1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

Thin, condensed coarse‐grained shallow marine successions can be difficult to describe and interpret, especially in the subsurface since the recognition of finer‐grained intervals, typically associated with sequence stratigraphic surfaces, is challenging. This lack of mudstones and siltstones means that they also typically make excellent reservoir intervals. The Oxfordian to Volgian intra‐Draupne Formation sandstones in the Johan Sverdrup Field, southern Utsira High, represent such a system. This study presents a new sequence stratigraphic model for the Johan Sverdrup Field that unravels the detailed depositional history of the succession and places its formation within a regional Late Jurassic tectonostratigraphic framework. The intra‐Draupne Formation sandstones comprise four parasequences deposited following a regional Kimmeridgian marine flooding event. Sediments were mainly supplied through West‐derived fan deltas from the Haugaland High and NW‐SE‐directed tidal currents reworking the Augvald Graben and the Avaldsnes High at the East. The oldest parasequence shows a distinctive suite of facies consisting of fine‐grained and mud‐rich bioturbated sandstones deposited in a semi‐restricted lagoon. Subsequent parasequences lack fine‐grained sediments and are dominated by bidirectional cross‐stratified, very coarse‐to coarse‐grained sandstones and gravels deposited in a tidal strait. A progressive reduction of fault‐related subsidence in the Middle Volgian along with Late Volgian‐Ryazanian sea‐level rise and inversion of pre‐existing structures promoted backstepping of the feeder systems, sediment starvation and the progressive deposition of the black and green‐red shales of the Draupne and Asgard formations. The results of this study account for features previously unidentified in the Johan Sverdrup Field and which have implications for understanding the deposition of coarse‐grained shallow marine successions around the Utsira High and other transgressed basement highs.

,

Evolution of the different Late Jurassic‐Early Cretaceous depositional environments identified in the Johan Sverdrup Field.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12833
2024-01-25
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12833.html?itemId=/content/journals/10.1111/bre.12833&mimeType=html&fmt=ahah

References

  1. Baniak, G. M., Gingras, M. K., Burns, B. A., & Pemberton, G. (2014). An example of a highly bioturbated, storm‐influenced shoreface deposit: Upper Jurassic Ula Formation, Norwegian North Sea. Sedimentology, 61(5), 1261–1285. https://doi.org/10.1111/sed.12100
    [Google Scholar]
  2. Biddle, K. T., & Rudolph, K. W. (1988). Early Tertiary structural inversion in the Stord Basin, Norwegian North Sea. Journal of the Geological Society, London, 145, 603–611. https://doi.org/10.1144/gsjgs.145.4.0603
    [Google Scholar]
  3. Chiarella, D., Longhitano, S. G., Mosdell, W., & Tellesca, D. (2020). Sedimentology and facies analysis of ancient sand ridges: Jurassic Rogn Formation, Trøndelag Platform, offshore Norway. Marine and Petroleum Geology, 112, 104082. https://doi.org/10.1016/j.marpetgeo.2019.104082
    [Google Scholar]
  4. Cooper, M. A., Williams, G. D., de Graciansky, P. C., Murphy, R. W., Needham, T., de Paor, D., Stoneley, R., Todd, S. P., Turner, J. P., & Ziegler, P. A. (1989). Inversion tectonics—A discussion. Geological Society, London, Special Publications, 44, 335–347. https://doi.org/10.1144/GSL.SP.1989.044.01.18
    [Google Scholar]
  5. Copestake, P., Sims, A. P., Crittenden, S., Hamer, G. P., Ineson, J. R., Rose, P. T., & Tringham, M. E. (2003). Lower Cretaceous. In D.Evans, C.Graham, A.Armour, & P.Bathurst (Eds.), The Millenium Atlas: Petroleum geology of the central and northern North Sea (pp. 191–211). The Geological Society of London.
    [Google Scholar]
  6. Cornford, C. (1998). Source rocks and hydrocarbons of the North Sea. In K. W.Glennie (Ed.), Petroleum geology of the North Sea: Basic concepts and recent advances (4th ed., pp. 376–462). Blackwell Science Ltd. https://doi.org/10.1002/9781444313413.ch11
    [Google Scholar]
  7. Dashtgard, S. E., MacEachern, J. A., Frey, S. E., & Gingras, M. K. (2012). Tidal effects on the shoreface: Towards a conceptual framework. Sedimentary Geology, 279, 42–61. https://doi.org/10.1016/j.sedgeo.2010.09.006
    [Google Scholar]
  8. Desjardins, P. R., Buatois, L., & Mángano, M. G. (2012). Tidal flats and subtidal sand bodies. In D.Knaust & R.Bromley (Eds.), Developments in sedimentology: Trace fossils as indicators of sedimentary environments (Vol. 64, pp. 529–561). Elsevier. https://doi.org/10.1016/B978‐0‐444‐53813‐0.00018‐6
    [Google Scholar]
  9. Dreyer, T., Whitaker, M., Dexter, J., Flesche, H., & Larsen, E. (2005). From spit system to tide‐dominated delta: Integrated reservoir model of the Upper Jurassic Sognefjord Formation on the Troll West Field. In A. G.Doré & B. A.Vining (Eds.), Petroleum geology: North‐West Europe and global perspectives—Proceedings of the 6th Petroleum Geology Conference (Vol. 6, pp. 423–448). Geological Society. https://doi.org/10.1144/0060423
    [Google Scholar]
  10. Fazlikhani, H., Aagotnes, S. S., Refvem, M. A., Hamilton‐Wrigth, J., Bell, R. E., Fossen, H., Gawthorpe, R. L., Jackson, C. A.‐L., & Rotevatn, A. (2021). Strain migration during multiphase extension, Stord Basin, northern North Sea rift. Basin Research, 33(2), 1474–1496. https://doi.org/10.1111/bre.12522
    [Google Scholar]
  11. Gao, S. (2019). Geomorphology and sedimentology of tidal flats. In G. M. E.Perillo, E.Wolanski, D. R.Cahoon, & C. S.Hopkinson (Eds.), Coastal wetlands: An integrated ecosystem approach (pp. 359–381). Elsevier. https://doi.org/10.1016/B978‐0‐444‐63893‐9.00010‐1
    [Google Scholar]
  12. Gautier, D. L. (2005). Kimmeridgian shales total petroleum system of the North Sea Graben Province. US Geological Survey Bulletin, 2204C, 1–24.
    [Google Scholar]
  13. Hart, B. S., & Plint, A. G. (1995). Gravelly shoreface and beachface deposits. In A. G.Plint (Ed.), Sedimentary facies analysis: A tribute to the research and teaching of Harold G. Reading (Vol. 22, pp.75‐99). The International Association of Sedimentologists. https://doi.org/10.1002/9781444304091.ch4
    [Google Scholar]
  14. Hayes, M. O., & Fitzgerald, D. M. (2013). Origin, evolution and classification of tidal inlets. Journal of Coastal Research, 69, 14–33. https://doi.org/10.2112/SI_69_3
    [Google Scholar]
  15. Henstra, G. A., Cullen, T. M., Gawthorpe, R. L., Munoz‐Barrera, J. M., Muravchik, M., & Rotevatn, A. (2023). The evolution of catchment‐depositional system relationships on the dip slopes of intra‐rift basement highs: An example from the Frøya High, Mid‐Norwegian rifted margin. Basin Research, 35(4), 1259–1287. https://doi.org/10.1111/bre.12753
    [Google Scholar]
  16. Howell, J. A., Flint, S. S., & Hunt, C. (1996). Sedimentological aspects of the Humber Group (Upper Jurassic) of the South Central Graben, UK North Sea. Sedimentology, 43, 89–114. https://doi.org/10.1111/j.1365‐3091.1996.tb01462.x
    [Google Scholar]
  17. Jackson, C. A.‐L., & Larsen, E. (2008). Temporal constraints on basin inversion provided by 3D seismic and well data: A case study from the South Viking Graben, offshore Norway. Basin Research, 20, 397–417. https://doi.org/10.1111/j.1365‐2117.2008.00359.x
    [Google Scholar]
  18. Jackson, C. A.‐L., Kane, K., Larsen, E., Evrard, E., Elliot, G., & Gawthorpe, R. (2012). Variability in syn‐rift structural style associated with a mobile substrate and implications for trap definition and reservoir distribution in extensional basins: A subsurface case study from the South Viking Graben, Offshore Norway. AAPG Search and Discovery, Article 10423.
    [Google Scholar]
  19. Jackson, C. A.‐L., Kane, K. E., & Larsen, E. (2010). Structural evolution of minibasins on the Utsira High, northern North Sea; implications for Jurassic sediment dispersal and reservoir distribution. Petroleum Geoscience, 16, 105–120. https://doi.org/10.1144/1354‐079309‐011
    [Google Scholar]
  20. Johnson, H. D., Mackay, T. A., & Stewart, D. J. (1986). The Fulmar Oil‐field (Central North Sea): Geological aspects of its discovery, appraisal and development. Marine and Petroleum Geology, 3(2), 99–125. https://doi.org/10.1016/0264‐8172(86)90023‐1
    [Google Scholar]
  21. Jørstad, A. (2012). Johan Sverdrup—Offshore Norway: The story behind the Giant Sverdrup discovery. AAPG Search and Discovery #20177.
  22. Leinfelder, R. R. (2001). Jurassic reef ecosystems. In G. D.Stanley, Jr. (Ed.), The history and sedimentology of ancient reef systems (pp. 251–309). Kluwer Academic/Plenum Publishers.
    [Google Scholar]
  23. Leithold, E. L., & Bourgeois, J. (1984). Characteristics of coarse‐grained sequences deposited in nearshore, wave‐dominated environments‐examples from the Miocene of south‐west Oregon. Sedimentology, 31(6), 749–775. https://doi.org/10.1111/j.1365‐3091.1984.tb00884.x
    [Google Scholar]
  24. Longhitano, S. (2011). The record of tidal cycles in mixed silici–bioclastic deposits: Examples from small Plio–Pleistocene peripheral basins of the microtidal Central Mediterranean Sea. Sedimentology, 58(3), 691–719. https://doi.org/10.1111/j.1365‐3091.2010.01179.x
    [Google Scholar]
  25. Longhitano, S. (2013). A facies‐based depositional model for ancient and modern, tectonically–confined tidal straits. Terra Nova, 25(6), 446–452. https://doi.org/10.1111/ter.12055
    [Google Scholar]
  26. Longhitano, S. (2018). Between Scylla and Charybdis (part 2): The sedimentary dynamics of the ancient, Early Pleistocene Messina Strait (central Mediterranean) based on its modern analogue. Earth‐Science Reviews, 179, 248–286. https://doi.org/10.1016/j.earscirev.2018.01.017
    [Google Scholar]
  27. Longhitano, S., & Chiarella, D. (2020). Tidal straits: Basic criteria for recognizing ancient systems from the rock record. In N.Scarselli, J.Adam, D.Chiarella, D.G.Roberts, & A. W.Bally (Eds.), Regional geology and tectonics: Principles of geologic analysis (Vol. 1, pp. 365–415). Elsevier. https://doi.org/10.1016/B978‐0‐444‐64134‐2.00014‐6
    [Google Scholar]
  28. Longhitano, S., Mellere, D., Steel, R. J., & Ainsworth, R. B. (2012). Tidal depositional systems in the rock record: A review and new insights. Sedimentary Geology, 279, 2–22. https://doi.org/10.1016/j.sedgeo.2012.03.024
    [Google Scholar]
  29. MacEachern, J. A., & Hobbs, T. W. (2004). The ichnological expression of marine and marginal marine conglomerates and conglomeratic intervals, Cretaceous Western Interior Seaway, Alberta and northeastern British Columbia. Bulletin of Canadian Petroleum Geology, 52(1), 77–104. https://doi.org/10.2113/52.1.77
    [Google Scholar]
  30. MacEachern, J. A., Zaitlin, B. A., & Pemberton, S. G. (1998). High‐resolution sequence stratigraphy of early transgressive deposits, Viking formation, Joffre Field, Alberta, Canada. AAPG Bulletin, 82(5A), 729–756. https://doi.org/10.1306/1D9BC5E3‐172D‐11D7‐8645000102C1865D
    [Google Scholar]
  31. Mahmic, O., Dypvik, H., & Hammer, E. (2018). Diagenetic influence on reservoir quality evolution, examples from Triassic conglomerates/arenites in the Edvard Grieg field, Norwegian North Sea. Marine and Petroleum Geology, 93, 247–271. https://doi.org/10.1016/j.marpetgeo.2018.03.006
    [Google Scholar]
  32. Messina, C., Nemec, W., Martinius, A. W., & Elfenbein, C. (2014). The Garn Formation (Bajocian‐Bathonian) in the Kristin Field, Halten Terrace: Its origin, facies architecture and primary heterogeneity model. In A. W.Martinius, R.Ravnås, J. A.Howell, R. J.Steel, & J. P.Wonham (Eds.), From depositional systems to sedimentary successions on the Norwegian Continental Margin (Vol. 46, pp. 513–550). International Association of Sedimentologists. https://doi.org/10.1002/9781118920435.ch18
    [Google Scholar]
  33. Nakken, L., Chiarella, D., & Jackson, A.‐L. C. (2023). Late Jurassic rift physiography of the Froan Basin and Frøya High, offshore Mid‐Norway: Development of a syn‐rift shallow marine system. Basin Research, 35(5), 1908–1932. https://doi.org/10.1111/bre.12785
    [Google Scholar]
  34. Nemec, W., & Steel, R. J. (1984). Alluvial and coastal conglomerates: Their significant features and some comments on gravelly mass‐flow deposits. In E. H.Koster, & R. J.Steel (Eds.), Sedimentology of gravels and conglomerates (Vol. 10, pp. 1–31). Canadian Society of Petroleum Geologists.
    [Google Scholar]
  35. Nøttvedt, A., Berge, A. M., Dawers, N. H., Færseth, R. B., Häger, K. O., Mangerud, G., & Puigdefabregas, C. (2000). Syn‐rift evolution and resulting play models in the Snorre‐H area, northern North Sea. In A.Nøttvedt (Ed.), Dynamics of the Norwegian Margin (Vol. 167, pp. 179–218). Geological Society, Special Publications. https://doi.org/10.1144/GSL.SP.2000.167.01.08
    [Google Scholar]
  36. Olariu, C., Steel, R. J., Dalrymple, R. W., & Gingras, M. K. (2012). Tidal dunes versus tidal bars: The sedimentological and architectural characteristics of compound dunes in a tidal seaway, the lower Baronia Sandstone (Lower Eocene), Ager Basin, Spain. Sedimentary Geology, 279, 134–155. https://doi.org/10.1016/j.sedgeo.2012.07.018
    [Google Scholar]
  37. Olsen, H., Briedis, N. A., & Renshaw, D. (2017). Sedimentological analysis and reservoir characterization of a multi‐darcy, billion barrel oil field—The Upper Jurassic shallow marine sandstones of the Johan Sverdrup Field, North Sea, Norway. Marine and Petroleum Geology, 84, 102–134. https://doi.org/10.1016/j.marpetgeo.2017.03.029
    [Google Scholar]
  38. Ottesen, S., Selvikvåg, B., Scott, A. S. J., Meneguolo, R., Cullum, A., Amilia‐Cabeza, A., Vigorito, M., Helsem, A., & Martinsen, O. J. (2022). Geology of the Johan Sverdrup Field: A giant oil discovery and development project in a mature Norwegian North Sea basin. AAPG Bulletin, 106(4), 897–936. https://doi.org/10.1306/11042120037
    [Google Scholar]
  39. Partington, M. A., Mitchener, B. C., Milton, N. J., & Fraser, A. J. (1993). Genetic sequence stratigraphy for the North Sea Late Jurassic and Early Cretaceous: distribution and prediction of Kimmeridgian‐Late Ryazanian reservoirs in the North Sea and adjacent areas. In J. R.Parker (Ed.), Petroleum geology of northwest Europe: Proceedings of the 4th Conference. Petroleum Geology Conference Series (Vol. 4, pp. 347–370). Geological Society. https://doi.org/10.1144/0040347
    [Google Scholar]
  40. Phillips, T. B., Fazlikhani, H., Gawthorpe, R. L., Fossen, H., Jackson, C. A. L., Bell, R. E., Faleide, J. I., & Rotevatn, A. (2019). The influence of structural inheritance and multiphase extension on rift development, the Northern North Sea. Tectonics, 38(12), 4099–4126. https://doi.org/10.1029/2019TC005756
    [Google Scholar]
  41. Ravnås, R., & Steel, R. J. (1998). Architecture of marine rift‐basin successions. AAPG Bulletin, 82(1), 110–146. https://doi.org/10.1306/1D9BC3A9‐172D‐11D7‐8645000102C1865D
    [Google Scholar]
  42. Riber, L., Dypvik, H., & Sørlie, R. (2015). Altered basement rocks on the Utsira High and its surroundings, Norwegian North Sea. Norwegian Journal of Geology, 95(1), 57–89. https://doi.org/10.17850/njg95‐1‐04
    [Google Scholar]
  43. Riber, L., Dypvik, H., Sørlie, R., Naqvi, S. A. A. E. M., Stangvik, K., Oberhardt, N., & Schroeder, P. A. (2017). Comparison of deeply buried paleoregolith profiles, Norwegian North Sea, with outcrops from southern Sweden and Georgia, USA—Implications for petroleum exploration. Palaeogeography, Palaeoclimatology, Palaeoecology, 471, 82–95. https://doi.org/10.1016/j.palaeo.2017.01.043
    [Google Scholar]
  44. Rønnevik, H. C., Jørstad, A., & Lie, J. E. (2017). The discovery process behind the giant Johan Sverdrup Field. In R. K.Merill & C. A.Sternbach (Eds.), Giant fields of the decade 2000–2010: AAPG Memoir (Vol. 113, pp. 195–220). The American Association of Petroleum Geologists. https://doi.org/10.1306/13572008M1133687
    [Google Scholar]
  45. Rossi, V. M., Longhitano, S. G., Mellere, D., Dalrymple, R. W., Steel, R. J., Chiarella, D., & Olariu, C. (2017). Interplay of tidal and fluvial processes in an early Pleistocene, deltafed, strait margin (Calabria, Southern Italy). Marine and Petroleum Geology, 87, 14–30. https://doi.org/10.1016/j.marpetgeo.2017.02.021
    [Google Scholar]
  46. Scott, A. J., & Ottesen, S. (2018). Tectono‐stratigraphic development of the Upper Jurassic in the Johan Sverdrup area. In C. C.Turner & B. T.Cronin (Eds.), Rift‐related coarse‐grained submarine fan reservoirs; the Brae Play, South Viking Graben, North Sea: AAPG Memoir (Vol. 115, pp. 445–452). The American Association of Petroleum Geologists. https://doi.org/10.1306/13652190M1153815
    [Google Scholar]
  47. Serck, C. S., Braathen, A., Hassaan, M., Faleide, J. I., Riber, L., Messager, G., & Midtkandal, I. (2022). From metamorphic core complex to crustal scale rollover: Post‐Caledonian tectonic development of the Utsira High, North Sea. Tectonophysics, 836, 229416. https://doi.org/10.1016/j.tecto.2022.229416
    [Google Scholar]
  48. Tardy, Y., Bocquier, G., Paquet, H., & Millot, G. (1973). Formation of clay from granite and its distribution in relation to climate and topography. Geoderma, 10, 271–284. https://doi.org/10.1016/0016‐7061(73)90002‐5
    [Google Scholar]
  49. Thomas, D. W., & Coward, M. P. (1996). Mesozoic regional tectonics and South Viking Graben formation: Evidence for localized thin‐skinned detachments during rift development and inversion. Marine and Petroleum Geology, 13(2), 149–177. https://doi.org/10.1016/0264‐8172(95)00034‐8
    [Google Scholar]
  50. Tillmans, F., Gawthorpe, R. L., Jackson, C. A.‐L., & Rotevatn, A. (2021). Syn‐rift sediment gravity flow deposition on a Late Jurassic fault‐terraced slope, northern North Sea. Basin Research, 33, 1844–1879. https://doi.org/10.1111/bre.12538
    [Google Scholar]
  51. Underhill, J. R., & Partington, M. A. (1993). Jurassic thermal doming and deflation in the North Sea: Implications of the sequence stratigraphic evidence. In Petroleum geology of Northwest Europe: Proceedings of the 4th Conference. Petroleum Geology Conference Proceedings (Vol. 4, pp. 337–345). The Geological Society of London. https://doi.org/10.1144/0040337
    [Google Scholar]
  52. Van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., Vail, P. R., Sarg, J. F., Loutit, T. S., & Hardenbol, J. (1988). An overview of sequence stratigraphy and key definitions. In C. K.Wilgus, B. S.Hastings, C. G. S. C.Kendall, H. W.Posamentier, C. A.Ross, & J. C.Van Wagoner (Eds.), Sea level changes—An integrated approach (Vol. 42, pp. 39–45). SEPM Special Publication.
    [Google Scholar]
  53. Yuan, G., Cao, Y., Schulz, H.‐M., Hao, F., Gluyas, J., Liu, K., Yang, T., Wang, Y., Xi, K., & Li, F. (2019). A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs. Earth‐Science Reviews, 191, 114–140. https://doi.org/10.1016/j.earscirev.2019.02.004
    [Google Scholar]
  54. Zanella, E., & Coward, M. P. (2003). Structural framework. In D.Evans, C.Graham, A.Armour, & P.Bathurst (Eds.), The millennium atlas: Petroleum geology of the central and northern North Sea (pp. 45–59). London: Geological Society.
    [Google Scholar]
/content/journals/10.1111/bre.12833
Loading
/content/journals/10.1111/bre.12833
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): coarse‐grained; high; Jurassic; lagoon; marine; parasequence; strait; tidal

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error