1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

Geodynamic evolution of southernmost Patagonia. Note the changes in marine and terrestrial sedimentation was strongly controlled by changes in the lithospheric and asthenospheric mantle evolution.

, Abstract

Foreland basins are ideal laboratories to examine and quantify forces that contribute to Earth's topography. The interaction of these driving mechanisms (atmospheric, lithospheric and asthenospheric) affects the accumulation and preservation of strata in marine or terrestrial depocentres. For foreland basins that cover thousands of kilometres along orogens, geodynamic processes or lithospheric structure might differ and/or overlap differently along or across strike. The Magallanes‐Austral basin in the southernmost Patagonia serves as a good analogue to analyse the interactions between subcrustal forces and foreland sedimentation. While to the northern part of southern Patagonia, Cenozoic basins were predominantly terrigenous and above sea level; at the southernmost end of Patagonia, sedimentation in the island of Tierra del Fuego was mostly submarine. We analysed in this contribution the southernmost foreland of Patagonia by combining backstripping with reconstruction of flexural and dynamic subsidence. These results were compared with terrestrial records exposed further north of southern Patagonia. We found that, in addition to crustal contributions (as deformation and sedimentation), subcrustal forces are required to accommodate the proximal and distal foreland strata and explain the palaeoenvironmental and subsidence discrepancies that resulted after our analysis. When our models are compared with dynamic topographic curves, strong correlations are observed during the Palaeogene, whereas strong topographic differences occurred in the Neogene. Dynamic topography models in the Neogene have reproduced clear uplift, whereas our residual topography results show equilibrium (close to the orogen) to subsidence values (to the distal foreland). We propose that changes in the lithospheric mantle had to work together with the rest of the tectonics and dynamic forces to match 1‐D backstripping and flexural curves. This suggests that foreland basins in southern Patagonia were controlled differently along strike the southern Andes and that crustal deformation, asthenospheric flows and a heterogeneous lithospheric mantle structure affected the Cenozoic basin evolution.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12831
2024-01-22
2025-03-24
Loading full text...

Full text loading...

References

  1. Ávila, P., Ávila, M., Dávila, F. M., Ezpeleta, M., & Castellano, N. (2023). Patagonian landscape modeling during Miocene to present‐day slab window formation. Tectonophysics, 862, 229971.
    [Google Scholar]
  2. Ávila, P., & Dávila, F. M. (2020). Lithospheric thinning and dynamic uplift effects during slab window formation, southern Patagonia (45°–55° S). Journal of Geodynamics, 133, 101689.
    [Google Scholar]
  3. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment. John Wiley & Sons.
    [Google Scholar]
  4. Alvarez‐Marrón, J., McClay, K. R., Harambour, S., Rojas, L., & Skarmeta, J. (1993). Geometry and evolution of the frontal part of the Magallanes foreland thrust and fold belt (Vicuña area), Tierra del Fuego, southern Chile. AAPG Bulletin, 77(11), 1904–1921.
    [Google Scholar]
  5. Barbeau, D. L., Jr., Gombosi, D. J., Zahid, K. M., Bizimis, M., Swanson‐Hysell, N., Valencia, V., & Gehrels, G. E. (2009). U‐Pb zircon constraints on the age and provenance of the Rocas Verdes basin fill, Tierra del Fuego, Argentina. Geochemistry, Geophysics, Geosystems, 10(12). https://doi.org/10.1029/2009GC002749
    [Google Scholar]
  6. Baristeas, N., Anka, Z., Di Primio, R., Rodriguez, J. F., Marchal, D., & Dominguez, F. (2013). New insights into the tectono‐stratigraphic evolution of the Malvinas Basin, offshore of the southernmost Argentinean continental margin. Tectonophysics, 604, 280–295.
    [Google Scholar]
  7. Barker, P. F. (2001). Scotia Sea regional tectonic evolution: Implications for mantle flow and palaeocirculation. Earth‐Science Reviews, 55(1–2), 1–39.
    [Google Scholar]
  8. Beaumont, C. (1981). Foreland basins. Geophysical Journal International, 65(2), 291–329.
    [Google Scholar]
  9. Ben‐Mansour, W., Wiens, D. A., Mark, H. F., Russo, R. M., Richter, A., Marderwald, E., & Barrientos, S. (2022). Mantle flow pattern associated with the Patagonian slab window determined from azimuthal anisotropy. Geophysical Research Letters, 49(18), e2022GL099871.
    [Google Scholar]
  10. Betka, P., Klepeis, K., & Mosher, S. (2016). Fault kinematics of the Magallanes‐Fagnano fault system, southern Chile; an example of diffuse strain and sinistral transtension along a continental transform margin. Journal of Structural Geology, 85, 130–153.
    [Google Scholar]
  11. Biddle, K. T., Uliana, M. A., Mitchum, R. M., Jr., Fitzgerald, M. G., & Wright, R. C. (1986). The stratigraphic and structural evolution of the central and eastern Magallanes Basin, southern South America. Foreland Basins, 41–61. https://doi.org/10.1002/9781444303810.ch2
    [Google Scholar]
  12. Breitsprecher, K., & Thorkelson, D. J. (2009). Neogene kinematic history of Nazca–Antarctic–Phoenix slab windows beneath Patagonia and the Antarctic peninsula. Tectonophysics, 464(1–4), 10–20.
    [Google Scholar]
  13. Cao, S. J., Carbonell, P. J. T., & Dimieri, L. V. (2018). Structural and petrographic constraints on the stratigraphy of the Lapataia Formation, with implications for the tectonic evolution of the Fuegian Andes. Journal of South American Earth Sciences, 84, 223–241.
    [Google Scholar]
  14. Cardozo, N., & Jordan, T. (2001). Causes of spatially variable tectonic subsidence in the Miocene Bermejo Foreland Basin, Argentina. Basin Research, 13(3), 335–357.
    [Google Scholar]
  15. Cuitiño, J. I., Varela, A. N., Ghiglione, M. C., Richiano, S., & Poiré, D. G. (2019). The Austral‐Magallanes Basin (southern Patagonia): A synthesis of its stratigraphy and evolution. Latin American Journal of Sedimentology and Basin Analysis, 26(2), 155–166.
    [Google Scholar]
  16. Dávila, F. M., Ávila, P., & Martina, F. (2019). Relative contributions of tectonics and dynamic topography to the Mesozoic‐Cenozoic subsidence of southern Patagonia. Journal of South American Earth Sciences, 93, 412–423.
    [Google Scholar]
  17. Dávila, F. M., & Lithgow‐Bertelloni, C. (2013). Dynamic topography in South America. Journal of South American Earth Sciences, 43, 127–144.
    [Google Scholar]
  18. Dávila, F. M., Lithgow‐Bertelloni, C., Martina, F., Ávila, P., Nóbile, J., Collo, G., & Sánchez, F. (2018). Mantleinfluence on Andean and pre‐Andean topography. In A.Folguera, E.Contreras‐Reyes, N.Heredia, A.Encinas, S. B.Iannelli, V.Oliveros, F. M.Dávila, G.Collo, L.Giambiagi, A.Maksymowicz, M. P. I.Llanos, M.Turienzo, D. O.MaximilianoNaipauer, V. D.Litvak, O.Alvarez, & C.Arriagada (Eds.), The Evolution of the Chilean‐Argentinean Andes (pp. 363–385). Springer Earth System Sciences.
    [Google Scholar]
  19. Dalziel, I. W., de Wit, M. J., & Palmer, K. F. (1974). Fossil marginal basin in the southern Andes. Nature, 250(5464), 291–294.
    [Google Scholar]
  20. Dalziel, I. W., Macdonald, D. I., Stone, P., & Storey, B. C. (2021). South Georgia microcontinent: Displaced fragment of the southernmost Andes. Earth‐Science Reviews, 220, 103671.
    [Google Scholar]
  21. Ding, X., Dávila, F. M., & Lithgow‐Bertelloni, C. (2023). Mechanisms of subsidence and uplift of Southern Patagonia and offshore basins during slab window formation. Geochemistry, Geophysics, Geosystems, 24(5), e2022GC010844.
    [Google Scholar]
  22. Dutkiewicz, A., & Müller, R. D. (2022). Deep‐sea hiatuses track the vigor of Cenozoic Ocean bottom currents. Geology, 50(6), 710–715.
    [Google Scholar]
  23. Eagles, G. (2016). Tectonic reconstructions of the southernmost Andes and the Scotia Sea during the opening of the Drake Passage. In M.Ghiglione (Ed.), Geodynamic evolution of the Southernmost Andes: Connections with the Scotia Arc (pp. 75–108). Springer Earth System Sciences, Springer.
    [Google Scholar]
  24. Eagles, G., & Jokat, W. (2014). Tectonic reconstructions for paleobathymetry in Drake Passage. Tectonophysics, 611, 28–50.
    [Google Scholar]
  25. Fildani, A., & Hessler, A. M. (2005). Stratigraphic record across a retroarc basin inversion: Rocas Verdes–Magallanes basin, Patagonian Andes, Chile. Geological Society of America Bulletin, 117(11–12), 1596–1614.
    [Google Scholar]
  26. Fosdick, J. C., Graham, S. A., & Hilley, G. E. (2014). Influence of attenuated lithosphere and sediment loading on flexure of the deep‐water Magallanes retroarc foreland basin, Southern Andes. Tectonics, 33(12), 2505–2525.
    [Google Scholar]
  27. Fosdick, J. C., Romans, B. W., Fildani, A., Bernhardt, A., Calderón, M., & Graham, S. A. (2011). Kinematic evolution of the Patagonian retroarc fold‐and‐thrust belt and Magallanes foreland basin, Chile and Argentina, 51° 30′ S. Bulletin, 123(9–10), 1679–1698.
    [Google Scholar]
  28. Galeazzi, S. J. (1998). Structural and stratigraphic evolution of the western Malvinas Basin, Argentina. AAPG Bulletin, 82(4), 596–636.
    [Google Scholar]
  29. Gallardo Jara, R. E., Ghiglione, M. C., Galliani, L. R., & Mpodozis, C. (2022). From rift to foreland basin: A case example from the Magallanes‐Austral basin, southernmost Andes. Basin Research.
    [Google Scholar]
  30. Gallardo Jara, R. E., Ghiglione, M. C., & Rojas Galliani, L. (2019). Tectonic evolution of the southern austral‐Magallanes Basin in Tierra del Fuego. Latin American Journal of Sedimentology and Basin Analysis, 26(2), 127–154.
    [Google Scholar]
  31. Ghiglione, M. C., Likerman, J., Barberón, V., Beatriz Giambiagi, L., Aguirre‐Urreta, B., & Suarez, F. (2014). Geodynamic context for the deposition of coarse‐grained deep‐water axial channel systems in the Patagonian Andes. Basin Research, 26(6), 726–745.
    [Google Scholar]
  32. Ghiglione, M. C., Quinteros, J., Yagupsky, D., Bonillo‐Martínez, P., Hlebszevtich, J., Ramos, V. A., & Quesada, S. (2010). Structure and tectonic history of the foreland basins of southernmost South America. Journal of South American Earth Sciences, 29(2), 262–277.
    [Google Scholar]
  33. Ghiglione, M. C., Ramos, V. A., Cuitiño, J., & Barberón, V. (2016). Growth of the southern Patagonian Andes (46°–53° S) and their relation to subduction processes. In A.Folguera, M.Naipauer, L.Sagripanti, M. C.Ghiglione, D. L.Orts, & L.Giambiagi (Eds.), Growth of the Southern Andes (pp. 201–240). Springer Earth System Sciences.
    [Google Scholar]
  34. Ghiglione, M. C., Ronda, G., Suárez, R. J., Aramendía, I., Barberon, V., Ramos, M. E., & Sue, C. (2019). Structure and tectonic evolution of the South Patagonian fold and thrust belt: Coupling between subduction dynamics, climate and tectonic deformation. In Andean tectonics (pp. 675–697). Elsevier.
    [Google Scholar]
  35. Gianni, G. M., Dávila, F. M., Echaurren, A., Fennell, L., Tobal, J., Navarrete, C., & Giménez, M. (2018). A geodynamic model linking Cretaceous orogeny, arc migration, foreland dynamic subsidence and marine ingression in southern South America. Earth‐Science Reviews, 185, 437–462.
    [Google Scholar]
  36. Gombosi, D. J., Barbeau, D. L., Jr., & Garver, J. I. (2009). New thermochronometric constraints on the rapid Palaeogene exhumation of the Cordillera Darwin complex and related thrust sheets in the Fuegian Andes. Terra Nova, 21(6), 507–515.
    [Google Scholar]
  37. Gruetzner, J., Uenzelmann‐Neben, G., & Franke, D. (2012). Variations in sediment transport at the central Argentine continental margin during the Cenozoic. Geochemistry, Geophysics, Geosystems, 13(10). https://doi.org/10.1029/2012GC004266
    [Google Scholar]
  38. Guillaume, B., Gautheron, C., Simon‐Labric, T., Martinod, J., Roddaz, M., & Douville, E. (2013). Dynamic topography control on Patagonian relief evolution as inferred from low temperature thermochronology. Earth and Planetary Science Letters, 364, 157–167.
    [Google Scholar]
  39. Guillot, M. G., Ghiglione, M., Escayola, M., Pimentel, M. M., Mortensen, J., & Acevedo, R. (2018). Ushuaia pluton: Magma diversification, emplacement and relation with regional tectonics in the southernmost Andes. Journal of South American Earth Sciences, 88, 497–519.
    [Google Scholar]
  40. Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156–1167.
    [Google Scholar]
  41. Hohertz, W. L., & Carlson, R. L. (1998). An independent test of thermal subsidence and asthenosphere flow beneath the Argentine Basin. Earth and Planetary Science Letters, 161(1–4), 73–83.
    [Google Scholar]
  42. Hu, J., Liu, L., Faccenda, M., Zhou, Q., Fischer, K. M., Marshak, S., & Lundstrom, C. (2018). Modification of the Western Gondwana craton by plume–lithosphere interaction. Nature Geoscience, 11(3), 203–210.
    [Google Scholar]
  43. Jordan, T. E. (1981). Thrust loads and foreland basin evolution, cretaceous, western United States. AAPG Bulletin, 65(12), 2506–2520.
    [Google Scholar]
  44. Klepeis, K., Betka, P., Clarke, G., Fanning, M., Hervé, F., Rojas, L., & Thomson, S. (2010). Continental underthrusting and obduction during the Cretaceous closure of the Rocas Verdes rift basin, Cordillera Darwin, Patagonian Andes. Tectonics, 29(3). https://doi.org/10.1029/2009TC002610
    [Google Scholar]
  45. Klepeis, K. A. (1994). The Magallanes and Deseado fault zones: Major segments of the South American‐scotia transform plate boundary in southernmost South America, Tierra del Fuego. Journal of Geophysical Research: Solid Earth, 99(B11), 22001–22014.
    [Google Scholar]
  46. Kohn, M. J., Spear, F. S., Harrison, T. M., & Dalziel, I. W. D. (1995). 40Ar/39Ar geochronology and P‐T‐t paths from the Cordillera Darwin metamorphic complex, Tierra del Fuego, Chile. Journal of Metamorphic Geology, 13(2), 251–270.
    [Google Scholar]
  47. Kraemer, P. E. (2003). Orogenic shortening and the origin of the Patagonian orocline (56 S. Lat). Journal of South American Earth Sciences, 15(7), 731–748.
    [Google Scholar]
  48. Liu, L., & Gurnis, M. (2008). Simultaneous inversion of mantle properties and initial conditions using an adjoint of mantle convection. Journal of Geophysical Research: Solid Earth, 113(B8). https://doi.org/10.1029/2008JB005594
    [Google Scholar]
  49. Lodolo, E., Menichetti, M., Bartole, R., Ben‐Avraham, Z., Tassone, A., & Lippai, H. (2003). Magallanes‐Fagnano continental transformfault (Tierra del Fuego, southernmost South America). Tectonics, 22(6). https://doi.org/10.1029/2003TC001500
    [Google Scholar]
  50. Maldonado, A., Bohoyo, F., Galindo‐Zaldívar, J., Hernández‐Molina, F. J., Lobo, F. J., Lodolo, E., & Somoza, L. (2014). A model of oceanic development by ridge jumping: Opening of the Scotia Sea. Global and Planetary Change, 123, 152–173.
    [Google Scholar]
  51. Maloney, K. T., Clarke, G. L., Klepeis, K. A., Fanning, C. M., & Wang, W. (2011). Crustal growth during back‐arc closure: Cretaceous exhumation history of Cordillera Darwin, southern Patagonia. Journal of Metamorphic Geology, 29(6), 649–672.
    [Google Scholar]
  52. Malumián, N., Náñez, C., Alonso, M. S., & Baleirón, A. (2008). Pozo Poseidón 1: El Paleógeno de la plataforma continental, Isla Grande de Tierra del Fuego. In Actas 17th Congreso Geológico Argentino, Jujuy, Argentina (pp. 859–860).
    [Google Scholar]
  53. Malumián, N., & Olivero, E. B. (2006). El Grupo Cabo Domingo, Tierra del Fuego: bioestratigrafía, paleoambientes y acontecimientos del Eoceno‐Mioceno marino. Revista de la Asociación Geológica Argentina, 61(2), 139–160.
    [Google Scholar]
  54. Martinioni, D. R., Olivero, E. B., Medina, F. A., & Palamarczuk, S. (2013). Cretaceousstratigraphy of sierra de Beauvoir, Fuegian Andes, Argentina. Revista de la Asociación Geológica Argentina, 70(1), 70–95.
    [Google Scholar]
  55. McAtamney, J., Klepeis, K., Mehrtens, C., Thomson, S., Betka, P., Rojas, L., & Snyder, S. (2011). Along‐strike variability of back‐arc basin collapse and the initiation of sedimentation in the Magallanes foreland basin, southernmost Andes (53°–54.5° S). Tectonics, 30(5). https://doi.org/10.1029/2010TC002826
    [Google Scholar]
  56. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., & Pekar, S. F. (2005). The Phanerozoic record of global sea‐level change. Science, 310(5752), 1293–1298.
    [Google Scholar]
  57. Mpodozis, C., Mella, P., & Pavda, D. (2011, March). Estratigrafía y megasecuencias sedimentarias en la cuenca Austral‐Magallanes, Argentina y Chile. In VIII Congreso de Exploración y Desarrollo de Hidrocarburos (Vol. 35). Instituto Argentino del Petróleo y el Gas.
    [Google Scholar]
  58. Muller, V. A., Calderón, M., Fosdick, J. C., Ghiglione, M. C., Cury, L. F., Massonne, H. J., & Sternai, P. (2021). The closure of the Rocas Verdes Basin and early tectono‐metamorphic evolution of the Magallanes fold‐and‐Thrust Belt, southern Patagonian Andes (52–54° S). Tectonophysics, 798, 228686.
    [Google Scholar]
  59. Navarrete, C., Gianni, G., Massaferro, G., & Butler, K. (2020). The fate of the Farallon slab beneath Patagonia and its links to Cenozoic intraplate magmatism, marine transgressions and topographic uplift. Earth‐Science Reviews, 210, 103379.
    [Google Scholar]
  60. Olivero, E. B., & Malumián, N. (1999). Eocene stratigraphy of southeastern Tierra del Fuego Island, Argentina. AAPG Bulletin, 83(2), 295–313.
    [Google Scholar]
  61. Olivero, E. B., Malumián, N., & Palamarczuk, S. (2003). Estratigrafía del Cretácico Superior‐Paleoceno del área de Bahía Thetis, Andes fueguinos, Argentina: acontecimientos tectónicos y paleobiológicos. Revista geológica de Chile, 30(2), 245–263.
    [Google Scholar]
  62. Olivero, E. B., & Medina, F. A. (2001). Geología y paleontología del Cretácico marino en el sureste de los Andes Fueguinos, Argentina. Revista de la Asociación Geológica Argentina, 56(3), 344–352.
    [Google Scholar]
  63. Poblete, F., Roperch, P., Arriagada, C., Ruffet, G., de Arellano, C. R., Hervé, F., & Poujol, M. (2016). Late Cretaceous–early Eocene counterclockwise rotation of the Fueguian Andes and evolution of the Patagonia–Antarctic Peninsula system. Tectonophysics, 668, 15–34.
    [Google Scholar]
  64. Ponce, J. J. (2009). Análisis estratigráfico secuencial del Cenozoico de la cordillera fueguina, Tierra del Fuego, Argentina. Doctoral thesis, unpublished. Departamento de Geología Universidad Nacional del Sur, Bahía Blanca.
    [Google Scholar]
  65. Ponce, J. J., Olivero, E. B., & Martinioni, D. R. (2008). Upper Oligocene–Miocene clinoforms of the foreland Austral Basin of Tierra del Fuego, Argentina: Stratigraphy, depositional sequences and architecture of the foredeep deposits. Journal of South American EarthSciences, 26(1), 36–54.
    [Google Scholar]
  66. Rivera, H. A., Le Roux, J. P., Farías, M., Gutiérrez, N. M., Sánchez, A., & Palma‐Heldt, S. (2020). Tectonic controls on the Maastrichtian‐Danian transgression in the Magallanes‐Austral foreland basin (Chile): Implications for the growth of the southern Patagonian Andes. Sedimentary Geology, 403, 105645.
    [Google Scholar]
  67. Robbiano, J. A., Arbe, H., & Gangui, A. (1996). Cuenca Austral Marina. In En Geología y Recursos Naturales de la Plataforma Continental Argentina. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Relatorio 17, Buenos Aires (pp. 323–341). Asociación Geológica Argentina and Instituto Argentino del Petróleo y el Gas.
    [Google Scholar]
  68. Russo, R. M., Gallego, A., Comte, D., Mocanu, V. I., Murdie, R. E., & VanDecar, J. C. (2010). Source‐side shear wave splitting and upper mantle flow in the Chile ridge subduction region. Geology, 38(8), 707–710.
    [Google Scholar]
  69. Sanchez, A., Pavlishina, P., Godoy, E., Herve, F., & Fanning, M. (2010). On the presence of Upper Paleocene rocks in the foreland succession at Cabo Nariz, Tierra del Fuego, Chile: Geology and new palynological and U‐Pb data. Andean Geology, 37(2), 413–432.
    [Google Scholar]
  70. Scarpa, R., & Malumián, N. (2008). Foraminíferos del Oligoceno inferior de los Andes Fueguinos, Argentina: su significado tectónico‐ambiental. Ameghiniana, 45(2), 361–376.
    [Google Scholar]
  71. Stevens Goddard, A., Fosdick, J. C., Calderón, M., Ghiglione, M. C., VanderLeest, R. A., & Romans, B. W. (2023). Thermochronological evidence for Eocene deformation in the southern Patagonian Andes: Linking orogenesis along the Patagonian orocline. Tectonics, 42(4), e2022TC007677.
    [Google Scholar]
  72. Stevens Goddard, A. L., & Fosdick, J. C. (2019). Multichronometer thermochronologic modeling of migrating spreading ridge subduction in southern Patagonia. Geology, 47(6), 555–558.
    [Google Scholar]
  73. Tassara, A., Swain, C., Hackney, R., & Kirby, J. (2007). Elastic thickness structure of South America estimated using wavelets and satellite‐derived gravity data. Earth and Planetary Science Letters, 253(1‐2), 17–36.
    [Google Scholar]
  74. Torres Carbonell, P. J., Cao, S. J., & Dimieri, L. V. (2017). Spatial and temporal characterization of progressive deformation during orogenic growth: Example from the Fuegian Andes, southern Argentina. Journal of Structural Geology, 99, 1–19.
    [Google Scholar]
  75. Torres Carbonell, P. J., Cao, S. J., Guillot, M. G., González, V. M., Dimieri, L. V., Duval, F., & Scaillet, S. (2020). The Fuegian thrust‐fold belt: From arc‐continent collision to thrust‐related deformation in the Southernmost Andes. Journal of South American Earth Sciences, 102, 102678.
    [Google Scholar]
  76. Torres Carbonell, P. J., & Dimieri, L. V. (2013). Cenozoic contractional tectonics in the Fuegian Andes, southernmost South America: A model for the transference of orogenic shortening to the foreland. Geologica Acta, 11, 359–370.
    [Google Scholar]
  77. Torres Carbonell, P. J., Dimieri, L. V., & Martinioni, D. R. (2013). Early foreland deformation of the Fuegian Andes (Argentina): Constraints from the strain analysis of Upper Cretaceous‐Danian sedimentary rocks. Journal of Structural Geology, 48, 14–32.
    [Google Scholar]
  78. Torres Carbonell, P. J., Dimieri, L. V., & Olivero, E. B. (2013). Evaluation of strain and structural style variations along the strike of the Fuegian thrust‐fold belt front, Argentina. Andean Geology, 40 (3), 438‐457. https://doi.org/10.5027/andgeoV40n3‐a03
    [Google Scholar]
  79. Torres Carbonell, P. J., Malumián, N., & Olivero, E. B. (2009). El Paleoceno‐Mioceno de Península Mitre: antefosa y depocentro de techo de cuña de la cuenca Austral, Tierra del Fuego, Argentina. Andean Geology, 36(2), 197–235.
    [Google Scholar]
  80. Torres Carbonell, P. J., & Olivero, E. B. (2012). Sand dispersal in the southeastern Austral Basin, Tierra del Fuego, Argentina: Outcrop insights from Eocene channeled turbidite systems. Journal of South American Earth Sciences, 33(1), 80–101.
    [Google Scholar]
  81. Torres Carbonell, P. J., & Olivero, E. B. (2019). Tectonic control on the evolution of depositional systems in a fossil, marine foreland basin: Example from the SE Austral Basin, Tierra del Fuego, Argentina. Marine and Petroleum Geology, 104, 40–60.
    [Google Scholar]
  82. Torres Carbonell, P. J., Rodríguez Arias, L., & Atencio, M. R. (2017). Geometry and kinematics of the Fuegian thrust‐fold belt, southernmost Andes. Tectonics, 36(1), 33–50.
    [Google Scholar]
  83. Turcotte, D. L., & Schubert, G. (2002). Geodynamics. Cambridge University Press.
    [Google Scholar]
  84. van de Lagemaat, S. H., Swart, M. L., Vaes, B., Kosters, M. E., Boschman, L. M., Burton‐Johnson, A., & Van Hinsbergen, D. J. (2021). Subduction initiation in the Scotia Sea region and opening of the Drake Passage: When and why?Earth‐Science Reviews, 215, 103551.
    [Google Scholar]
  85. VanderLeest, R. A., Fosdick, J. C., Malkowski, M. A., Romans, B. W., Ghiglione, M. C., Schwartz, T. M., & Sickmann, Z. T. (2022). Tectonic subsidence modeling of diachronous transition FromBackarc to Retroarc Basin development and uplift during cordilleran orogenesis, Patagonian‐Fuegian Andes. Tectonics, 41(10), e2021TC006891.
    [Google Scholar]
  86. Whipple, K. X. (2009). The influence of climate on the tectonic evolution of mountain belts. Nature Geoscience, 2(2), 97–104.
    [Google Scholar]
  87. Winterbourne, J., Crosby, A., & White, N. (2009). Depth, age and dynamic topography of oceanic lithosphere beneath heavily sedimented Atlantic margins. Earth and Planetary Science Letters, 287(1–2), 137–151.
    [Google Scholar]
  88. Wu, Y., Liao, J., Guo, F., Wang, X. C., & Shen, Y. (2022). Styles of trench‐parallel mid‐ocean ridge subduction affect Cenozoic geological evolution in circum‐pacific continental margins. Geophysical Research Letters, 49(8), e2022GL098428.
    [Google Scholar]
  89. Young, A., Flament, N., Hall, L., & Merdith, A. (2021). The influence of mantle flow on intracontinental basins: Three examples from Australia. Basin Research, 33(2), 1429–1453.
    [Google Scholar]
  90. Young, A., Flament, N., Williams, S. E., Merdith, A., Cao, X., & Müller, R. D. (2022). Long‐term Phanerozoic sea level change from solid Earth processes. Earth and Planetary Science Letters, 584, 117451.
    [Google Scholar]
  91. Zanella, A., Cobbold, P. R., & Rojas, L. (2014). Beef veins and thrust detachments in Early Cretaceous source rocks, foothills of Magallanes‐Austral Basin, southern Chile and Argentina: Structural evidence for fluid overpressure during hydrocarbon maturation. Marine and Petroleum Geology, 55, 250–261.
    [Google Scholar]
/content/journals/10.1111/bre.12831
Loading
/content/journals/10.1111/bre.12831
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error