of a Forearc Basin: Georgia Basin, Canada. Basin Research, 32, 163–185. https://doi.org/10.1111/bre.12378
    [Google Scholar]
  36. Kenyon, C., Cathyl‐Bickford, C. G., & Hoffman, G. (1991). Quinsam and Chute Creek Coal Deposits (NTS 92/13,14). B.C. Ministry of Energy and Mines Paper 1991‐3, 1–92.
    [Google Scholar]
  37. Kodama, K. P., & Ward, P. D. (2001). Compaction‐corrected Paleomagnetic Paleolatitudes for the Late Cretaceous Rudist along the cretaceous California margin: Evidence for less than 1500 km of post‐late cretaceous offset for Baja British Columbia. GSA Bulletin, 113, 1171–1178.
    [Google Scholar]
  38. Krijgsman, W., & Tauxe, L. (2006). E/I corrected Paleolatitudes for the sedimentary rocks of the Baja British Columbia hypothesis. Earth and Planetary Science Letters, 242, 205–216.
    [Google Scholar]
  39. Mahoney, J. B., Mustard, P. S., Haggart, J. W., Friedman, R. M., Fanning, C. M., & Mcnicoll, V. J. (1999). Archean zircons in cretaceous strata of the Western Canadian cordillera: The “Baja B.C.” hypothesis fails a “crucial test”. Geology, 27, 195–198.
    [Google Scholar]
  40. Malatesta, C., Gerya, T., Crispini, L., Federico, L., & Capponi, G. (2013). Oblique subduction modelling indicates along‐trench tectonic transport of sediments. Nature Communications, 4, 2456.
    [Google Scholar]
  41. Malatesta, C., Gerya, T., Crispini, L., Federico, L., & Capponi, G. (2016). Interplate deformation at early‐stage oblique subduction: 3‐D thermomechanical numerical modeling. Tectonics, 35, 1610–1625.
    [Google Scholar]
  42. Massey, N., MacIntyre, D., Desjardins, P., & Cooney, R. (2005). Digital geology map of British Columbia. BC Ministry of Energy and Mines, Geofile, 7, 20.
    [Google Scholar]
  43. Matthews, W. A., Guest, B., Coutts, D., Bain, H., & Hubbard, S. M. (2017). Detrital zircons from the Nanaimo Basin, Vancouver Island, British Columbia: An independent test of Late Cretaceous to Cenozoic northward translation. Tectonics, 36, 854–876.
    [Google Scholar]
  44. Mcclelland, W. C., Gehrels, G. E., & Saleeby, J. B. (1992). Upper Jurassic‐lower cretaceous Basinal strata along the cordilleran margin: Implications for the accretionary history of the Alexander‐Wrangellia‐peninsular terrane. Tectonics, 11, 823–883.
    [Google Scholar]
  45. McGugan, A. (1964). Upper Cretaceous Zone Foraminifera, Vancouver Island, British Columbia, Canada. Journal of Paleontology, 38, 933–951.
    [Google Scholar]
  46. Mclachlan, S. M. S., & Haggart, J. W. (2017). Reassessment of the late Campanian (Late Cretaceous) Heteromorph ammonite Fauna from Hornby Island, British Columbia, with implications for the taxonomy of the Diplomoceratidae and Nostoceratidae. Journal of Systematic Palaeontology, 16, 1247–1299. https://doi.org/10.1080/14772019.2017.1381651
    [Google Scholar]
  47. Mclachlan, S. M. S., & Pospelova, V. (2021). Dinoflagellate cyst‐based Paleoenvironmental reconstructions and phytoplankton paleoecology across the cretaceous–Paleogene (K/Pg) boundary interval. Cretaceous Research. https://doi.org/10.1016/j.cretres.2021.104878
    [Google Scholar]
  48. Monger, J., & Price, R. (2002). The Canadian cordillera: Geology and tectonic evolution. CSEG Recorder, 27, 17–36.
    [Google Scholar]
  49. Monger, J. W. H., & Gibson, H. D. (2019). Mesozoic‐Cenozoic deformation in the Canadian cordillera: The record of a “continental bulldozer”?Tectonophysics, 757, 153–169. https://doi.org/10.1016/j.tecto.2018.12.023
    [Google Scholar]
  50. Muller, J. E. (1977). Evolution of the Pacific margin, Vancouver Island, and adjacent regions. Canadian Journal of Earth Sciences, 14, 2062–2085.
    [Google Scholar]
  51. Muller, J. E., & Atchison, M. E. (1971). Geology, history and potential of Vancouver Island coal deposits. Geological Survey of Canada Paper 70‐53.
    [Google Scholar]
  52. Muller, J. E., & Jeletzky, J. A. (1970). Geology of the Upper Cretaceous Nanaimo Group, Vancouver Island and Gulf Islands, British Columbia. Geological Survey of Canada.
    [Google Scholar]
  53. Mustard, P.S. (1994) The Upper Cretaceous Nanaimo Group, Georgia Basin. In J. W. H.Monger (Eds.), Geology and geological hazards of the Vancouver region, Southwestern British Columbia, GSC Bulletin (Vol. 481, 27–95). Geological Survey of Canada.
    [Google Scholar]
  54. Pacht, J. A. (1984). Petrologic evolution and paleogeography of the Late Cretaceous Nanaimo Basin, Washington and British Columbia: Implications for Cretaceous Tectonics. GSA Bulletin, 95, 766–778.
    [Google Scholar]
  55. Ramirez, S. G., Hayman, N. W., Gulick, S. P. S., Milliken, K. L., Stockli, D. F., & Masago, H. (2021). Sediment provenance, routing and tectonic linkages in the Nankai Forearc region, Japan. Basin Research, 33, 3231–3255. https://doi.org/10.1111/bre.12601
    [Google Scholar]
  56. Ruks, T. W. (2015). Stratigraphic and Paleotectonic studies of Paleozoic Wrangellia and its contained volcanogenic massive sulfide (Vms) occurrences. University of British Columbia, Vancouver.
    [Google Scholar]
  57. Seyler, C. E., Kirkpatrick, J. D., Faber, C., Licht, A., Šilerová, D., & Regalla, C. (2022). Structural and metamorphic history of the Leech River shear zone, Vancouver Island, British Columbia. Tectonics, 41(11), e2021TC007132.
    [Google Scholar]
  58. Sliter, W. V. (1973). Upper Cretaceous foraminifers from the Vancouver Island area, British Columbia, Canada. Journal of Foraminiferal Research, 3, 167–186.
    [Google Scholar]
  59. Takano, O., Itoh, Y., & Kusumoto, S. (2013). Variation in Forearc Basin configuration and basin‐filling depositional systems as a function of trench slope break development and strike‐slip movement: Examples from the Cenozoic Ishikari–Sanriku‐Oki and Tokai‐Oki–Kumano‐Nada Forearc basins, Japan. In Mechanism of Sedimentary Basin formation—Multidisciplinary approach on active plate margins. Intech Open.
    [Google Scholar]
  60. Takano, O., & Tsuji, T. (2017). Fluvial to bay sequence stratigraphy and seismic Facies of the cretaceous to Paleogene successions in the Miti Sanriku‐Oki well and the vicinities, the Sanriku‐Oki Forearc Basin, Northeast Japan. Island Arc, 26, e12184. https://doi.org/10.1111/iar.12184
    [Google Scholar]
  61. Takashima, R., Kawabe, F., Nishi, H., Moriya, K., Wani, R., & Ando, H. (2004). Geology and stratigraphy of Forearc Basin sediments in Hokkaido, Japan: Cretaceous environmental events on the North‐West Pacific margin. Cretaceous Research, 25, 365–390.
    [Google Scholar]
  62. Von Huene, R., & Scholl, D. W. (1991). Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Reviews of Geophysics, 29, 279–316.
    [Google Scholar]
  63. Walters, M. M. (2020). Integrated Ichnological, Sedimentological, and geochronological Analaysis of the Late Cretaceous Upper Nanaimo Group. SFU, Burnaby.
    [Google Scholar]
  64. Ward, P. D., & Mallory, V. S. (1977). Taxonomy and evolution of the lytoceratid genus Pseudoxybeloceras and relationship to the genus Solenoceras. Journal of Paleontology, 51, 606–618.
    [Google Scholar]
  65. Ward, P., & Stanley, K. O. (1982). The Haslam formation: A late Santonian‐early Campanian Forearc Basin deposit in the Insular Belt of southwestern British Columiba and adjacent Washington. Journal of Sedimentary Petrology, 52, 975–990.
    [Google Scholar]
  66. Ward, P. D. (1978). Revisions to the stratigraphy and biochronology of the Upper Cretaceous Nanaimo Group, British Columbia and Washington state. Canadian Journal of Earth Sciences, 15, 405–423.
    [Google Scholar]
  67. Ward, P. D., Haggart, J. W., Mitchell, R., Kirschvink, J., & Tobin, T. (2012). Integration of macrofossil biostratigraphy and magnetostratigraphy for the Pacific coast Upper Cretaceous (Santoniane Maastrichtian) of North America and implications for correlation with the Western Interior and Tethys. Geological Society of America Bulletin, 124, 957–974.
    [Google Scholar]
  68. Xie, X., & Heller, P. L. (2009). Plate tectonics and basin subsidence history. GSA Bulletin, 121, 55–64.
    [Google Scholar]
  69. Yorath, C. J., Brown, A. S., & Massey, N. W. D. (1999). Lithoprobe, Southern Vancouver Island, British Columbia: Geology. Geological Survery of Canada, Bulletin, 498, 1–145.
    [Google Scholar]
/content/journals/10.1111/bre.12830
Loading
/content/journals/10.1111/bre.12830
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error