1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

The Miocene facies in the St. Paul and Gebel El‐Zeit display distinct features indicative of rift events, which greatly influenced facies characteristics and stratal architectures. The inferred sequences significantly improve the correlation of the Miocene facies, and enable a better understanding of the complex facies’ variations and their evolution.

, Abstract

Marginal and deeper marine facies typify the Miocene exposures along the western margin of the Gulf of Suez rift basin. The stratigraphic setting of these facies is a subject of debate and confusing at best. Integrative sedimentological and sequence stratigraphic study of successions exposed in the St. Paul and El‐Zeit blocks provides insight into the lateral relationships between the two facies and their evolution, a topic that is not fully understood. The St. Paul block, located at the basin margin, has thin shallow marine facies, while the succession of El‐Zeit block, situated near the basin axis, consists of basal conglomerates, thin shallow marine carbonates, thick deeper marine shale and marginal evaporites. The facies architecture of these successions is interpreted as belonging to two different depositional models: a fan‐delta/lagoon system followed upwards by an alluvial fans/sabkha‐tidal flat system in the St. Paul hangingwall basin, and carbonate–siliciclastic–evaporite systems on the hangingwall dip‐slope ramp of El‐Zeit block. These models may help understanding the sedimentary history of other similar blocks in the rift basin. The studied facies show many striking features such as deposition during tilting of fault block, abrupt facies and thickness variations, coarse clastic shedding, erosion channel filling, onlapping of high standing blocks and evaporite accumulation. These features are the result of major tectonic events that triggered the formation of unconformities at different hierarchical levels during the late early to middle Miocene. These unconformities subdivide the Miocene facies into five depositional sequences separated by basin‐wide erosional boundaries. This division greatly improves the age control of marginal marine facies. It affords new insight into the evolution of marginal marine facies along the western margin of the basin in relation to deeper facies in the basin centre. Facies and thickness changes in these tectonically induced sequences indicate that basin floor irregularities, subsidence rates, climatic changes, variable sediment influx, sea‐level/brine‐level changes and basin isolation/connection to the Mediterranean Sea are also important factors responsible for their evolution.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12836
2024-02-04
2025-04-17
Loading full text...

Full text loading...

References

  1. Abreu, V. S., & Anderson, J. B. (1998). Glacial eustasy during the Cenozoic: Sequence stratigraphic implications. AAPG Bulletin, 82, 1385–1400.
    [Google Scholar]
  2. Abu Khadrah, A. M., Darwish, M., El‐Azabi, M. H., & Abdel‐Fattah, M. A. (1987). Lithostratigraphy of the upper cretaceous‐tertiary succession in the Gulf of Suez (Southern Galala Plateau), Egypt. In G.Matheis & H.Schandelmeier (Eds.), Current research in African earth sciences, extended abstract (pp. 171–176). Balkema.
    [Google Scholar]
  3. Al‐Husseini, M. I., Mahmoud, M. D., & Matthews, R. K. (2010). Middle East Geologic Time Scale 2010—Miocene Kareem sequence, Gulf of Suez, Egypt. GeoArabia, 15, 175–204.
    [Google Scholar]
  4. Allen, G. P., Ayyad, A., Desforges, G., Haddadi, M., & Pizon, J. (1984). Subsurface sedimentological study of the Rudeis formation in Kareem, Ayun, Yusr and Shukheir fields. In Proceedings of the 7th EGPC exploration seminar (pp. 164–176). Cairo, Egypt.
  5. Angelier, J. (1985). Extension and rifting of the Zeit region, Gulf of Suez. Journal of Structural Geology, 7, 605–612.
    [Google Scholar]
  6. Ayyad, M. H., & Stuart, C. J. (1990). Sequence stratigraphy without seismic: Techniques applied in the Gulf of Suez. In Proceedings of the 10th EGPC exploration and production conference (pp. 179–212). Cairo, Egypt.
  7. Bassiouni, M. A., El Shikh, H., & El Fiki, W. (2014). High resolution biostratigraphy of the lower‐middle Miocene succession in the Gulf of Suez area, Egypt. Egyptian Journal of Paleontology, 14, 73–135.
    [Google Scholar]
  8. Beleity, A. (1982). The composite standard and definition of paleo‐events in the Gulf of Suez. In Proceedings of the 6th EGPC exploration seminar (pp. 181–189). Cairo, Egypt.
  9. Berggren, W. A., Kent, D. V., Swisher, C. C., III, & Aubry, M.‐P. (1995). A revised Cenozoic geochronology and chronostratigraphy. In W. A.Berggren, D. V.Kent, M.‐P.Aubry, & J.Hardenbol (Eds.), Geochronology time scales and global stratigraphic correlation (Vol. 54, pp. 129–212). Society of Economic Paleontologists and Mineralogists Special Publication.
    [Google Scholar]
  10. Blow, W. H. (1969). Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy. In P.Brönnimann & H. H.Renz (Eds.), Proceedings of the first international conference planktonic microfossils (pp. 199–422). Geneva, Leiden.
    [Google Scholar]
  11. Bosworth, W., & McClay, K. (2001). Structural and stratigraphic evolution of the Gulf of Suez Rift, Egypt: A synthesis. In P. A.Ziegler, W.Cavazza, A. H. F.Robertson, & S.Crasquin‐Soleau (Eds.), Peri‐Tethys Memoir 6: Peri‐Tethyan Rift/Wrench Basins and Passive Margins (Vol. 186, pp. 567–606). Mémoires du Muséum national d'hastoire naturelle.
    [Google Scholar]
  12. Boucot, A. J., Xu, C., Scotese, C. R., & Morley, R. J. (2013). Phanerozoic paleoclimate: An atlas of lithologic indicators of climate. In G. J.Nichols & B.Ricketts (Eds.), Society economic paleontologists and mineralogists, concepts in sedimentology and paleontology, 11 (pp. 1–30). Map Folio.
    [Google Scholar]
  13. Burchette, T. P., & Wright, V. P. (1992). Carbonate ramp depositional systems. Sedimentary Geology, 79, 3–57.
    [Google Scholar]
  14. Butler, G. P., Harris, P. H., & Kendall, C. G. S. C. (1982). Recent evaporites from the Abu Dhabi marginal flats. In C. R.Handford, R. G.Loucks, & G. R.Davies (Eds.), Depositional and diagenetic spectra of evaporites—A core workshop (pp. 33–64). Society of Economic Paleontologists and Mineralogists Core Workshop 3.
    [Google Scholar]
  15. Chénet, P. Y., Colletta, B., Letouzey, J., Desforges, G., Ousset, E., & Zaghloul, E. A. (1987). Structures associated with extensional tectonics in the Suez rift. In M. P.Coward (Ed.), Continental extensional tectonics (Vol. 28, pp. 551–558). Geological Society Special Publication.
    [Google Scholar]
  16. Cofer, C. R., Lee, K. D., & Wray, J. L. (1984). Miocene carbonate microfacies, Esh El‐Mellaha range, Gulf of Suez. In Proceedings of the 7th EGPC exploration seminar (pp. 97–115). Cairo, Egypt.
  17. Coffield, D. Q., & Schamel, S. (1989). Surface expression of an accommodation zone within the Gulf of Suez rift, Egypt. Geology, 17, 76–79.
    [Google Scholar]
  18. Colletta, B., Le Quellec, P., Letouzey, J., & Moretti, I. (1988). Longitudinal evolution of the Suez rift structure (Egypt). Tectonophysics, 153, 221–233.
    [Google Scholar]
  19. Colletta, B., Moretti, I., & Chenet, P. Y. (1985). Structure of the Gebel Zeit region, Gulf of Suez, Egypt, a field example of tilted block‐crest. Institut Francais du Pétrole. Ref. I.F.P. 33525.
    [Google Scholar]
  20. Cross, N. E., Purser, B. H., & Bosence, D. W. J. (1998). Tectono‐sedimentary evolution of a rift margin carbonate platform: Abu Shaar, Gulf of Suez, Egypt. In B. H.Purser & D. W. J.Bosence (Eds.), Sedimentation and tectonics of rift basins, Red Sea‐Gulf of Aden (pp. 271–295). Chapman and Hall.
    [Google Scholar]
  21. Darwish, M., & El‐Azabi, M. (1993). Contributions to the Miocene sequences along the western margin of the Gulf of Suez, Egypt. Egyptian Journal of Geology, 37, 21–47.
    [Google Scholar]
  22. Darwish, M., & El‐Azabi, M. (1995). The Miocene lithostratigraphic sequence of St. Paul area, western margin, Gulf of Suez; a field description. Egyptian Journal of Geology, 39, 37–55.
    [Google Scholar]
  23. Dolson, J., El Gendi, O., Charmy, H., Fathalla, M., & Gaafar, I. (1996). Gulf of Suez rift basin sequence models—Part A, Miocene sequence stratigraphy and exploration significance in the greater October field area, northern Gulf of Suez. In Proceedings of the 13th EGPC exploration and production conference (pp. 227–241). Cairo, Egypt.
  24. El‐Azabi, M., & Eweda, S. (1996). Clastic‐carbonate sequence of Gabal El‐Safra, Sherm El‐Sheikh area, Southern Sinai, Egypt. Egyptian Journal of Geology, 40, 805–844.
    [Google Scholar]
  25. El‐Azabi, M. H. (1996). A new suggested stratigraphic level for the Miocene Sarbut El‐Gamal formation in the Gulf of Suez, Egypt; a sedimentologic approach. In Proceedings of the 3rd international conference geology of the Arab world (pp. 407–432). Cairo University, Egypt.
  26. El‐Azabi, M. H. (1997). The Miocene marginal marine facies and their equivalent deeper marine sediments in the Gulf of Suez, Egypt; a revised stratigraphic setting. Egyptian Journal of Geology, 41, 273–308.
    [Google Scholar]
  27. El‐Azabi, M. H. (2004). Facies characteristics, depositional styles and evolution of the syn‐rift Miocene sequences in Nukhul‐Feiran area, Sinai side of the Gulf of Suez rift basin, Egypt. Sedimentology of Egypt, 12, 69–103.
    [Google Scholar]
  28. El‐Azabi, M. H. (2021). Depositional models and sequence stratigraphy of the middle Miocene clastic/carbonate deposits in the Esh El‐Mellaha range, southwest Gulf of Suez rift basin, Egypt. Sedimentary Geology, 418, 105902.
    [Google Scholar]
  29. El‐Heiny, I., & Martini, E. (1981). Miocene foraminiferal and calcareous nannoplankton assemblages from the Gulf of Suez region and correlations. Géologie Mediterranéenne, 8, 101–108.
    [Google Scholar]
  30. Evans, A. L. (1988). Neogene tectonic and stratigraphic events in the Gulf of Suez rift area, Egypt. Tectonophysics, 153, 235–247.
    [Google Scholar]
  31. Garfunkel, Z., & Bartov, Y. (1977). The tectonics of the Suez rift. Geological Survey of Israel Bulletin, 71, 1–44.
    [Google Scholar]
  32. Gawthorpe, R. L., Fraser, A. J., & Collier, R. E. L. I. (1994). Sequence stratigraphy in active extensional basins: Implications for the interpretation of ancient basin‐fills. Marine and Petroleum Geology, 11, 642–658.
    [Google Scholar]
  33. Gawthorpe, R. L., Hurst, J. M., & Sladen, C. P. (1990). Evolution of Miocene footwall‐derived coarse‐grained deltas, Egypt: Implications for exploration. AAPG Bulletin, 74, 1077–1086.
    [Google Scholar]
  34. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218.
    [Google Scholar]
  35. Gawthorpe, R. L., Sharp, I. R., Underhill, J. R., & Gupta, S. (1997). Linked sequence stratigraphic and structural evolution of propagating normal faults. Geology, 25, 795–798.
    [Google Scholar]
  36. Gupta, S., Underhill, J. R., Sharp, I. R., & Gawthorpe, R. L. (1999). Role of fault interactions in controlling synrift sediment dispersal patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt. Basin Research, 11, 167–189.
    [Google Scholar]
  37. Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science, 235, 1156–1167.
    [Google Scholar]
  38. Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, T., de Graciansky, P.‐C., & Vail, P. R. (1998). Mesozoic‐Cenozoic sequence chronostratigraphy framework of Europian basins. In P.‐C.de Graciansky, J.Hardenbol, T.Jacquin, & P. R.Vail (Eds.), Sequence stratigraphy of European basins (Vol. 60, pp. 3–14). Society of Economic Paleontologists and Mineralogists Special Publication.
    [Google Scholar]
  39. Hughes, G. W., Abdine, S., & Girgis, M. H. (1992). Miocene biofacies development and geological history of the Gulf of Suez, Egypt. Marine and Petroleum Geology, 9, 2–28.
    [Google Scholar]
  40. James, N. P., Coniglio, M., Aïssaoui, D. M., & Purser, B. H. (1988). Facies and geologic history of an exposed Miocene rift‐margin carbonate platform, Gulf of Suez, Egypt. AAPG Bulletin, 72, 555–572.
    [Google Scholar]
  41. Jarrige, J. J., Ott d'Estevou, P., Burollet, P. F., Thiriet, J. P., Icart, J. C., Richert, J. P., Sehans, P., Montenat, C., & Part, P. (1986). Inherited discontinuities and Neogene structure: The Gulf of Suez and the northwestern edge of the Red Sea. Philosophical Transactions Royal Society of London, A, 317, 129–139.
    [Google Scholar]
  42. Khalil, S. M., & McClay, K. R. (2001). Tectonic evolution of the NW Red Sea‐Gulf of Suez rift system. In R. C. L.Wilson, R. B.Whitmarsh, B.Taylor, & N.Froitzheim (Eds.), Non‐volcanic rifting of continental margins: A comparison of evidence from land and sea (Vol. 187, pp. 453–473). Geological Society of London, Special Publication.
    [Google Scholar]
  43. Kominz, M. A., Browning, J. V., Miller, K. G., Sugarman, P. J., Mizintsevaw, S., & Scotese, C. R. (2008). Late Cretaceous to Miocene sea‐level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis. Basin Research, 20, 211–226.
    [Google Scholar]
  44. Krebs, W. N., Wescott, W. A., Nummedal, D., Gaafar, I., Azazi, G., & Karamat, S. (1997). Graphic correlation and sequence stratigraphy of Neogene rocks in the Gulf of Suez, Egypt. Bulletin de la Société Géologique de France, 168, 63–71.
    [Google Scholar]
  45. Leeder, M. R., & Jackson, J. A. (1993). The interaction between normal faulting and drainage in active extensional basins, with examples from the western United States and Central Greece. Basin Research, 5, 79–102.
    [Google Scholar]
  46. Leppard, C. W., & Gawthorpe, R. L. (2006). Sedimentology of rift climax deep water systems; lower Rudeis formation, hammam faraun fault block, Suez Rift, Egypt. Sedimentary Geology, 191, 67–87.
    [Google Scholar]
  47. Lourens, L., Hilgen, F. J., Shackleton, N. J., Laskar, J., & Wilson, D. (2004). The neogene period. In F. M.Gradstein, J. G.Ogg, & A. G.Smith (Eds.), A geologic time scale (pp. 409–440). Cambridge University Press.
    [Google Scholar]
  48. Malpas, J. A., Gawthorpe, R. L., Pollard, J. E., & Sharp, I. R. (2005). Ichnofabric analysis of the shallow marine Nukhul formation (Miocene), Suez Rift, Egypt: Implications for depositional processes and sequence stratigraphic evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 215, 239–264.
    [Google Scholar]
  49. Mann, P., Gahagan, L., & Gordon, M. B. (2003). Tectonic setting of the world's giant oil and gas fields. In M. T.Halbouty (Ed.), Giant oil and gas fields of the decade 1990–1999 (Vol. 78, pp. 15–105). American Association of Petroleum Geologists Memoir.
    [Google Scholar]
  50. Martini, E. (1971). Standard Tertiary and Quaternary calcareous nannoplankton zonation. In A.Farinacci (Ed.), Proceedings of the first planktonic conference (pp. 739–785). Technoscienza 2.
    [Google Scholar]
  51. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie‐Blick, N., & Pekar, S. F. (2005). The Phanerozoic record of global sea‐level change. Science, 310, 1293–1298.
    [Google Scholar]
  52. Moon, F. W., & Sadek, H. (1923). Preliminary geological report on Wadi Gharandal area (north of Gebel Hammam Faraun, Western Sinai). Petroleum Research Bulletin, 12, 1–42.
    [Google Scholar]
  53. Moretti, I., & Chénet, P. Y. (1987). The evolution of the Suez rift: A combination of stretching and secondary convection. Tectonophysics, 133, 229–234.
    [Google Scholar]
  54. Moretti, I., & Colletta, B. (1988). Fault‐block tilting; the Gebel Zeit example, Gulf of Suez. Journal of Structural Geology, 10, 9–19.
    [Google Scholar]
  55. Moustafa, A. M. (1976). Block faulting in the Gulf of Suez. In Proceedings of the 5th EGPC exploration seminar (pp. 1–20). Cairo, Egypt.
  56. National Stratigraphic sub‐Committee of the Geological Sciences of Egypt . (1974). Miocene rock stratigraphy of Egypt. Egyptian Journal of Geology, 18, 1–69.
    [Google Scholar]
  57. Noël, D., & Rouchy, J. M. (1986). Transformations minérales in situ de frustules de diatomées du Miocène d'Egypte. Double voie de la diagénèse: silicification et argilogenèse. Comptes rendus de l'Académie des sciences, 303, 1743–1748.
    [Google Scholar]
  58. Ogg, J. G., Ogg, G. M., & Gradstein, F. M. (2016). A concise geologic time scale 2016 (p. 234). Elsevier.
    [Google Scholar]
  59. Ouda, K., & Masoud, M. (1993). Sedimentation history and geological evolution of the Gulf of Suez during the Late Oligocene‐Miocene. In E. R.Philobbos & B. H.Purser (Eds.), Geodynamics and sedimentation of the Red Sea‐Gulf of Aden rift system (Vol. 1, pp. 47–88). Geological Society of Egypt, Special Publication.
    [Google Scholar]
  60. Patton, T. L., Moustafa, A. R., Nelson, R. A., & Abdine, S. A. (1994). Tectonic evolution and structural setting of the Suez rift. In S. M.Landon (Ed.), Interior rift basins (Vol. 59, pp. 9–55). American Association of Petroleum Geologists Memoir.
    [Google Scholar]
  61. Pierre, C., & Rouchy, J. M. (1988). Carbonate replacements after sulfates evaporites in the middle Miocene of Egypt. Journal of Sedimentary Petrology, 58, 446–456.
    [Google Scholar]
  62. Piller, W. E., Harzhauser, M., & Mandic, O. (2007). Miocene central Paratethys stratigraphy; current status and future directions. Stratigraphy, 4, 151–168.
    [Google Scholar]
  63. Plaziat, J.‐C., Montenat, C., Barrier, P., Janin, M.‐C., Orszag‐Sperber, F., & Philobbos, E. (1998). Stratigraphy of the Egyptian syn‐rift deposits: Correlations between axial and peripheral sequences of the north‐western Red Sea and Gulf of Suez and their relations with tectonic and eustacy. In B. H.Purser & D. W. J.Bosence (Eds.), Sedimentation and tectonics of rift basins, Red Sea‐Gulf of Aden (pp. 211–222). Chapman and hall.
    [Google Scholar]
  64. Ramzy, M., Steer, B., Abu‐Shadi, F., Schlorholtz, M., Mika, J., Dolson, J., & Zinger, M. (1996). Gulf of Suez rift basin sequence models—Part B., Miocene sequence stratigraphy and exploration significance in the central and southern Gulf of Suez. In Proceedings of the 13th EGPC exploration and production conference (pp. 242–256). Cairo, Egypt.
  65. Rateb, R. (1988). Miocene planktonic foraminiferal analysis and its stratigraphic application in the Gulf of Suez region. In Proceedings of the 9th EGPC exploration and production conference (pp. 275–307). Cairo, Egypt.
  66. Ravnås, R., & Steel, R. J. (1998). Architecture of marine rift‐basins successions. AAPG Bulletin, 82, 110–146.
    [Google Scholar]
  67. Richert, J. P., Jarrige, J. J., Montenat, C., & Ott d'Estevou, P. (1986). Compression and transgression mechanism during the first stage of opening of the Gulf of Suez and northern part of the Red Sea. In Proceedings of the 8th EGPC exploration seminar (pp. 1–10). Cairo, Egypt.
  68. Roberts, H. H. (1987). Modern carbonate‐siliciclastic transitions: Humid and arid tropical examples. Sedimentary Geology, 50, 25–65.
    [Google Scholar]
  69. Rohais, S., Barrois, A., Colletta, B., & Moretti, I. (2016). Pre‐salt to salt stratigraphic architecture in a rift basin: Insights from a basin‐scale study of the Gulf of Suez (Egypt). Arabian Journal of Geosciences, 9, 1–24.
    [Google Scholar]
  70. Rouchy, J. M., Pierre, C., & Sommer, F. (1995). Deep‐water resedimentation of anhydrite and gypsum deposits in the Middle Miocene (Belayim formation) of the Red Sea, Egypt. Sedimentology, 42, 267–282.
    [Google Scholar]
  71. Sadek, H. (1959). The Miocene in the Gulf of Suez region (Egypt) (pp. 1–118). Geological Survey and Mineral Research Department.
    [Google Scholar]
  72. Schreiber, B. C. (1986). Arid shorelines and evaporites. In H. G.Reading (Ed.), Sedimentary environments and facies (pp. 189–228). Blackwell Scientific Publications.
    [Google Scholar]
  73. Schreiber, B. C. (1988). Subaqueous evaporite deposition. In B. C.Schreiber (Ed.), Evaporites and hydrocarbons (pp. 182–255). Columbia University Press.
    [Google Scholar]
  74. Sellwood, B. W., & Netherwood, R. E. (1984). Facies evolution in the Gulf of Suez area, sedimentation history as an indicator of rift initiation and development. Modern Geology, 9, 43–69.
    [Google Scholar]
  75. Sharp, I. R., Gawthorpe, R. L., Armstrong, B., & Underhill, J. R. (2000). Propagation history and passive rotation of mesoscale normal faults: Implication for synrift stratigraphic development. Basin Research, 12, 285–305.
    [Google Scholar]
  76. Shearman, D. J. (1978). Evaporites of marginal sabkha. In W. E.Dean & B. C.Schreiber (Eds.), Marine evaporites (pp. 6–42). Society of Economic Paleontologists and Mineralogists Short Course, 4.
    [Google Scholar]
  77. Sneh, A., & Friedman, G. M. (1984). Spit complexes along the eastern coast of the Gulf of Suez. Sedimentary Geology, 39, 211–226.
    [Google Scholar]
  78. Stainforth, R. M. (1949). Forminifera in the Upper Tertiary of Egypt. Journal of Paleontology, 23, 419–422.
    [Google Scholar]
  79. Steckler, M. S., Berthelot, F., Lyberis, N., & LePichon, X. (1988). Subsidence in the Gulf of Suez: Implications for rifting and plate kinematics. Tectonophysics, 153, 249–270.
    [Google Scholar]
  80. Strachan, L. J., Rarity, F., Gawthorpe, R. L., Wilson, P., Sharp, I., & Hodgetts, D. (2013). Submarine slope processes in rift‐margin basins, Miocene Suez rift, Egypt. Geological Society of America Bulletin, 125, 109–127.
    [Google Scholar]
  81. van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., Vail, P. R., Sarg, J. F., Loutit, T. S., & Hardenbol, J. (1988). An overview of the fundamentals of sequence stratigraphy and key definitions. In C. K.Wilgus, B. S.Hastings, C. A.Ross, H.Posamentier, J.van Wagoner, & C. G. C.Kendall (Eds.), Sea‐level changes—An integrated approach (Vol. 42, pp. 39–45). Society of Economic Paleontologists and Mineralogists Special Publication.
    [Google Scholar]
  82. Warren, J. K. (2010). Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth‐Science Reviews, 98, 217–268.
    [Google Scholar]
  83. Wescott, W. A., Krebs, W. N., Dolson, J. C., Karamat, S. A., & Nummedal, D. (1996). Rift basin sequence stratigraphy: Some examples from the Gulf of Suez. GeoArabia, 1, 343–357.
    [Google Scholar]
  84. Winn, R. D., Jr., Crevello, P. D., & Bosworth, W. (2001). Lower Miocene Nukhul formation, Gebel el Zeit, Egypt: Model for structural control on early synrift strata and reservoirs, Gulf of Suez. AAPG Bulletin, 85, 1871–1890.
    [Google Scholar]
  85. Young, M. J., Gawthorpe, R. L., & Sharp, I. R. (2000). Sedimentology and sequence stratigraphy of a transfer zone coarse‐grained delta, Miocene Suez rift, Egypt. Sedimentology, 47, 1081–1104.
    [Google Scholar]
  86. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.
    [Google Scholar]
/content/journals/10.1111/bre.12836
Loading
/content/journals/10.1111/bre.12836
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error