1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

Eustatic curve coloured by the systems tracts predicted from an analysis of a suite of forward stratigraphic models. The two curves use different assumptions on the subsidence rate and rate of change of accommodation needed to generate a TST.

, Abstract

The isolation of the eustatic signal from the sedimentary record is a challenging task, and accordingly, there is no consensus on the magnitude and pace (rate) of eustatic events in the geological record. Here we critically assess various published short‐term Cretaceous eustatic curves using insights from forward stratigraphic modelling. We generate a range of simulations with varying eustatic rates and sediment supply against a background of constant subsidence. From these, we generate statistics on the accommodation change associated with the various systems tracts for different sediment supply. We quantify the minimum rate needed to generate transgressive systems tracts (TST). Using this threshold and average subsidence rates for passive margins and intracratonic basins, we document some key challenges with a range of Cretaceous eustatic curves. While it is possible to complexify, this approach through the inclusion of other parameters, our results provide a framework for evaluating eustatic (or relative sea level) curves in terms of the implied rate of change of accommodation. Given these caveats, we also show that many estimates of the magnitude of short‐term transgressions are of insufficient rate to generate observable TST. Further, our work places an upper limit on the time frame over which aquifer and thermo‐eustasy can have observable impacts on the rock record, providing support for the action of glacio‐eustasy during the Cretaceous.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12832
2024-01-23
2025-04-25
Loading full text...

Full text loading...

References

  1. Baumgardner, S. E., Madof, A. S., Harris, A. D., & Kahn, A. C. M. (2023). Predictable time preservation on passive continental margins revealed from forward stratigraphic models. Terra Nova, 35, 388–395. https://doi.org/10.1111/ter.12661
    [Google Scholar]
  2. Brain, M. J. (2016). Past, present and future perspectives of sediment compaction as a driver of relative sea level and coastal change. Current Climate Change Reports, 2, 75–85. https://doi.org/10.1007/s40641‐016‐0038‐6
    [Google Scholar]
  3. Braun, J., Guillocheau, F., Robin, C., Baby, G., & Jelsma, H. (2014). Rapid erosion of the Southern African Plateau as it climbs over a mantle superswell. Journal of Geophysical Research: Solid Earth, 119, 6093–6112. https://doi.org/10.1002/2014JB010998
    [Google Scholar]
  4. Burgess, P. M., & Prince, G. D. (2015). Non‐unique stratal geometries: Implications for sequence stratigraphic interpretations. Basin Research, 27, 351–365. https://doi.org/10.1111/bre.12082
    [Google Scholar]
  5. Burgess, P. M., & Steel, R. J. (2017). How to interpret, understand, and predict stratal geometries using stratal‐control spaces and stratal‐control‐space trajectories. Journal of Sedimentary Research, 87, 325–337. https://doi.org/10.2110/jsr.2017.19
    [Google Scholar]
  6. Catuneanu, O. (2019). Model‐independent sequence stratigraphy. Earth‐Science Reviews, 188, 312–388. https://doi.org/10.1016/j.earscirev.2018.09.017
    [Google Scholar]
  7. Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., Fielding, C. R., Fisher, W. L., Galloway, W. E., Gibling, M. R., Giles, K. A., Holbrook, J. M., Jordan, R., Kendall, C. G. S. C., Macurda, B., Martinsen, O. J., Miall, A. D., Neal, J. E., Nummedal, D., … Winker, C. (2009). Towards the standardization of sequence stratigraphy. Earth‐Science Reviews, 92, 1–33. https://doi.org/10.1016/j.earscirev.2008.10.003
    [Google Scholar]
  8. Catuneanu, O., Galloway, W. E., Kendall, C. G. S. C., Miall, A. D., Posamentier, H. W., Strasser, A., & Tucker, M. E. (2011). Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy, 44, 173–245. https://doi.org/10.1127/0078‐0421/2011/0011
    [Google Scholar]
  9. Christie‐Blick, N., Mountney, N., & Miller, K. G. (1990). Seismic stratigraphy: Record of sea‐level change. In R.Revelle (Ed.), Sea‐level change, national research council, studies in geophysics (pp. 116–140). National Academy Press. https://doi.org/10.17226/1345
    [Google Scholar]
  10. Church, K. D., & Gawthorpe, R. L. (1997). Sediment supply as a control on the variability of sequences: An example from the late Namurian of northern England. Journal of the Geological Society, 154, 55–60. https://doi.org/10.1144/gsjgs.154.1.0055
    [Google Scholar]
  11. Cloetingh, S., & Haq, B. U. (2015). Inherited landscapes and sea level change. Science, 347, 1258375. https://doi.org/10.1126/science.1258375
    [Google Scholar]
  12. Davies, A., Gréselle, B., Hunter, S. J., Baines, G., Robson, C., Haywood, A. M., Ray, D. C., Simmons, M. D., & van Buchem, F. S. P. (2020). Assessing the impact of aquifer‐eustasy on short‐term Cretaceous sea‐level. Cretaceous Research, 112, 104445. https://doi.org/10.1016/j.cretres.2020.104445
    [Google Scholar]
  13. Davies, A., Kemp, A. E. S., & Pike, J. (2009). Late Cretaceous seasonal ocean variability from the Arctic. Nature, 460, 254–258. https://doi.org/10.1038/nature08141
    [Google Scholar]
  14. Einsele, G., Ricken, W., & Seilacher, A. (1991). Cycles and events in stratigraphy—Basic concepts and terms. In G.Einsele, W.Ricken, & A.Seilacher (Eds.), Cycles and events in stratigraphy (pp. 1–19). Springer‐Verlag.
    [Google Scholar]
  15. Emery, K. O., & Aubrey, D. G. (1991). Sea levels, land levels, and tide gauges. Springer. https://doi.org/10.1007/978‐1‐4613‐9101‐2
    [Google Scholar]
  16. Fox‐Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.‐B., Slangen, A. B. A., & Yu, Y. (2021). Ocean, cryosphere and sea level change. In V.Masson‐Delmotte, P.Zhai, & A.Pirani (Eds.), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
    [Google Scholar]
  17. Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V. W., Dangendorf, S., Hogarth, P., Zanna, L., Cheng, L., & Wu, Y.‐H. (2020). The causes of sea‐level rise since 1900. Nature, 584, 393–397. https://doi.org/10.1038/s41586‐020‐2591‐3
    [Google Scholar]
  18. Galeotti, S., Rusciadelli, G., Sprovieri, M., Lanci, L., Gaudio, A., & Pekar, S. (2009). Sea‐level control on facies architecture in the Cenomanian–Coniacian Apulian margin (Western Tethys): A record of glacio‐eustatic fluctuations during the Cretaceous greenhouse?Palaeogeography, Palaeoclimatology, Palaeoecology, 276, 196–205. https://doi.org/10.1016/j.palaeo.2009.03.011
    [Google Scholar]
  19. Gilmullina, A., Klausen, T. G., Doré, A. G., Rossi, V. M., Suslova, A., & Eide, C. H. (2021). Linking sediment supply variations and tectonic evolution in deep time, source‐to‐sink systems—The Triassic Greater Barents Sea Basin. GSA Bulletin, 134, 1760–1780. https://doi.org/10.1130/B36090.1
    [Google Scholar]
  20. Granjeon, D. (2014). 3D forward modelling of the impact of sediment transport and base level cycles on continental margins and incised valleys. In A. W.Martinius, R.Ravnas, J. A.Howell, R. J.Steel, & J. P.Wonham (Eds.), From depositional systems to sedimentary successions on the Norwegian continental margin (pp. 453–472). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118920435.ch16
    [Google Scholar]
  21. Granjeon, D. (2019). Use of high‐performance stratigraphic forward modelling to improve siliciclastic and carbonate reservoir depositional architecture description. Journal of the Japanese Association for Petroleum Technology, 84, 59–70. https://doi.org/10.3720/japt.84.59
    [Google Scholar]
  22. Granjeon, D., & Joseph, P. (1999). Concepts and applications of a 3‐D multiple lithology, diffusive model in stratigraphic modeling. In J. W.Harbaugh, W. L.Watney, E. C.Rankey, R.Slingerland, R. H.Goldstein, & E. K.Franseen (Eds.), Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations. SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.99.62.0197
    [Google Scholar]
  23. Granjeon, D., Joseph, P., & Doligez, B. (1998). Using a 3D stratigraphic model to optimise reservoir description. Hart's Petroleum Engineer International, 71, 51–58.
    [Google Scholar]
  24. Haq, B. U. (2014). Cretaceous eustasy revisited. Global and Planetary Change, 113, 44–58. https://doi.org/10.1016/j.gloplacha.2013.12.007
    [Google Scholar]
  25. Harris, A. D., Covault, J. A., Baumgardner, S., Sun, T., & Granjeon, D. (2020). Numerical modeling of icehouse and greenhouse sea‐level changes on a continental margin: Sea‐level modulation of deltaic avulsion processes. Marine and Petroleum Geology, 111, 807–814. https://doi.org/10.1016/j.marpetgeo.2019.08.055
    [Google Scholar]
  26. Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585, 357–362. https://doi.org/10.1038/s41586‐020‐2649‐2
    [Google Scholar]
  27. Heller, P. L., Burns, B. A., & Marzo, M. (1993). Stratigraphic solution sets for determining the roles of sediment supply, subsidence, and sea level on transgressions and regressions. Geology, 21, 747–750. https://doi.org/10.1130/0091‐7613(1993)021<0747:SSSFDT>2.3.CO;2
    [Google Scholar]
  28. Hunt, D., & Tucker, M. E. (1992). Stranded parasequences and the forced regressive wedge systems tract: Deposition during base‐level fall. Sedimentary Geology, 81, 1–9. https://doi.org/10.1016/0037‐0738(92)90052‐S
    [Google Scholar]
  29. Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9, 90–95. https://doi.org/10.1109/MCSE.2007.55
    [Google Scholar]
  30. Immenhauser, A., & Mathews, R. K. (2004). Albian Sea‐level cycles in Oman: The ‘Rosetta stone’ approach. GeoArabia, 9, 11–46. https://doi.org/10.2113/geoarabia090311
    [Google Scholar]
  31. Jacobs, D. K., & Sahagian, D. L. (1993). Climate‐induced fluctuations in sea level during non‐glacial times. Nature, 361, 710–712. https://doi.org/10.1038/361710a0
    [Google Scholar]
  32. Jervey, M. T. (1988). Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. In C. K.Wilgus, B. S.Hastings, C. G. S. C.Kendall, H. W.Posamentier, C. A.Ross, & J. C.Van Wagoner (Eds.), Sea‐level changes: An integrated approach (pp. 47–69). SEPM Special Publication.
    [Google Scholar]
  33. Jiménez Soto, G. (2023). Forward stratigraphic modelling to understand sedimentary system evolution. Nature Reviews Earth and Environment, 4, 292. https://doi.org/10.1038/s43017‐023‐00424‐x
    [Google Scholar]
  34. Johnson, M. E., Kaljo, D. L., & Jiayu, R. (1991). Silurian eustasy. Special Papers in Palaeontology, 44, 145–163.
    [Google Scholar]
  35. Jones, M. C., Wingard, G. L., Stackhouse, B., Keller, K., Willard, D., Marot, M., Landacre, B., & Bernhardt, C. E. (2019). Rapid inundation of southern Florida coastline despite low relative sea‐level rise rates during the late‐Holocene. Nature Communications, 10, 3231. https://doi.org/10.1038/s41467‐019‐11138‐4
    [Google Scholar]
  36. Kim, Y., Lee, C., & Lee, E. Y. (2018). Numerical analysis of sedimentary compaction: Implications for porosity and layer thickness variation. JGSK, 54, 631–640. https://doi.org/10.14770/jgsk.2018.54.6.631
    [Google Scholar]
  37. Kluyver, T., Ragan‐Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., & Willing, C. (2016). Jupyter notebooks—A publishing format for reproducible computational workflows. In F.Loizides & B.Schmidt (Eds.), Positioning and power in academic publishing: Players, agents and agendas (pp. 87–90). IOS Press.
    [Google Scholar]
  38. Koch, J. T., & Brenner, R. L. (2009). Evidence for glacioeustatic control of large, rapid sea‐level fluctuations during the Albian‐Cenomanian: Dakota formation, eastern margin of western interior seaway, USA. Cretaceous Research, 30, 411–423. https://doi.org/10.1016/j.cretres.2008.08.002
    [Google Scholar]
  39. Kominz, M. A., Browning, J. V., Miller, K. G., Sugarman, P. J., Mizintseva, S., & Scotese, C. R. (2008). Late Cretaceous to Miocene sea‐level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis. Basin Research, 20, 211–226. https://doi.org/10.1111/j.1365‐2117.2008.00354.x
    [Google Scholar]
  40. Ladant, J.‐B., & Donnadieu, Y. (2016). Palaeogeographic regulation of glacial events during the Cretaceous supergreenhouse. Nature Communications, 7, 1–9. https://doi.org/10.1038/ncomms12771
    [Google Scholar]
  41. Maurer, F., van Buchem, F. S. P., Eberli, G. P., Pierson, B. J., Raven, M. J., Larsen, P.‐H., Al‐Husseini, M. I., & Vincent, B. (2013). Late Aptian long‐lived glacio‐eustatic lowstand recorded on the Arabian Plate. Terra Nova, 25, 87–94. https://doi.org/10.1111/ter.12009
    [Google Scholar]
  42. Miall, A. D. (1992). Exxon global cycle chart: An event for every occasion?Geology, 20, 787–790. https://doi.org/10.1130/0091‐7613(1992)020<0787:EGCCAE>2.3.CO;2
    [Google Scholar]
  43. Miller, K., Mountain, G., Wright, J., & Browning, J. (2011). A 180‐million‐year record of sea level and ice volume variations from continental margin and deep‐sea isotopic records. Oceanography, 24, 40–53. https://doi.org/10.5670/oceanog.2011.26
    [Google Scholar]
  44. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie‐Blick, N., & Pekar, S. F. (2005). The phanerozoic record of global sea‐level change. Science, 310, 1293–1298. https://doi.org/10.1126/science.1116412
    [Google Scholar]
  45. Miller, K. G., & Mountain, G. S. (1996). Drilling and dating New Jersey oligocene‐miocene sequences: Ice volume, global sea level, and Exxon records. Science, 271, 1092–1095. https://doi.org/10.1126/science.271.5252.1092
    [Google Scholar]
  46. Miller, K. G., Sugarman, P. J., Browning, J. V., Kominz, M. A., Olsson, R. K., Feigenson, M. D., & Hernández, J. C. (2004). Upper Cretaceous sequences and sea‐level history, New Jersey Coastal Plain. GSA Bulletin, 116, 368–393. https://doi.org/10.1130/B25279.1
    [Google Scholar]
  47. Milliman, J. D., & Farnsworth, K. L. (2011). River discharge to the Coastal Ocean: A global synthesis. Cambridge University Press. https://doi.org/10.1017/CBO9780511781247
    [Google Scholar]
  48. Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., Hanson, S. E., Merkens, J.‐L., & Fang, J. (2021). A global analysis of subsidence, relative sea‐level change and coastal flood exposure. Nature Climate Change, 11, 338–342. https://doi.org/10.1038/s41558‐021‐00993‐z
    [Google Scholar]
  49. Plint, A. G., & Nummedal, D. (2000). The falling stage systems tract: Recognition and importance in sequence stratigraphic analysis. Geological Society, London, Special Publications, 172, 1–17. https://doi.org/10.1144/GSL.SP.2000.172.01.01
    [Google Scholar]
  50. Polanco, S., Blum, M., Salles, T., Frederick, B. C., Farrington, R., Ding, X., Mather, B., Mallard, C., & Moresi, L. (2023). The flexural isostatic response of climatically driven sea‐level changes on continental‐scale deltas. EGUsphere, 1–30. [preprint]. https://doi.org/10.5194/egusphere‐2023‐53
    [Google Scholar]
  51. Posamentier, H. W., & Vail, P. R. (1988). Eustatic controls on clastic deposition II—Sequence and systems tract models. In C. K.Wilgus, B. S.Hastings, H.Posamentier, J.Van Wagoner, C. A.Ross, & C. G. St. C.Kendall (Eds.), Sea‐Level Changes: An Integrated Approach (Vol. 42, pp. 125–154). SEPM Special Publication. https://doi.org/10.2110/pec.88.01.0125
    [Google Scholar]
  52. Ray, D. C., van Buchem, F. S. P., Baines, G., Davies, A., Gréselle, B., Simmons, M. D., & Robson, C. (2019). The magnitude and cause of short‐term eustatic Cretaceous sea‐level change: A synthesis. Earth‐Science Reviews, 197, 102901. https://doi.org/10.1016/j.earscirev.2019.102901
    [Google Scholar]
  53. Reynolds, D. J., Steckler, M. S., & Coakley, B. J. (1991). The role of the sediment load in sequence stratigraphy: The influence of flexural isostasy and compaction. Journal of Geophysical Research: Solid Earth, 96, 6931–6949. https://doi.org/10.1029/90JB01914
    [Google Scholar]
  54. Rovere, A., Stocchi, P., & Vacchi, M. (2016). Eustatic and relative sea level changes. Current Climate Change Reports, 2, 221–231. https://doi.org/10.1007/s40641‐016‐0045‐7
    [Google Scholar]
  55. Sahagian, D., Pinous, O., Olferiev, A., & Zakharov, V. (1996). Eustatic curve for the middle Jurassic‐Cretaceous based on Russian platform and Siberian stratigraphy: Zonal resolution. AAPG Bulletin, 80, 1433–1458. https://doi.org/10.1306/64ED9A56‐1724‐11D7‐8645000102C1865D
    [Google Scholar]
  56. Sames, B., Wagreich, M., Wendler, J. E., Haq, B. U., Conrad, C. P., Melinte‐Dobrinescu, M. C., Hu, X., Wendler, I., Wolfgring, E., Yilmaz, I. Ö., & Zorina, S. O. (2016). Review: Short‐term sea‐level changes in a greenhouse world—A view from the Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, Advances and Perspectives in Understanding Cretaceous Sea‐Level Change, 441, 393–411. https://doi.org/10.1016/j.palaeo.2015.10.045
    [Google Scholar]
  57. Simmons, M. D., Miller, K. G., Ray, D. C., Davies, A., van Buchem, F. S. P., & Gréselle, B. (2020). Phanerozoic Eustasy. In F. M.Gradstein, J. G.Ogg, M. D.Schmitz, & G. M.Ogg (Eds.), Geologic Time Scale 2020 (pp. 357–400). Elsevier. https://doi.org/10.1016/B978‐0‐12‐824360‐2.00013‐9
    [Google Scholar]
  58. Syvitski, J. P. M., & Milliman, J. D. (2007). Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the Coastal Ocean. The Journal of Geology, 115, 1–19. https://doi.org/10.1086/509246
    [Google Scholar]
  59. The Pandas Development Team . (2020). pandas‐dev/pandas: Pandas. https://doi.org/10.5281/zenodo.3509134
  60. Uličný, D., Nichols, G., & Waltham, D. (2002). Role of initial depth at basin margins in sequence architecture: Field examples and computer models. Basin Research, 14, 347–360. https://doi.org/10.1046/j.1365‐2117.2002.00183.x
    [Google Scholar]
  61. Vail, P. R. (1987). Seismic stratigraphy interpretation using sequence stratigraphy: Part 1: Seismic stratigraphy interpretation procedure. In A. W.Bally (Ed.), Atlas of Seismic Stratigraphy (Vol. 27, pp. 1–10). AAPG Studies in Geology.
    [Google Scholar]
  62. van der Meer, D. G., Scotese, C. R., Mills, B. J. W., Sluijs, A., van den Berg van Saparoea, A.‐P., & van de Weg, R. M. B. (2022). Long‐term Phanerozoic global mean sea level: Insights from strontium isotope variations and estimates of continental glaciation. Gondwana Research, 111, 103–121. https://doi.org/10.1016/j.gr.2022.07.014
    [Google Scholar]
  63. Van der Zwan, C. J. (2002). The impact of Milankovitch‐scale climatic forcing on sediment supply. Sedimentary Geology, 147, 271–294. https://doi.org/10.1016/S0037‐0738(01)00130‐0
    [Google Scholar]
  64. Vickers, M. L., Price, G. D., Jerrett, R. M., Sutton, P., Watkinson, M. P., & FitzPatrick, M. (2019). The duration and magnitude of Cretaceous cool events: Evidence from the northern high latitudes. GSA Bulletin, 131, 1979–1994. https://doi.org/10.1130/B35074.1
    [Google Scholar]
  65. Wendler, J. E., & Wendler, I. (2016). What drove sea‐level fluctuations during the mid‐Cretaceous greenhouse climate?Palaeogeography, Palaeoclimatology, Palaeoecology, Advances and Perspectives in Understanding Cretaceous Sea‐Level Change, 441, 412–419. https://doi.org/10.1016/j.palaeo.2015.08.029
    [Google Scholar]
  66. Williams, H. D., Burgess, P. M., Wright, V. P., Della Porta, G., & Granjeon, D. (2011). Investigating carbonate platform types: Multiple controls and a continuum of geometries. Journal of Sedimentary Research, 81, 18–37. https://doi.org/10.2110/jsr.2011.6
    [Google Scholar]
  67. Xie, X., & Heller, P. L. (2009). Plate tectonics and basin subsidence history. GSA Bulletin, 121, 55–64. https://doi.org/10.1130/B26398.1
    [Google Scholar]
  68. Zhang, J., Burgess, P. M., Granjeon, D., & Steel, R. (2018). Can sediment supply variations create sequences? Insights from stratigraphic forward modelling. Basin Research, 31, 274–289. https://doi.org/10.1111/bre.12320
    [Google Scholar]
/content/journals/10.1111/bre.12832
Loading
/content/journals/10.1111/bre.12832
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): eustasy; forward stratigraphic modelling; sequence stratigraphy; systems tracts

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error