1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

The submarine fan with a narrow shelf is usually reactive to environmental signal propagation; however, source‐to‐sink functioning can be further complicated by several allogenic forcings. Here, we document the high‐frequency provenance variations and different sediment delivery models recorded in the late Triassic Zhuoni fan developed in the northeastern Paleo‐Tethys Ocean, mainly based on process‐based sedimentological and provenance study of the Panyuan section in the West Qinling area in the northeastern margin of Tibetan Plateau. High‐, low‐density turbidites, hybrid event beds and hyperpycnites are distributed in the lobe‐dominated submarine fan succession. Field sedimentological evidence from surrounding outcrops suggests that shelf‐edge failure was the main cause of most high‐ and low‐density turbidites with the overall absence of submarine slides or slumps, whereas the narrow shelf configuration together with late Triassic humid pulses is favourable for the occurrence of flood‐related hyperpycnites in the Zhuoni fan. Detrital zircon grains ( = 6;  = 123–272) generally have Palaeozoic‐Mesozoic ages (ca. 350–250 Ma and 500–400 Ma) and Neoarchean‐Paleoproterozoic ages (ca. 2100–1750 Ma and 2600–2400 Ma), but they can be further categized into three age groups due to different proportions of Precambrian age populations. The results demonstrate that the potential source areas may include the South and North Qinling Orogenic Belt, Qilian Orogenic Belt, different segments of North China Craton and the tectonic junction area between the Qinling and Qilian Orogenic Belts. The temporal changes in provenance signals, which are reflected by both the detrital zircon age spectra and heavy mineral assemblages, indicate different contributions of those sources in response to sea‐level fluctuation. It could thus give rise to temporal variations between reactive and buffered source‐to‐sink sediment delivery models of the Zhuoni fan, despite the overall narrow shelf configuration. The development of the lowstand Zhuoni fan was directly related to extrabasinal hyperpycnal delivery from the river mouth and its high‐frequency provenance variability recorded different efficiencies of signal transfer through the onshore catchment with significantly influence of temporal storage, fluvial rejuvenation or even regional climate variability. The highstand submarine fan was thought to be formed by shelf‐edge failure with sediment buffering in the shelf region, which was associated with a strong magnitude of provenance mixing. Our work provides a new perspective for deciphering the different origins of deep‐water sediment delivery in response to high‐frequency sea‐level and climate changes.

,

Schematic models illustrating different source‐to‐sink signal propagation patterns, provenance mixing, and formation mechanisms of the late Triassic Zhuoni fan in response to high‐frequency sea‐level fluctuations and monsoon‐induced climate variability.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12835
2024-02-04
2025-04-26
Loading full text...

Full text loading...

References

  1. Allen, P. A. (2008). From landscapes into geological history. Nature, 451, 274–276.
    [Google Scholar]
  2. Anders, B., Tyrrell, S., Chew, D., Mark, C., O'Sullivan, G., Murray, J., Graham, J. R., & Badenszki, E. (2022). Spatial variation in provenance signal: Identifying complex sand sourcing within a carboniferous basin using multiproxy provenance analysis. Journal of the Geological Society, 179(1), 2021–2045.
    [Google Scholar]
  3. Anders, B., Tyrrell, S., Chew, D., O'Sullivan, G., Mark, C., Graham, J., & Murray, J. (2022). Wildfires and monsoons: cryptic drivers for highly variable provenance signals within a carboniferous fluvial system. Geosciences, 12(1), 20.
    [Google Scholar]
  4. Andersen, T. (2002). Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology, 192(1–2), 59–79.
    [Google Scholar]
  5. Bai, W., Dong, C., Xie, W., & Wan, Y. (2019). The changcheng system in Ordos Basin: Detrital zircon SHRIMP U–Pb dating and Hf isotope analysis. Acta Petrologica Sinica, 35(8), 2363–2376.
    [Google Scholar]
  6. Betka, P. M., Thomson, S. N., Sincavage, R., Zoramthara, C., Lalremruatfela, C., Lang, K. A., Strckler, M. S., Bezbaruah, D., Borgohain, P., & Seeber, L. (2021). Provenance shifts during Neogene Brahmaputra delta progradation tied to coupled climate and tectonic change in the eastern Himalaya. Geochemistry, Geophysics, Geosystems, 22(12), e2021GC010026.
    [Google Scholar]
  7. Blum, M., Rogers, K., Gleason, J., Najman, Y., Cruz, J., & Fox, L. (2018). Allogenic and autogenic signals in the stratigraphic record of the deep‐sea Bengal Fan. Scientific Reports, 8(1), 1–13.
    [Google Scholar]
  8. Bourget, J., Zaragosi, S., Mulder, T., Schneider, J. L., Garlan, T., Van Toer, A., Mas, V., & Ellouz‐Zimmermann, N. (2010). Hyperpycnal‐fed turbidite lobe architecture and recent sedimentary processes: A case study from the Al Batha turbidite system, Oman margin. Sedimentary Geology, 229(3), 144–159.
    [Google Scholar]
  9. Caracciolo, L. (2020). Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application, and future development. Earth‐Science Reviews, 209, 103226.
    [Google Scholar]
  10. Caracciolo, L., Ravidà, D. C. G., Chew, D., Janßen, M., Lünsdorf, N. K., Heins, W. A., Stephan, T., & Stollhofen, H. (2021). Reconstructing environmental signals across the Permian–Triassic boundary in the SE Germanic Basin: A Quantitative Provenance Analysis (QPA) approach. Global and Planetary Change, 206, 103631.
    [Google Scholar]
  11. Cawood, P. A., Hawkesworth, C. J., & Dhuime, B. (2012). Detrital zircon record and tectonic setting. Geology, 40(10), 875–878.
    [Google Scholar]
  12. Chen, P., Xian, B., Li, M., Liang, X., Wu, Q., Zhang, W., Wang, J., Wang, Z., & Liu, J. (2021). A giant lacustrine flood‐related turbidite system in the Triassic Ordos Basin, China: Sedimentary processes and depositional architecture. Sedimentology, 68(7), 3279–3306.
    [Google Scholar]
  13. Chen, Y. (2013). Research on tectono‐sedimentary characteristic of marine strata from Carboniferous to Middle Triassic in southern Qilian area and north belt of West Qinling Mountains. PhD Dissertation. Northwest University (in Chinese with English abstract).
    [Google Scholar]
  14. Clift, P. D., & Giosan, L. (2014). Sediment fluxes and buffering in the post‐glacial Indus Basin. Basin Research, 26(3), 369–386.
    [Google Scholar]
  15. Clift, P. D., & Jonell, T. N. (2021). Monsoon controls on sediment generation and transport: Mass budget and provenance constraints from the Indus River catchment, delta and submarine fan over tectonic and multimillennial timescales. Earth‐Science Reviews, 220, 103682.
    [Google Scholar]
  16. Compston, W., Williams, I. S., Kirschvink, J. L., Zichao, Z., & Guogan, M. A. (1992). Zircon U‐Pb ages for the Early Cambrian time‐scale. Journal of the Geological Society, 149(2), 171–184.
    [Google Scholar]
  17. Corfu, F., Hanchar, J. M., Hoskin, P. W., & Kinny, P. (2003). Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1), 469–500.
    [Google Scholar]
  18. Coutts, D. S., Matthews, W. A., & Hubbard, S. M. (2019). Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geoscience Frontiers, 10(4), 1421–1435.
    [Google Scholar]
  19. Covault, J. A., & Graham, S. A. (2010). Submarine fans at all sea‐level stands: Tectono‐morphologic and climatic controls on terrigenous sediment delivery to the deep sea. Geology, 38(10), 939–942.
    [Google Scholar]
  20. Covault, J. A., Normark, W. R., Romans, B. W., & Graham, S. A. (2007). Highstand fans in the California borderland: The overlooked deep‐water depositional systems. Geology, 35(9), 783–786.
    [Google Scholar]
  21. Covault, J. A., Romans, B. W., Fildani, A., McGann, M., & Graham, S. A. (2010). Rapid climatic signal propagation from source to sink in a southern California sediment‐routing system. The Journal of Geology, 118(3), 247–259.
    [Google Scholar]
  22. Cui, H., Zhu, S., Tan, M., & Tong, H. (2022). Depositional and diagenetic processes in volcanic matrix‐rich sandstones from the Shanxi and Shihezi formations, Ordos Basin, China: Implication for volcano‐sedimentary systems. Basin Research, 34(6), 1859–1893.
    [Google Scholar]
  23. Darby, B. J., & Gehrels, G. (2006). Detrital zircon reference for the North China block. Journal of Asian Earth Sciences, 26(6), 637–648.
    [Google Scholar]
  24. Dickinson, W. R., & Gehrels, G. E. (2009). Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1–2), 115–125.
    [Google Scholar]
  25. Ding, L., Yang, D., Cai, F., Pullen, A., Kapp, P., Gehrels, G. E., & Shi, R. (2013). Provenance analysis of the Mesozoic Hoh‐Xil‐Songpan‐Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo‐Tethys Ocean. Tectonics, 32(1), 34–48.
    [Google Scholar]
  26. Ding, S., Pei, X., Li, Y., Li, R., Li, Z., Feng, J., Sun, Y., & Zhang, Y. (2009). Biotite 40Ar‐39AR ages of granitic mylonite at the Xinyang‐Yuanlong ductile shear zone in the north margin of West Qinling and their geological significance. Acta Geologica Sinica, 83(11), 1624–1632. (in Chinese with English abstract).
    [Google Scholar]
  27. Diwu, C., Sun, Y., Liu, L., Zhang, C., & Wang, H. (2010). The disintegration of Kuanping Group in North Qinling orogenic belts and Neo‐proterozoic N‐MORB. Acta Petrologica Sinica, 26(7), 2025–2038. (in Chinese with English abstract).
    [Google Scholar]
  28. Diwu, C., Sun, Y., Zhao, Y., Liu, B., & Lai, S. (2014). Geochronological, geochemical, and Nd–Hf isotopic studies of the Qinling Complex, Central China: Implications for the evolutionary history of the North Qinling Orogenic Belt. Geoscience Frontiers, 5(4), 499–513.
    [Google Scholar]
  29. Diwu, C. R. (2021). Crustal growth and evolution of Archean continental crust in the southern North China Craton. Acta Petrologica Sinica, 37(2), 317–340. (in Chinese with English abstract).
    [Google Scholar]
  30. Dobbs, S. C., Malkowski, M. A., Schwartz, T. M., Sickmann, Z. T., & Graham, S. A. (2022). Depositional controls on detrital zircon provenance: An example from upper cretaceous strata, Southern Patagonia. Frontiers in Earth Science, 10, 824930.
    [Google Scholar]
  31. Enkelmann, E., Weislogel, A., Ratschbacher, L., Eide, E., Renno, A., & Wooden, J. (2007). How was the Triassic Songpan‐Ganzi basin filled? A provenance study. Tectonics, 26(4), TC4007.
    [Google Scholar]
  32. Fan, A. P., Yang, R. C., Lenhardt, N., Wang, M., Han, Z. Z., Li, J. B., Li, Y. J., & Zhao, Z. J. (2019). Cementation and porosity evolution of tight sandstone reservoirs in the Permian Sulige gas field, Ordos Basin (Central China). Marine and Petroleum Geology, 103, 276–293.
    [Google Scholar]
  33. Ferguson, R. A., Kane, I. A., Eggenhuisen, J. T., Pohl, F., Tilston, M., Spychala, Y. T., & Brunt, R. L. (2020). Entangled external and internal controls on submarine fan evolution: An experimental perspective. The Depositional Record, 6(3), 605–624.
    [Google Scholar]
  34. Fildani, A., Hessler, A. M., Mason, C. C., McKay, M. P., & Stockli, D. F. (2018). Late Pleistocene glacial transitions in North America altered major river drainages, as revealed by deep‐sea sediment. Scientific Reports, 8(1), 1–8.
    [Google Scholar]
  35. Fisher, W. L., Galloway, W. E., Steel, R. J., Olariu, C., Kerans, C., & Mohrig, D. (2021). Deep‐water depositional systems supplied by shelf‐incising submarine canyons: Recognition and significance in the geologic record. Earth‐Science Reviews, 214, 103531.
    [Google Scholar]
  36. Gamberi, F., Rovere, M., Marani, M. P., & Dykstra, M. (2015). Modern submarine canyon feeder‐system and deep‐sea fan growth in a tectonically active margin (northern Sicily). Geosphere, 11(2), 307–319.
    [Google Scholar]
  37. Gao, X., Pei, X., Li, Z., Li, R., Wei, L., Wang, M., Liu, C., Gao, F., Liang, G., Shao, J., & Mu, K. (2019). Age and provenance of Upper Shilidun Formation, Lintan, West Qinling Orogen: Constraints from LA‐ICP–MS U–Pb dating of detrital zircons. Earth Science, 44(4), 1389–1405. (in Chinese with English abstract).
    [Google Scholar]
  38. Gao, Y., Long, X., Luo, J., Dong, Y., Lan, C., Huang, Z., & Zhao, J. (2021). Provenance and Hf isotopic variation of Precambrian detrital zircons from the Qilian Orogenic Belt, NW China: Evidence to the transition from breakup of Columbia to the assembly of Rodinia. Precambrian Research, 357, 106153.
    [Google Scholar]
  39. Garzanti, E., & Andò, S. (2019). Heavy minerals for junior woodchucks. Minerals, 9(3), 148.
    [Google Scholar]
  40. Giles, K. D., Jackson, W. T., Jr., McKay, M. P., Beebe, D. A., Larsen, D., Kwon, Y., & Shaulis, B. (2023). Sediment input, alongshore transport, and coastal mixing in the northeastern Gulf of Mexico based on detrital‐zircon geochronology. Marine and Petroleum Geology, 148, 105997.
    [Google Scholar]
  41. Gong, C., Blum, M. D., Wang, Y., Lin, C., & Xu, Q. (2018). Can climatic signals be discerned in a deep‐water sink?: An answer from the Pearl River source‐to‐sink sediment‐routing system. GSA Bulletin, 130(3–4), 661–677.
    [Google Scholar]
  42. Gregory, B., Herrmann, A. D., Ireland, T., & Clift, P. D. (2022). Testing the applicability of zircon U‐Pb dating as a provenance method in a highly altered river system, Mississippi‐Missouri River, USA. Basin Research, 34(1), 251–273.
    [Google Scholar]
  43. Gutiérrez, E. G., & Stockli, D. F. (2023). Fluvial response to late Pleistocene‐Holocene climate change in the Colorado River drainage, Central Texas, USA. Geology, 51, 929–934.
    [Google Scholar]
  44. Haughton, P., Davis, C., McCaffrey, W., & Barker, S. (2009). Hybrid sediment gravity flow deposits–classification, origin and significance. Marine and Petroleum Geology, 26(10), 1900–1918.
    [Google Scholar]
  45. He, Y., Sun, Y., Chen, K., Li, H., Yuan, H., & Liu, X. (2005). Zircon U–Pb chronology of Longshan complex by LA‐ICP‐MS and its geological significance. Acta Petrologica Sinica, 21(1), 125–134. (in Chinese with English abstract).
    [Google Scholar]
  46. Hessler, A. M., & Fildani, A. (2019). Deep‐sea fans: tapping into Earth's changing landscapes. Journal of Sedimentary Research, 89(11), 1171–1179.
    [Google Scholar]
  47. Hubert, J. F. (1962). A zircon‐tourmaline‐rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. Journal of Sedimentary Research, 32(3), 440–450.
    [Google Scholar]
  48. Hurst, A., & Morton, A. (2001). Genetic relationships in the mineral‐chemical stratigraphy of turbidite sandstones. Journal of the Geological Society, London, 158, 401–404.
    [Google Scholar]
  49. Hurst, A., & Morton, A. (2013). Provenance models: The role of sandstone mineral–chemical stratigraphy. Geological Society, London, Special Publications, 386(1), 7–26.
    [Google Scholar]
  50. Ibañez‐Mejia, M., Pullen, A., Pepper, M., Urbani, F., Ghoshal, G., & Ibañez‐Mejia, J. C. (2018). Use and abuse of detrital zircon U‐Pb geochronology—A case from the Río Orinoco delta, eastern Venezuela. Geology, 46(11), 1019–1022.
    [Google Scholar]
  51. Jian, X., Weislogel, A., & Pullen, A. (2019). Triassic sedimentary filling and closure of the eastern paleo‐Tethys Ocean: New insights from detrital zircon geochronology of Songpan‐Ganzi, Yidun, and west Qinling flysch in eastern Tibet. Tectonics, 38(2), 767–787.
    [Google Scholar]
  52. Jiang, Z. W., Luo, J. L., Liu, X. S., Hu, X. Y., Ma, S. W., Hou, Y. D., Fan, L. Y., & Hu, Y. H. (2020). Provenance and implication of Carboniferous‐Permian detrital zircons from the upper Paleozoic, Southern Ordos Basin, China: Evidence from U‐Pb geochronology and Hf isotopes. Minerals, 10(3), 265.
    [Google Scholar]
  53. Jin, H., & Li, Y. (2001). A study on middle Triassic Flysch facies in West Qinling Orogenic Belt. Acta Sedimentologica Sinica, 19(3), 321–326.
    [Google Scholar]
  54. Jin, H., & Li, Y. (1995). Trace Fossils and their environmental significance of Permian‐Triassic, Western Qinling Mountains. Chinese Journal of Geology, 30(4), 321–328.
    [Google Scholar]
  55. Jin, H., Li, Y., & Fang, G. (2003). The ancient deep sea deposits and trace fossils in China (pp. 1–231). Beijing: SciencePress.
    [Google Scholar]
  56. Jobe, Z. R., Lowe, D. R., & Morris, W. R. (2012). Climbing‐ripple successions in turbidite systems: Depositional environments, sedimentation rates and accumulation times. Sedimentology, 59(3), 867–898.
    [Google Scholar]
  57. Jung, B. J., Lee, H. J., Jeong, J. J., Owen, J., Kim, B., Meusburger, K., Alewell, C., Gebauer, G., Shope, C., & Park, J. H. (2012). Storm pulses and varying sources of hydrologic carbon export from a mountainous watershed. Journal of Hydrology, 440–441, 90–101.
    [Google Scholar]
  58. Kang, C., Li, C., Wei, C., Zhang, Y., Jiang, H., Li, Y., & Guo, R. (2021). Heavy Mineral Assemblage Variation in Late Cenozoic Sediments from the Middle Yangtze River Basin: Insights into Basin Sediment Provenance and Evolution of the Three Gorges Valley. Mineral, 11(10), 1056.
    [Google Scholar]
  59. Knox, R. W. B., Soliman, M. F., & Essa, M. A. (2011). Heavy mineral stratigraphy of Palaeozoic and Mesozoic sandstones of southwestern Sinai, Egypt: A reassessment. GeoArabia, 16(3), 31–64.
    [Google Scholar]
  60. Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 1–27.
    [Google Scholar]
  61. Lavarini, C., Attal, M., da Costa Filho, C. A., & Kirstein, L. A. (2018). Does pebble abrasion influence detrital age population statistics? A numerical investigation of natural data sets. Journal of Geophysical Research: Earth Surface, 123(10), 2577–2601.
    [Google Scholar]
  62. Li, M., Wang, C., & Wang, Z. (2013). Depositional age and geological implications of the Ruyang group in the southwestern margin of the North China Craton: Evidence from detrital zircon U–Pb ages. Chinese Journal of Geology, 48(4), 1115–1139. (in Chinese with English abstract).
    [Google Scholar]
  63. Li, X., Li, S., Wang, T., Dong, Y., Liu, X., Zhao, S., Wang, K., Sun, J., Dai, L., & Suo, Y. (2020). Geochemistry and detrital zircon records of the Ruyang‐Luoyu groups, southern North China craton: Provenance, crustal evolution and Paleo‐Mesoproterozoic tectonic implications. Geoscience Frontiers, 11(2), 679–696.
    [Google Scholar]
  64. Li, X., Zhang, Y., Sun, Y., Shi, X., & Zhang, S. (2023). Vegetation changes and climate shift during the latest Ladinian to the early Carnian: Palynological evidence from the Yanchang formation, Ordos Basin, China. Frontiers in Earth Science, 10, 1008707.
    [Google Scholar]
  65. Li, Y., Clift, P. D., Böning, P., Blusztajn, J., Murray, R. W., Ireland, T., Pahnke, K., Helm, N. C., & Giosan, L. (2018). Continuous Holocene input of river sediment to the indus submarine canyon. Marine Geology, 406, 159–176.
    [Google Scholar]
  66. Li, Y., Duan, F., Zhang, Y., Zhi, Q., Xu, Q., Li, S., & Niu, H. (2017). Complex evolution and the Triassic Tethyan‐type sedimentation in the Qinling Orogen. Geological Journal, 52, 174–182.
    [Google Scholar]
  67. Li, Z., Bhattacharya, J., & Schieber, J. (2015). Evaluating along‐strike variation using thin‐bedded facies analysis, Upper cretaceous Ferron Notom Delta, Utah. Sedimentology, 62(7), 2060–2089.
    [Google Scholar]
  68. Li, Z., Pei, X., Wei, L., Guo, J., Xiao, L., Li, R., Pei, L., Zhao, W., Wang, M., Chen, Y., Liu, C., Zhao, S., Gao, F., Shao, J., Qin, L., Zhao, C., & Zhang, Z. (2019). New discovery of Neocalamites from the Upper Triassic Daheba formation in west Qinling, Northwest China. Acta Geologica Sinica (English Edition), 93(3), 756–757.
    [Google Scholar]
  69. Liang, G. (2019). Geological characteristics and source analysis of the Triassic strata in the Lintan area, Western Qinling. Master thesis. Chang'an University (in Chinese with English abstract).
    [Google Scholar]
  70. Liang, J., Ma, X., & Tao, W. (2020). Detrital zircon U‐Pb ages of Middle–Late Permian sedimentary rocks from the southwestern margin of the North China Craton: Implications for provenance and tectonic evolution. Gondwana Research, 88, 250–267.
    [Google Scholar]
  71. Lin, J., Liu, Y., Yang, Y., & Hu, Z. (2016). Calibration and correction of LA–ICP–MS and LA–MC–ICP–MS analyses for element contents and isotopic ratios. Solid Earth Sciences, 1(1), 5–27.
    [Google Scholar]
  72. Liu, H., Li, H., Tian, H., Chang, Q., & Zhang, J. (2021). Detrital zircon geochronological characteristics of Ruyang and Luoyu Group from western Henan Province and its geological significance. Acta Geologica Sinica, 95(8), 2436–2452. (in Chinese with English abstract).
    [Google Scholar]
  73. Liu, S., Li, X., & Wang, G. (2007). Triassic sequence and tectonic‐lithological study in the Songpan‐Aba Area. National Geological Archives. https://doi.org/10.35080/n01.c.116702 (in Chinese).
  74. Liu, X. (2021). New detrital zircon age of the Paleo‐Mesoproterozoic Xiong'er Group, southern North China craton. Frontiers in Earth Science, 9, 723505.
    [Google Scholar]
  75. Liu, Y., Hu, Z., Gao, S., Günther, D., Xu, J., Gao, C., & Chen, H. (2008). In situ analysis of major and trace elements of anhydrous minerals by LA–ICP–MS without applying an internal standard. Chemical Geology, 257(1–2), 34–43.
    [Google Scholar]
  76. Liu, Y. S., Gao, S., Hu, Z. C., Gao, C. G., Zong, K. Q., & Wang, D. B. (2010). Continental and oceanic crust recycling‐induced melt‐peridotite interactions in the Trans‐North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1–2), 537–571.
    [Google Scholar]
  77. Lowe, D. R. (1982). Sediment gravity flows; II. Depositional models with special reference to the deposits of high‐density turbidity currents. Journal of Sedimentary Research, 52(1), 279–297.
    [Google Scholar]
  78. Luo, S., Pan, Z., Lyu, Q., He, W., & Wen, S. (2017). The Upper Paleozoic detrital zircon U–Pb geochronology and its tectonic significance in southwestern Ordos Basin. Geology in China, 44(3), 556–574. (in Chinese with English abstract).
    [Google Scholar]
  79. Malkowski, M. A., Jobe, Z. R., Sharman, G. R., & Graham, S. A. (2018). Down‐slope facies variability within deep‐water channel systems: Insights from the Upper Cretaceous Cerro Toro Formation, southern Patagonia. Sedimentology, 65(6), 1918–1946.
    [Google Scholar]
  80. Malusà, M. G., Resentini, A., & Garzanti, E. (2016). Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Research, 31, 1–19.
    [Google Scholar]
  81. Mason, C. C., Romans, B. W., Stockli, D. F., Mapes, R. W., & Fildani, A. (2019). Detrital zircons reveal sea‐level and hydroclimate controls on Amazon River to deep‐sea fan sediment transfer. Geology, 47(6), 563–567.
    [Google Scholar]
  82. Meng, Q., Qu, H., & Hu, J. (2007). Triassic deep‐marine sedimentation in the western Qinling and Songpan terrane. Science in China Series D: Earth Sciences, 50, 246–263.
    [Google Scholar]
  83. Morton, A., O'B. Knox, R. W., & Hallsworth, C. (2002). Correlation of reservoir sandstones using quantitative heavy mineral analysis. Petroleum Geoscience, 8(3), 251–262.
    [Google Scholar]
  84. Morton, A. C., & Hallsworth, C. R. (1994). Identifying provenance‐specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology, 90(3–4), 241–256.
    [Google Scholar]
  85. Morton, A. C., & Hallsworth, C. R. (1999). Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124(1–4), 3–29.
    [Google Scholar]
  86. Mulder, T., Syvitski, J. P., Migeon, S., Faugères, J. C., & Savoye, B. (2003). Marine hyperpycnal flows: Initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20(6–8), 861–882.
    [Google Scholar]
  87. Nauton‐Fourteu, M., Tyrrell, S., & Morton, A. (2021). Heavy mineral variations in mid‐carboniferous deltaic sandstones: Records of a pre‐depositional sediment history?The Depositional Record, 7(1), 52–63.
    [Google Scholar]
  88. Neubeck, N., Carter, A., Rittenour, T., & Clift, P. D. (2023). Climate and anthropogenic impacts on North American erosion and sediment transport since the Last Glacial Maximum: Evidence from the detrital zircon record of the Lower Mississippi Valley, USA. Geological Society of America Bulletin, 135(9–10), 2648–2663.
    [Google Scholar]
  89. Nie, J., Peng, W., Pfaff, K., Möller, A., Garzanti, E., Andò, S., Stevens, T., Brid, A., Chang, H., Song, Y., Lium, S., & Ji, S. (2013). Controlling factors on heavy mineral assemblages in Chinese loess and Red Clay. Palaeogeography, Palaeoclimatology, Palaeoecology, 381, 110–118.
    [Google Scholar]
  90. Pan, Y., & Hu, X. (2023). A database of detrital zircon U–Pb geochronology and Hf isotopes from the Songpan–Ganzi and Western Qinling terranes. Geoscience Data Journal, 1–11. https://doi.org/10.1002/gdj3.195
    [Google Scholar]
  91. Pei, X., Li, Z., Li, R., Pei, L., Liu, C., Gao, J., Wei, F., Wu, S., Wang, Y., & Chen, Y. (2012). LA‐ICP‐MS U–Pb ages of detrital zircons from the meta‐detrital rocks of the Early Palaeozoic Huluhe Group in eastern part of Qilian orogenic belt: Constraints of material source and sedimentary age. Earth Science Frontiers, 19(5), 205–224. (in Chinese with English abstract).
    [Google Scholar]
  92. Peng, P., Wang, X., Windley, B. F., Guo, J., Zhai, M., & Li, Y. (2014). Spatial distribution of ca. 1950–1800 Ma metamorphic events in the North China Craton: Implications for tectonic subdivision of the craton. Lithos, 202–203, 250–266.
    [Google Scholar]
  93. Pierce, C. S., Haughton, P. D., Shannon, P. M., Pulham, A. J., Barker, S. P., & Martinsen, O. J. (2018). Variable character and diverse origin of hybrid event beds in a sandy submarine fan system, Pennsylvanian Ross Sandstone Formation, western Ireland. Sedimentology, 65(3), 952–992.
    [Google Scholar]
  94. Piper, D. J., & Normark, W. R. (2009). Processes that initiate turbidity currents and their influence on turbidites: A marine geology perspective. Journal of Sedimentary Research, 79(6), 347–362.
    [Google Scholar]
  95. Plink‐Björklund, P., & Steel, R. J. (2004). Initiation of turbidity currents: Outcrop evidence for Eocene hyperpycnal flow turbidites. Sedimentary Geology, 165(1–2), 29–52.
    [Google Scholar]
  96. Puig, P., Palanques, A., & Martín, J. (2014). Contemporary sediment‐transport processes in submarine canyons. Annual Review of Marine Science, 6, 53–77.
    [Google Scholar]
  97. Pullen, A., Barbeau, D. L., Leier, A. L., Abell, J. T., Ward, M., Bruner, A., & Fidler, M. K. (2022). A westerly wind dominated Puna Plateau during deposition of upper Pleistocene loessic sediments in the subtropical Andes, South America. Nature Communications, 13(1), 1–8.
    [Google Scholar]
  98. Pullen, A., Ibáñez‐Mejía, M., Gehrels, G. E., Ibáñez‐Mejía, J. C., & Pecha, M. (2014). What happens when n= 1000? Creating large‐n geochronological datasets with LA–ICP–MS for geologic investigations. Journal of Analytical Atomic Spectrometry, 29, 971–980.
    [Google Scholar]
  99. Pullen, A., Kapp, P., Gehrels, G. E., Vervoort, J. D., & Ding, L. (2008). Triassic continental subduction in Central Tibet and Mediterranean‐style closure of the Paleo‐Tethys Ocean. Geology, 36(5), 351–354.
    [Google Scholar]
  100. Rinke‐Hardekopf, L., Dashtgard, S. E., Huang, C., & Gibson, H. D. (2021). Application of grouped detrital zircon analyses to determine provenance and closely approximate true depositional age: Early Cretaceous McMurray‐Clearwater succession, Canada. Geoscience Frontiers, 12(2), 877–892.
    [Google Scholar]
  101. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29.
    [Google Scholar]
  102. Rubatto, D. (2002). Zircon trace element geochemistry: Partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology, 184(1–2), 123–138.
    [Google Scholar]
  103. Saylor, J. E., Jordan, J. C., Sundell, K. E., Wang, X., Wang, S., & Deng, T. (2018). Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau. Basin Research, 30(3), 544–563.
    [Google Scholar]
  104. Scotese, C. R. (2014). Atlas of Middle & Late Permian and Triassic Paleogeographic Maps, Maps 43–48 from Volume 3 of the PALEOMAP Atlas for ArcGIS (Jurassic and Triassic) and Maps 49–52 from Volume 4 of the PALEOMAP PaleoAtlas for ArcGIS (Late Paleozoic). Mollweide Projection, PALEOMAP Project, Evanston, IL.
  105. Sharman, G. R., Sharman, J. P., & Sylvester, Z. (2018). detritalPy: A Python‐based toolset for visualizing and analysing detrital geo‐thermochronologic data. The Depositional Record, 4(2), 202–215.
    [Google Scholar]
  106. Sharman, G. R., Sylvester, Z., & Covault, J. A. (2019). Conversion of tectonic and climatic forcings into records of sediment supply and provenance. Scientific Reports, 9(1), 1–7.
    [Google Scholar]
  107. Song, L., Chen, J., Zhang, Y., Liu, C., Wu, C., & Zhang, X. (2010). U–Pb chronological characteristics of late Triassic sediment in southwestern Ordos and it's tectonic significance. Acta Geologica Sinica, 84(3), 370–384. (in Chinese with English abstract).
    [Google Scholar]
  108. Sun, H., Tan, M., Fu, Y., Cui, H., & Chen, M. (2023). Sedimentary processes and genetic mechanisms of the Late Triassic fine‐grained gravity flows in Zhuoni area of West Qinling orogenic belt. Journal of Palaeogeography, 25(6), 1315–1329. (in Chinese with English abstract).
    [Google Scholar]
  109. Sun, J., Yang, L., Dong, Y., Yang, X., Peng, Y., & Zhao, J. (2020). Permian tectonic evolution of the southwestern Ordos Basin, North China: Integrating constraints from sandstone petrology and detrital zircon geochronology. Geological Journal, 55(12), 8068–8091.
    [Google Scholar]
  110. Sun, X. P., Xu, X. Y., Chen, J. L., Gao, T., Li, T., Li, X. B., & Li, X. Y. (2013). Geochemical characteristics and chronology of the Jiangligou granitic pluton in west Qinling and their geological significance. Acta Geologica Sinica, 87(3), 330–342. (in Chinese with English abstract).
    [Google Scholar]
  111. Sundell, K. E., & Saylor, J. E. (2017). Unmixing detrital geochronology age distributions. Geochemistry, Geophysics, Geosystems, 18(8), 2872–2886.
    [Google Scholar]
  112. Talling, P. J. (2014). On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings. Marine Geology, 352, 155–182.
    [Google Scholar]
  113. Tan, M., Sun, H., Fu, Y., Zhang, X., Cui, H., & Ma, H. (2022). Hybrid event bed characteristics and its role in high‐frequency facies change of the Upper Triassic submarine fan in the West Qinling area of NE Tibetan Plateau. Marine and Petroleum Geology, 146, 105937.
    [Google Scholar]
  114. Tang, Y., Yin, A., Xu, X., An, K., & Zhang, Y. (2023). Tectonic evolution of the Triassic‐Ganzi basin as constrained by a synthesis of multi‐proxy provenance data. Basin Research, 35(1), 28–60.
    [Google Scholar]
  115. Varga, J., Kelsey, D. E., Dong, Y., Raimondo, T., & Hand, M. (2018). Pressure–temperature–time (P–T–t) evolution of fore‐arc and foreland schist in the Qinling Orogenic Belt, China: Implications for Late Paleozoic and Triassic subduction termination. Gondwana Research, 61, 20–45.
    [Google Scholar]
  116. Vermeesch, P. (2004). How many grains are needed for a provenance study?Earth and Planetary Science Letters, 224(3–4), 441–451.
    [Google Scholar]
  117. Vermeesch, P. (2013). Multi‐sample comparison of detrital age distributions. Chemical Geology, 341, 140–146.
    [Google Scholar]
  118. Vermeesch, P. (2021). Maximum depositional age estimation revisited. Geoscience Frontiers, 12(2), 843–850.
    [Google Scholar]
  119. Von Eynatten, H., & Dunkl, I. (2012). Assessing the sediment factory: The role of single grain analysis. Earth‐Science Reviews, 115, 97–120.
    [Google Scholar]
  120. Wan, Y., Liu, D., Dong, C., Xie, H., Kröner, A., Ma, M., Liu, S., Xie, S., & Ren, P. (2015). Formation and evolution of Archean continental crust of the North China Craton. In Precambrian geology of China (pp. 59–136). Springer.
    [Google Scholar]
  121. Wang, C., Foster, D. A., Su, M., Lei, Y., Zeng, L., & Cui, H. (2023). Holocene provenance evolution of the northern South China Sea inferred from detrital zircon U‐Pb geochronology and Hf isotopes. Global and Planetary Change, 228, 104207.
    [Google Scholar]
  122. Wang, L., Shen, L., Liu, C., Chen, K., Ding, L., & Wang, C. (2021). The late Cretaceous source‐to‐sink system at the eastern margin of the Tibetan Plateau: Insights from the provenance of the Lanping Basin. Geoscience Frontiers, 12(3), 101102.
    [Google Scholar]
  123. Wang, M. (2020). Mesopreoterzoic stratigraphic characteristics and sedimentary paleogeography in south margin of the North China Craton. Master thesis. China University of Geosciences (in Chinese with English abstract).
    [Google Scholar]
  124. Wang, Y., Yang, W., Zheng, D., Zuo, P., & Qi, S. (2019). Detrital zircon U–Pbages from the Middle to Late Permian strata of the Yiyang area, southern North China Craton: Implications for the Mianlue oceanic crust subduction. Geological Journal, 54(6), 3527–3541.
    [Google Scholar]
  125. Wang, Z., Zhou, H., Wang, X., Zheng, M., Santosh, M., Jing, X., Zhang, J., & Zhang, Y. (2016). Detrital zircon fingerprints link western North China Craton with East Gondwana during Ordovician. Gondwana Research, 40, 58–76.
    [Google Scholar]
  126. Weislogel, A. L., Graham, S. A., & Chang, E. Z. (2007). Accumulation of the Middle to Upper Triassic Songpan‐Ganzi turbidite complex, China. In T. H.Nilsen, R. D.Shew, G. S.Steffens, & J. R. J.Studlick (Eds.), Atlas of deep‐water outcrops (Vol. 56, pp. 1–20). AAPG Studies in Geology.
    [Google Scholar]
  127. Weislogel, A. L., Graham, S. A., Chang, E. Z., Wooden, J. L., & Gehrels, G. E. (2010). Detrital zircon provenance from three turbidite depocenters of the Middle‐Upper Triassic Songpan‐Ganzi complex, Central China: Record of collisional tectonics, erosional exhumation, and sediment production. Geological Society of American Bulletin, 122(11–12), 2041–2062.
    [Google Scholar]
  128. Weislogel, A. L., Graham, S. A., Chang, E. Z., Wooden, J. L., Gehrels, G. E., & Yang, H. (2006). Detrital zircon provenance of the Late Triassic Songpan‐Ganzi complex: Sedimentary record of collision of the North and South China blocks. Geology, 34(2), 97–100.
    [Google Scholar]
  129. Wilde, S. A., Zhao, G., & Sun, M. (2002). Development of the North China Craton During the Late Archaean and its Final Amalgamation at 1.8 Ga: Some Speculations on its Position within a Global Palaeoproterozoic Supercontinent. Gondwana Research, 5(1), 85–94.
    [Google Scholar]
  130. Wilson, R. D., & Schieber, J. (2014). Muddy prodeltaic hyperpycnites in the Lower Genesee Group of Central New York, USA: Implications for mud transport in epicontinental seas. Journal of Sedimentary Research, 84(10), 866–874.
    [Google Scholar]
  131. Wu, P., Xie, Y., Kang, C., Chi, Y., Sun, L., & Wei, Z. (2022). Effects of provenance, transport processes and chemical weathering on heavy mineral composition: A case study from the Songhua River Drainage, NE China. Frontiers in Earth Science, 10, 839745.
    [Google Scholar]
  132. Wu, C., Zuza, A. V., Yin, A., Liu, C., Reith, R., Zhang, J., Liu, W., & Zhou, Z. (2017). Geochronology and geochemistry of Neoproterozoic granitoids in the central Qilian of northern Tibet: Reconstructing the amalgamation processes and tectonic history of Asia. Lithosphere, 9(4), 609–636.
    [Google Scholar]
  133. Xian, B., Wang, J., Gong, C., Yin, Y., Chao, C., Liu, J., Zhang, G., & Yan, Q. (2018). Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin, Central China. Sedimentary Geology, 368, 68–82.
    [Google Scholar]
  134. Xie, X., & Heller, P. L. (2013). U–Pb detrital zircon geochronology and its implications: the early Late Triassic Yanchang Formation, south Ordos Basin, China. Journal of Asian Earth Sciences, 64, 86–98.
    [Google Scholar]
  135. Xu, X. (2020). U–Pb single grain zircon from Rushugou Diorite, Dangchang, Western Qiling, Gansu: Age and geological significance. Gansu Metallurgy, 42(1), 83–89. (in Chinese with English abstract).
    [Google Scholar]
  136. Xu, X., Chen, J., Gao, T., Li, P., & Li, T. (2014). Granitoid magmatism and tectonic evolution in northern edge of the Western Qinling terrane, NW China. Acta Petrologica Sinica, 30(2), 371–389. (in Chinese with English abstract).
    [Google Scholar]
  137. Xu, K. (2018). Precambrian Geochronology and Geochemistry of the Tectonic Conjunction of the Qinling‐Qilian Orogen: Evidence from the Longshan Complex. Mater Thesis (pp. 1–87). Northwest University (China).
    [Google Scholar]
  138. Yan, Z., Fu, C., Aitchison, J. C., Buckman, S., Niu, M., & Cao, B. (2020). Triassic turbidites in the West Qinling Moutains, NW China: Part of the collisional Songpan‐Ganzi Basin or an active forearc basin?Journal of Asian Earth Sciences, 194(1), 104366.
    [Google Scholar]
  139. Yang, L., Chen, F., Yang, Y., Li, S., & Zhu, X. (2010). Zircon U–Pb ages of the Qinling Group in Danfeng area: Recording Mesoproterozoic and Neoproterozoic magmatism and Early Paleozoic metamorphism in the North Qinling terrain. Acta Petrologica Sinica, 26(5), 1589–1603. (in Chinese with English abstract).
    [Google Scholar]
  140. Yang, R., Jin, Z., van Loon, A. T., Han, Z., & Fan, A. (2017). Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, Central China: Implications for unconventional petroleum development. AAPG Bulletin, 101(1), 95–117.
    [Google Scholar]
  141. Yang, W., Peng, S., Wang, M., & Zhang, H. (2021). Provenance of upper Permian–Triassic sediments in the south of North China: Implications for the Qinling orogeny and basin evolution. Sedimentary Geology, 424, 106002.
    [Google Scholar]
  142. Yang, J. H., Wu, F. Y., Shao, J. A., Wilde, S. A., Xie, L. W., & Liu, X. M. (2006). Constraints on the timing of uplift of the Yanshan fold and thrust belt, North China. Earth and Planetary Science Letters, 246(3–4), 336–352.
    [Google Scholar]
  143. Yan, Z., Guo, X., Fu, C., Aitchison, J., Wang, Z., & Li, J. (2014). Detrital heavy mineral constraints on the Triassic tectonic evolution of the West Qinling Terrane, NW China: Implications for understanding subduction of the Paleotethyan Ocean. The Journal of Geology, 122(5), 591–608.
    [Google Scholar]
  144. Yan, Z., Wang, Z., Li, J., Xu, Z., & Deng, J. (2012). Tectonic settings and accretionary orogenesis of the west Qinling terrane, northeastern margin of the Tibet Plateau. Acta Petrologica Sinica, 28, 1808–1828. (in Chinese with English abstract).
    [Google Scholar]
  145. Yin, H., & Peng, Y. (2000). The Triassic of China and its interregional correlation. Developments in Palaeotology, 18, 197–220.
    [Google Scholar]
  146. Yin, H., Yang, F., & Huang, J. (1992). The Triassic of Qinling Mountains and neighboring areas (pp. 1–211). China University of Geosciences Press (in Chinese).
    [Google Scholar]
  147. Yu, H., Qiu, K., Pirajno, F., Zhang, P., & Dong, W. (2022). Revisiting phanerozoic evolution of the Qinling Orogen (East Tethys) with perspectives of detrital zircon. Gondwana Research, 103, 426–444.
    [Google Scholar]
  148. Zavala, C. (2020). Hyperpycnal (over density) flows and deposits. Journal of Palaeogeography, 9(1), 1–21.
    [Google Scholar]
  149. Zavala, C., & Arcuri, M. (2016). Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics. Sedimentary Geology, 337, 36–54.
    [Google Scholar]
  150. Zavala, C., Arcuri, M., Di Meglio, M., Diaz, H. G., & Contreras, C. (2011). A genetic facies tract for the analysis of sustained hyperpycnal flow deposits. In R. M.Slatt & C.Zavala (Eds.), Sediment transfer from shelf to deep water—Revisiting the delivery system (Vol. 61, pp. 31–51). AAPG Studies in Geology.
    [Google Scholar]
  151. Zavala, C., Ponce, J. J., Arcuri, M., Drittanti, D., Freije, H., & Asensio, M. (2006). Ancient lacustrine hyperpycnites: A depositional model from a case study in the Rayoso Formation (Cretaceous) of west‐central Argentina. Journal of Sedimentary Research, 76(1), 41–59.
    [Google Scholar]
  152. Zeng, J., Li, K., Yan, K., Wei, L., Huo, X., & Zhang, J. (2021). Tectonic setting and provenance characteristics of the Lower Triassic Jiangligou Formation in West Qinling. Geological Review, 67(1), 69–83. (in Chinese with English abstract).
    [Google Scholar]
  153. Zervas, D., Nichols, G. J., Hall, R., Smyth, H. R., Lüthje, C., & Murtagh, F. (2009). SedLog: A shareware program for drawing graphic logs and log data manipulation. Computers & Geosciences, 35(10), 2151–2159.
    [Google Scholar]
  154. Zhai, M. (2014). Multi‐stage crustal growth and cratonization of the North China craton. Geoscience Frontiers, 5(4), 457–469.
    [Google Scholar]
  155. Zhang, C., Guo, L., Bai, H., Hu, Y., & Wu, C. (2021). New thinking and understanding for the researches on the basement of Ordos Block. Acta Petrologica Sinica, 37(1), 162–184. (in Chinese with English abstract).
    [Google Scholar]
  156. Zhang, H., Lu, H., He, J., Xie, W., Wang, H., Zhang, H., Breecker, D., Bird, A., Stevens, T., Nie, J., & Li, G. (2022). Large‐number detrital zircon U–Pb ages reveal global cooling caused the formation of the Chinese Loess Plateau during Late Miocene. Science Advances, 8(41), eabq2007.
    [Google Scholar]
  157. Zhang, H., Zhang, J., Zhang, G., Santosh, M., Yu, H., Yang, Y. H., & Wang, J. L. (2016). Detrital zircon U–Pb, Lu–Hf, and O isotopes of the Wufoshan Group: Implications for episodic crustal growth and reworking of the southern North China craton. Precambrian Research, 273, 112–128.
    [Google Scholar]
  158. Zhang, J., Olariu, C., Steel, R., & Kim, W. (2020). Climatically controlled lacustrine clinoforms: Theory and modelling results. Basin Research, 32(2), 240–250.
    [Google Scholar]
  159. Zhang, X., Fang, G., & He, H. (1994). A discussion on main characteristics and origin of the ripple marks of upper Triassic Turbidites in west Qinling Mts. Acta Sedimentologica Sinica, 12(4), 124–129. (in Chinese with English abstract).
    [Google Scholar]
  160. Zhang, Y., Liu, J., Zhang, H., & Chen, Y. (2016). Re‐discussion on the detrital zircon provenance of the lower Yanchang formation in the southern Ordos Basin. Open Geosciences, 8(1), 808–819.
    [Google Scholar]
  161. Zhang, Y., Zeng, L., Zhang, K., Li, Z., Wang, C., & Guo, T. L. (2014). Late Palaeozoic and early Mesozoic tectonic and palaeogeographic evolution of central China: Evidence from U–Pb and Lu–Hf isotope systematics of detrital zircons from the western Qinling region. International Geology Review, 56(3), 351–392.
    [Google Scholar]
  162. Zhao, G., Cawood, P. A., Li, S., Wilde, S. A., Sun, M., Zhang, J., He, Y., & Yin, C. (2012). Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222, 55–76.
    [Google Scholar]
  163. Zhou, P., Stockli, D. F., Ireland, T., Murray, R. W., & Clift, P. D. (2022). Zircon U‐Pb age constraints on NW Himalayan exhumation from the Laxmi Basin, Arabian Sea. Geochemistry, Geophysics, Geosystems, 23(1), e2021GC010158.
    [Google Scholar]
  164. Zhu, X., Chen, F., Li, S., Yang, Y., Nie, H., Siebel, W., & Zhai, M. (2011). Crustal evolution of the North Qinling terrain of the Qinling Orogen, China: evidence from detrital zircon U–Pb ages and Hf isotopic composition. Gondwana Research, 20(1), 194–204.
    [Google Scholar]
  165. Zhu, X., Chen, F., Nie, H., Siebel, W., Yang, Y., Xue, Y., & Zhai, M. (2014). Neoproterozoic tectonic evolution of South Qinling, China: Evidence from zircon ages and geochemistry of the Yaolinghe volcanic rocks. Precambrian Research, 245, 115–130.
    [Google Scholar]
  166. Zhu, S. F., Zhu, X. M., Jia, Y., Cui, H., & Wang, W. Y. (2020). Diagenetic alteration, pore‐throat network, and reservoir quality of tight gas sandstone reservoirs: A case study of the upper Paleozoic sequence in the northern Tianhuan Depression in the Ordos Basin, China. AAPG Bulletin, 104(11), 2297–2324.
    [Google Scholar]
/content/journals/10.1111/bre.12835
Loading
/content/journals/10.1111/bre.12835
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error