1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

Submarine fluid flow system can transport methane into ocean. However, its evolution is not fully understood, particularly methane migration through the gas hydrate stability zone (GHSZ) in deep‐water settings. Here, we used 3D seismic and well‐logging data to show the currently active fluid flow system in the northern South China Sea. It was interpreted to have two parts and they together feed intermittent methane emission. Three gas clouds have been seismically imaged beneath the base of gas hydrate stability zone (BGHSZ) and a set of new faults can be identified within them. Twenty‐eight seismic pipes were found to penetrate three vertically stacked mass transport deposits (MTDs) above the gas clouds. Log‐seismic correlation shows that the seismic reflections in the pipe represent MTD sediment, bulk carbonate and gas hydrate‐ or free gas‐bearing sediments. We interpreted faults and pipes as the main migration conduits below and above the BGHSZ respectively. The MTD within the GHSZ could seal the underlying free gas transported by faults and thus overpressure built up at the base prior to the occurrences of the pipes and the fracturing through the overlying sedimentary succession. Subsequently, focused fluid flow entered the GHSZ, with the methane probably bypassing the GHSZ before pore clogging of gas hydrates occurred. Additionally, mapping of high‐amplitude reflections surrounding the upper portion of gas clouds reveals the relict free gas associated with three paleo‐GHSZ bases. Episodic emplacements of new MTDs repeatedly caused the upward shifts of the BGHSZ and the resultant gas hydrate dissociation, contributing to methane emission. We proposed that the occurrences of MTDs may facilitate methane emission by intermittently trapping methane and inducing gas hydrate dissociation in deep‐water settings.

,

Schematic model showing the submarine fluid flow system feeding methane emassion in the northern South China Sea.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12839
2024-01-08
2025-06-13
Loading full text...

Full text loading...

References

  1. Arntsen, B., Wensaas, L., Løseth, H., & Hermanrud, C. (2007). Seismic modeling of gas chimneys. Geophysics, 72, SM251–SM259.
    [Google Scholar]
  2. Berndt, C. (2005). Focused fluid flow in passive continental margins. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363, 2855–2871.
    [Google Scholar]
  3. Carpenter, G. (1981). Coincident sediment slump/clathrate complexes on the U.S. Atlantic continental slope. Geo‐Marine Letters, 1, 29–32.
    [Google Scholar]
  4. Cartwright, J., Kirkham, C., Foschi, M., Hodgson, N., Rodriguez, K., & James, D. (2021). Quantitative reconstruction of pore‐pressure history in sedimentary basins using fluid escape pipes. Geology, 49, 576–580.
    [Google Scholar]
  5. Chadwick, R., Arts, R., & Eiken, O. (2005). 4D seismic quantification of a growing CO2 plume at Sleipner, North Sea. Geological Society, London, Petroleum Geology Conference series. Geological Society of London.
    [Google Scholar]
  6. Clennell, M. B., Hovland, M., Booth, J. S., Henry, P., & Winters, W. J. (1999). Formation of natural gas hydrates in marine sediments: 1. Conceptual model of gas hydrate growth conditioned by host sediment properties. Journal of Geophysical Research: Solid Earth, 104, 22985–23003.
    [Google Scholar]
  7. Clift, P. D., & Sun, Z. (2006). The sedimentary and tectonic evolution of the Yinggehai–Song Hong basin and the southern Hainan Margin, South China Sea: Implications for Tibetan uplift and monsoon intensification. Journal of Geophysical Research: Solid Earth, 111, B06405. https://doi.org/10.1029/2005JB004048
    [Google Scholar]
  8. Cook, A. E., & Tost, B. C. (2014). Geophysical signatures for low porosity can mimic natural gas hydrate: An example from Alaminos Canyon, Gulf of Mexico. Journal of Geophysical Research: Solid Earth, 119, 7458–7472.
    [Google Scholar]
  9. Crutchley, G. J., Mountjoy, J. J., Hillman, J. I. T., Turco, F., Watson, S., Flemings, P. B., Davy, B., Woelz, S., Gorman, A. R., & Bialas, J. (2021). Upward‐doming zones of gas hydrate and free gas at the bases of gas chimneys, New Zealand's Hikurangi margin. Journal of Geophysical Research: Solid Earth, 126, e2020JB021489.
    [Google Scholar]
  10. Davies, R. J., & Clarke, A. L. (2010). Methane recycling between hydrate and critically pressured stratigraphic traps, offshore Mauritania. Geology, 38, 963–966.
    [Google Scholar]
  11. Davies, R. J., Thatcher, K. E., Mathias, S. A., & Yang, J. (2012). Deepwater canyons: An escape route for methane sealed by methane hydrate. Earth and Planetary Science Letters, 323–324, 72–78.
    [Google Scholar]
  12. Deng, W., Jinqiang, L., Wei, Z., Zenggui, K., Tong, Z., & Yulin, H. (2021). Typical characteristics of fracture‐filling hydrate‐charged reservoirs caused by heterogeneous fluid flow in the Qiongdongnan basin, northern South China Sea. Marine and Petroleum Geology, 124, 104810.
    [Google Scholar]
  13. Deng, W., Liang, J., Kuang, Z., Zhang, W., He, Y., Meng, M., & Zhong, T. (2021). Permeability prediction for unconsolidated hydrate reservoirs with pore compressibility and porosity inversion in the northern South China Sea. Journal of Natural Gas Science and Engineering, 95, 104161.
    [Google Scholar]
  14. Dickens, G. R., O'Neil, J. R., Rea, D. K., & Owen, R. M. (1995). Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10, 965–971.
    [Google Scholar]
  15. Etiope, G., Ciotoli, G., Schwietzke, S., & Schoell, M. (2019). Gridded maps of geological methane emissions and their isotopic signature. Earth System Science Data, 11, 1–22.
    [Google Scholar]
  16. Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S., Mackenzie, F. T., Moore, B., III, Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., & Steffen, W. (2000). The global carbon cycle: A test of our knowledge of earth as a system. Science, 290, 291–296.
    [Google Scholar]
  17. Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C. A. J., & Withjack, M. O. (2010). A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32, 1557–1575.
    [Google Scholar]
  18. Ferré, B., Jansson, P. G., Moser, M., Serov, P., Portnov, A., Graves, C. A., Panieri, G., Gründger, F., Berndt, C., Lehmann, M. F., & Niemann, H. (2020). Reduced methane seepage from arctic sediments during cold bottom‐water conditions. Nature Geoscience, 13, 144–148.
    [Google Scholar]
  19. Foschi, M., & Van Rensbergen, P. (2022). Topseal integrity assessment using seal properties and leakage phenomena. Marine and Petroleum Geology, 139, 105573.
    [Google Scholar]
  20. Haeckel, M., Suess, E., Wallmann, K., & Rickert, D. (2004). Rising methane gas bubbles form massive hydrate layers at the seafloor. Geochimica et Cosmochimica Acta, 68, 4335–4345.
    [Google Scholar]
  21. Hao, F., Li, S., Sun, Y., & Zhang, Q. (1998). Geology, compositional heterogeneities, and geochemical origin of the Yacheng gas field, Qiongdongnan Basin, south China Sea. AAPG Bulletin, 82, 1372–1384.
    [Google Scholar]
  22. Heggland, R. (1998). Gas seepage as an indicator of deeper prospective reservoirs. A study based on exploration 3D seismic data. Marine and Petroleum Geology, 15, 1–9.
    [Google Scholar]
  23. Huang, B., Tian, H., Li, X., Wang, Z., & Xiao, X. (2016). Geochemistry, origin and accumulation of natural gases in the deepwater area of the Qiongdongnan basin, South China Sea. Marine and Petroleum Geology, 72, 254–267.
    [Google Scholar]
  24. Huang, B., Xiao, X., & Li, X. (2003). Geochemistry and origins of natural gases in the Yinggehai and Qiongdongnan basins, offshore South China Sea. Organic Geochemistry, 34, 1009–1025.
    [Google Scholar]
  25. Ji, M., Zeng, Q., Yang, H., Guo, S., & Zhong, K. (2021). Structural characteristics of central depression belt in deep‐water area of the Qiongdongnan basin and the hydrocarbon discovery of Songnan low bulge. Acta Oceanologica Sinica, 40, 42–53.
    [Google Scholar]
  26. Joung, D., Ruppel, C., Southon, J., Weber, T. S., & Kessler, J. D. (2022). Negligible atmospheric release of methane from decomposing hydrates in mid‐latitude oceans. Nature Geoscience, 15, 885–891.
    [Google Scholar]
  27. Ketzer, M., Praeg, D., Augustin, A. H., Rodrigues, L. F., Steiger, A. K., Rahmati‐Abkenar, M., Viana, A. R., Miller, D. J., Malinverno, A., Dickens, G. R., & Cupertino, J. A. (2023). Gravity complexes as a focus of seafloor fluid seepage: The Rio Grande Cone, SE Brazil. Scientific Reports, 13, 4590.
    [Google Scholar]
  28. Kim, B., & Zhang, Y. G. (2022). Methane hydrate dissociation across the Oligocene–Miocene boundary. Nature Geoscience, 15, 203–209.
    [Google Scholar]
  29. Kvenvolden, K. A. (1993). Gas hydrates as a potential energy resource—A review of their methane content. USGS Professional Paper, 1570, 555–562.
    [Google Scholar]
  30. Ladd, C. C., Foott, R., Ishihara, K., & Schlosser, F. (1977). Stress deformation and strength characteristics. In Proceedings of the 9th International Conference on Soil mechanics and Foundation Engineering, Tokyo, Japan, Vol. 2, 421–494.
  31. Lai, H., Fang, Y., Kuang, Z., Ren, J., Liang, J., Lu, J. A., Wang, G., & Xing, C. (2021). Geochemistry, origin and accumulation of natural gas hydrates in the Qiongdongnan Basin, South China Sea: Implications from site Gmgs5‐W08. Marine and Petroleum Geology, 123, 104774.
    [Google Scholar]
  32. Li, A., Davies, R. J., & Mathias, S. (2017). Methane hydrate recycling offshore of Mauritania probably after the last glacial maximum. Marine and Petroleum Geology, 84, 323–331.
    [Google Scholar]
  33. Li, A., Wu, N., Li, Q., Wang, Z., Wan, Y., Cai, F., Sun, Z., & Feng, D. (2023). Methane seepage caused by gas hydrate dissociation in the mid‐Okinawa trough since the last glacial maximum. Geophysical Research Letters, 50, e2023GL103375.
    [Google Scholar]
  34. Li, X., & Zhu, G. (2005). The fault system and its hydrocarbon carrier significance in Qiongdongnan Basin. China Offshore Oil and Gas (in Chinese), 17, 1–7.
    [Google Scholar]
  35. Liang, C., Liu, C., Xie, X., Yu, X., He, Y., Su, M., Chen, H., Zhou, Z., Tian, D., Mi, H., Li, M., & Zhang, H. (2021). Basal shear zones of recurrent mass transport deposits serve as potential reservoirs for gas hydrates in the central canyon area, South China Sea. Marine Geology, 441, 106631.
    [Google Scholar]
  36. Liang, Q., Hu, Y., Feng, D., Peckmann, J., Chen, L., Yang, S., Liang, J., Tao, J., & Chen, D. (2017). Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics. Deep Sea Research Part I: Oceanographic Research Papers, 124, 31–41.
    [Google Scholar]
  37. Liu, J., Haeckel, M., Rutqvist, J., Wang, S., & Yan, W. (2019). The mechanism of methane gas migration through the gas hydrate stability zone: Insights from numerical simulations. Journal of Geophysical Research: Solid Earth, 124, 4399–4427.
    [Google Scholar]
  38. Liu, X., & Flemings, P. B. (2006). Passing gas through the hydrate stability zone at southern hydrate ridge, offshore Oregon. Earth and Planetary Science Letters, 241, 211–226.
    [Google Scholar]
  39. Løseth, H., Gading, M., & Wensaas, L. (2009). Hydrocarbon leakage interpreted on seismic data. Marine and Petroleum Geology, 26, 1304–1319.
    [Google Scholar]
  40. Meazell, P. K., & Flemings, P. B. (2022). The evolution of seafloor venting from hydrate‐sealed gas reservoirs. Earth and Planetary Science Letters, 579, 117336.
    [Google Scholar]
  41. Miles, P. R. (1995). Potential distribution of methane hydrate beneath the European continental margins. Geophysical Research Letters, 22, 3179–3182.
    [Google Scholar]
  42. Milkov, A. V., Claypool, G. E., Lee, Y.‐J., & Sassen, R. (2005). Gas hydrate systems at hydrate ridge offshore Oregon inferred from molecular and isotopic properties of hydrate‐bound and void gases. Geochimica et Cosmochimica Acta, 69, 1007–1026.
    [Google Scholar]
  43. Moss, J. L., & Cartwright, J. (2010). 3D seismic expression of km‐scale fluid escape pipes from offshore Namibia. Basin Research, 22, 481–501.
    [Google Scholar]
  44. Nimblett, J., & Ruppel, C. (2003). Permeability evolution during the formation of gas hydrates in marine sediments. Journal of Geophysical Research: Solid Earth, 108(B9), 2420. https://doi.org/10.1029/2001JB001650
    [Google Scholar]
  45. Oluwunmi, P., Pecher, I., Archer, R., Reagan, M., & Moridis, G. (2022). The response of gas hydrates to tectonic uplift. Transport in Porous Media, 144, 739–758.
    [Google Scholar]
  46. Phrampus, B., Hornbach, M., Ruppel, C., & Hart, P. (2014). Widespread gas hydrate instability on the upper U.S. Beaufort margin. Journal of Geophysical Research: Solid Earth, 119, 8594–8609. https://doi.org/10.1002/2014JB011290
    [Google Scholar]
  47. Plaza‐Faverola, A., Westbrook, G. K., Ker, S., Exley, R. J. K., Gailler, A., Minshull, T. A., & Broto, K. (2010). Evidence from three‐dimensional seismic tomography for a substantial accumulation of gas hydrate in a fluid‐escape chimney in the Nyegga Pockmark Field, Offshore Norway. Journal of Geophysical Research: Solid Earth, 115, B08104. https://doi.org/10.1029/2009JB007078
    [Google Scholar]
  48. Ru, K., & Pigott, J. D. (1986). Episodic rifting and subsidence in the South China Sea. AAPG Bulletin, 70, 1136–1155.
    [Google Scholar]
  49. Rubino, J. G., Velis, D. R., & Sacchi, M. D. (2011). Numerical analysis of wave‐induced fluid flow effects on seismic data: Application to monitoring of CO2 storage at the Sleipner field. Journal of Geophysical Research: Solid Earth, 116, B03306. https://doi.org/10.1029/2010JB007997
    [Google Scholar]
  50. Ruppel, C. D., & Kessler, J. D. (2017). The interaction of climate change and methane hydrates. Reviews of Geophysics, 55, 126–168.
    [Google Scholar]
  51. Screaton, E. J., Torres, M. E., Dugan, B., Heeschen, K. U., Mountjoy, J. J., Ayres, C., Rose, P. S., Pecher, I. A., Barnes, P. M., & LeVay, L. J. (2019). Sedimentation controls on methane‐hydrate dynamics across glacial/interglacial stages: An example from international ocean discovery program site U1517, Hikurangi margin. Geochemistry, Geophysics, Geosystems, 20, 4906–4921.
    [Google Scholar]
  52. Shedd, W., Boswell, R., Frye, M., Godfriaux, P., & Kramer, K. (2012). Occurrence and nature of “bottom simulating reflectors” in the northern Gulf of Mexico. Marine and Petroleum Geology, 34, 31–40.
    [Google Scholar]
  53. Sheriff, R. E., & Geldart, L. P. (1995). Exploration seismology. Cambridge University Press.
    [Google Scholar]
  54. Skarke, A., Ruppel, C., Kodis, M., Brothers, D., & Lobecker, E. (2014). Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nature Geoscience, 7, 657–661.
    [Google Scholar]
  55. Sloan, E. D. (2003). Fundamental principles and applications of natural gas hydrates. Nature, 426, 353–359.
    [Google Scholar]
  56. Sloan, E. D., Jr., & Koh, C. A. (2007). Clathrate hydrates of natural gases. CRC Press.
    [Google Scholar]
  57. Suess, E. (2014). Marine cold seeps and their manifestations: Geological control, biogeochemical criteria and environmental conditions. International Journal of Earth Sciences, 103, 1889–1916.
    [Google Scholar]
  58. Sun, Q., & Alves, T. (2020). Petrophysics of fine‐grained mass‐transport deposits: A critical review. Journal of Asian Earth Sciences, 192, 104291.
    [Google Scholar]
  59. Sun, Q., Wang, Q., Shi, F., Alves, T., Gao, S., Xie, X., Wu, S., & Li, J. (2022). Runup of landslide‐generated tsunamis controlled by paleogeography and sea‐level change. Communications Earth & Environment, 3, 244.
    [Google Scholar]
  60. Sun, Z., Wang, Z., Sun, Z., Wang, Z., Zhang, W., & He, L. (2015). Structure and kinematic analysis of the deepwater area of the Qiongdongnan Basin through a seismic interpretation and analogue modeling experiments. Acta Oceanologica Sinica, 34, 32–40.
    [Google Scholar]
  61. Talukder, A. R. (2012). Review of submarine cold seep plumbing systems: Leakage to seepage and venting. Terra Nova, 24, 255–272.
    [Google Scholar]
  62. Tréhu, A. M., Flemings, P. B., Bangs, N. L., Chevallier, J., Gràcia, E., Johnson, J. E., Liu, C. S., Liu, X., Riedel, M., & Torres, M. E. (2004). Feeding methane vents and gas hydrate deposits at south hydrate ridge. Geophysical Research Letters, 31, L23310. https://doi.org/10.1029/2004GL021286
    [Google Scholar]
  63. Van Der Baan, M., Wookey, J., & Smit, D. (2007). Stratigraphic filtering and source penetration depth. Geophysical Prospecting, 55, 679–684.
    [Google Scholar]
  64. Waite, W. F., Santamarina, J. C., Cortes, D. D., Dugan, B., Espinoza, D. N., Germaine, J., Jang, J., Jung, J. W., Kneafsey, T. J., Shin, H., Soga, K., Winters, W. J., & Yun, T. S. (2009). Physical properties of hydrate‐bearing sediments. Reviews of Geophysics, 47, RG4003. https://doi.org/10.1029/2008RG000279
    [Google Scholar]
  65. Wallmann, K., Riedel, M., Hong, W. L., Patton, H., Hubbard, A., Pape, T., Hsu, C. W., Schmidt, C., Johnson, J. E., Torres, M. E., Andreassen, K., Berndt, C., & Bohrmann, G. (2018). Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming. Nature Communications, 9, 83.
    [Google Scholar]
  66. Wang, J., Wu, S., Kong, X., Ma, B., Li, W., Wang, D., Gao, J., & Chen, W. (2018). Subsurface fluid flow at an active cold seep area in the Qiongdongnan Basin, northern South China Sea. Journal of Asian Earth Sciences, 168, 17–26.
    [Google Scholar]
  67. Wang, J., Wu, S., Sun, J., Feng, W., & Li, Q. (2021). Influence of seafloor topography on gas hydrate occurrence across a submarine canyon‐incised continental slope in the northern margin of the South China Sea. Marine and Petroleum Geology, 133, 105279.
    [Google Scholar]
  68. Wei, J., Liang, J., Lu, J., Zhang, W., & He, Y. (2019). Characteristics and dynamics of gas hydrate systems in the Northwestern South China Sea—Results of the fifth gas hydrate drilling expedition. Marine and Petroleum Geology, 110, 287–298.
    [Google Scholar]
  69. Westbrook, G. K., Thatcher, K. E., Rohling, E. J., Piotrowski, A. M., Pälike, H., Osborne, A. H., Nisbet, E. G., Minshull, T. A., Lanoisellé, M., James, R. H., Hühnerbach, V., Green, D., Fisher, R. E., Crocker, A. J., Chabert, A., Bolton, C., Beszczynska‐Möller, A., Berndt, C., & Aquilina, A. (2009). Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophysical Research Letters, 36, L15608. https://doi.org10.1029/2009GL039191
    [Google Scholar]
  70. Xie, X., Müller, D., Li, S., Gong, Z., & Steinberger, B. (2006). Origin of anomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology, 23, 745–765.
    [Google Scholar]
  71. Xie, X., Müller, R. D., Ren, J., Jiang, T., & Zhang, C. (2008). Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea. Marine Geology, 247, 129–144.
    [Google Scholar]
  72. Ye, J., Wei, J., Liang, J., Lu, J., Lu, H., & Zhang, W. (2019). Complex gas hydrate system in a gas chimney, South China Sea. Marine and Petroleum Geology, 104, 29–39.
    [Google Scholar]
  73. You, K., & Flemings, P. B. (2021). Methane hydrate formation and evolution during sedimentation. Journal of Geophysical Research: Solid Earth, 126, e2020JB021235.
    [Google Scholar]
  74. Zhang, B., Su, M., Chen, H., Liu, F., Zheng, W., Su, P., Liang, J., Kuang, Z., Yang, C., Lin, Z., & Wu, N. (2023). How do fault systems and seafloor bathymetry influence the structure and distribution characteristics of gas chimneys?Basin Research, 35, 1718–1743. https://doi.org/10.1111/bre.12770
    [Google Scholar]
  75. Zhao, Z., Sun, Z., Sun, L., Wang, Z., & Sun, Z. (2018). Cenozoic tectonic subsidence in the Qiongdongnan Basin, northern South China Sea. Basin Research, 30, 269–288.
    [Google Scholar]
  76. Zhao, Z., Sun, Z., Wang, Z., Sun, Z., Liu, J., & Zhang, C. (2015). The high resolution sedimentary filling in Qiongdongnan Basin, northern South China Sea. Marine Geology, 361, 11–24.
    [Google Scholar]
  77. Zhu, W., Huang, B., Mi, L., Wilkins, R. W. T., Fu, N., & Xiao, X. (2009). Geochemistry, origin, and deep‐water exploration potential of natural gases in the Pearl River mouth and Qiongdongnan basins, South China Sea. AAPG Bulletin, 93, 741–761.
    [Google Scholar]
/content/journals/10.1111/bre.12839
Loading
/content/journals/10.1111/bre.12839
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): gas cloud; gas hydrate; mass transport deposit; methane emission; pipe

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error