1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

Detrital zircon (DZ) U–Pb geochronology has improved the way geologists approach questions of sediment provenance and stratigraphic age. However, there is debate about what constitutes an appropriate sample size (i.e., the number of dates in a DZ sample, ), which depends on project objectives, sample complexity, and, critically, analytical budget. Additionally, there is ongoing concern about bias introduced by zircon grain size. We tested a recently developed rapid (3 s/analysis) data acquisition method by multicollector laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) that incorporates an automated selection routine and calculates two‐dimensional grain geometry from polished sample surfaces. Eleven samples were analysed from below and above the Late Cretaceous (Campanian) basal Castlegate unconformity of the Book Cliffs, Utah, in a down‐depositional‐dip transect including Price, Horse, Tusher, and Thompson canyons. 12,448 new concordant dates were generated during two measurement sessions. Results are consistent with recent studies suggesting there is no major provenance change and little time (1–2 Myr) represented across the unconformity. Grain size and sample size both exert a strong control on sample dissimilarity. Age distributions constructed from subsamples of large grains are systematically less similar to whole samples; age distributions composed of small grains are overall more similar to whole samples. As such, North American sediment sources that produce large grains such as the Grenville and Yavapi‐Mazatzal belts can bias age distributions if only large grains are analysed. A sample size of  = 100 is inadequate for characterizing age distributions as complex as those of the Book Cliffs, whereas a sample size of  = 300 provides good characterization. Sample size of  ≈ 1000 or more is unnecessary unless project objectives include scanning for subordinate age groups, such as when identifying the youngest grains for calculating a maximum depositional age (MDA). Dates used in MDA calculations acquired with rapid acquisition are best re‐analysed with longer LA‐ICP‐MS acquisition methods or isotope dilution thermal ionization mass spectrometry for increased accuracy and precision. We include new MATLAB code and open‐source software programs, and , for automated spot picking and calculating MDAs.

,

U–Pb geochronology methods using multicollector laser ablation ICP‐MS: (a) “Standard” (30 s/analysis) acquisition rate compared to (b) rapid (3 s/analysis) acquisition rate (3 s instead of 30 s). Maximum depositional age (MDA) plots generated using (github.com/kurtsundell/DZmda) for Castlegate Formation with (c) standard acquisition and (d) rapid acquisition; and Blackhawk Formation with (e) standard acquisition and (f) rapid acquisition. Common MDA calculation methods include Youngest Single Grain (YSG), Youngest Graphical Peak (YPP), Youngest Gaussian Fit (YGF), Youngest Grain Cluster at 1 s (YGC1s), Youngest Grain Cluster at 2 s (YGC2s), Youngest Three Zircons (Y3Zo, a), the Tau Method (TAU); Youngest Statistical Population (YSP), and Maximum Likelihood Age (MLA). PDP, probability density plot.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12840
2024-01-09
2025-05-16
Loading full text...

Full text loading...

References

  1. Amidon, W. H., Burbank, D. W., & Gehrels, G. E. (2005). Construction of detrital mineral populations: Insights from mixing of U–Pb zircon ages in Himalayan rivers. Basin Research, 17(4), 463–485. https://doi.org/10.1111/bre.12245
    [Google Scholar]
  2. Barbeau, D. L., Jr., Olivero, E. B., Swanson‐Hysell, N. L., Zahid, K. M., Murray, K. E., & Gehrels, G. E. (2009). Detrital‐zircon geochronology of the eastern Magallanes foreland basin: Implications for Eocene kinematics of the northern Scotia Arc and Drake Passage. Earth and Planetary Science Letters, 284(3–4), 489–503.
    [Google Scholar]
  3. Barth, A. P., Wooden, J. L., Jacobson, C. E., & Economos, R. C. (2013). Detrital zircon as a proxy for tracking the magmatic arc system: The California arc example. Geology, 41(2), 223–226.
    [Google Scholar]
  4. Bartschi, N. C., Saylor, J. E., Lapen, T. J., Blum, M. D., Pettit, B. S., & Andrea, R. A. (2018). Tectonic controls on Late Cretaceous sediment provenance and stratigraphic architecture in the Book Cliffs, Utah. GSA Bulletin, 130(11–12), 1763–1781.
    [Google Scholar]
  5. Black, L. P. (1987). Recent Pb loss in zircon: A natural or laboratory‐induced phenomenon?Chemical Geology: Isotope Geoscience Section, 65(1), 25–33.
    [Google Scholar]
  6. Bowring, J. F., McLean, N. M., & Bowring, S. A. (2011). Engineering cyber infrastructure for U‐Pb geochronology: Tripoli and U‐Pb_Redux. Geochemistry, Geophysics, Geosystems, 12(6).
    [Google Scholar]
  7. Buksh, R., Routh, S., Mitra, P., Banik, S., Mallik, A., & Gupta, S. D. (2014). MATLAB based image editing and color detection. International Journal of Scientific and Research Publications, 4(1), 1–6.
    [Google Scholar]
  8. Cantine, M. D., Setera, J. B., Vantongeren, J. A., Mwinde, C., & Bergmann, K. D. (2021). Grain size and transport biases in an Ediacaran detrital zircon record. Journal of Sedimentary Research, 91(9), 913–928.
    [Google Scholar]
  9. Cawood, P. A., Hawkesworth, C. J., & Dhuime, B. (2012). Detrital zircon record and tectonic setting. Geology, 40(10), 875–878.
    [Google Scholar]
  10. Cawood, P. A., & Nemchin, A. A. (2001). Paleogeographic development of the east Laurentian margin: Constraints from U‐Pb dating of detrital zircons in the Newfoundland Appalachians. Geological Society of America Bulletin, 113(9), 1234–1246.
    [Google Scholar]
  11. Cawood, P. A., Nemchin, A. A., Freeman, M., & Sircombe, K. (2003). Linking source and sedimentary basin: Detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth and Planetary Science Letters, 210(1–2), 259–268.
    [Google Scholar]
  12. Cobban, W. A. (1973). Significant ammonite finds in uppermost Mancos Shale and overlying formations between Barker dome, New Mexico, and Grand Junction, Colorado. AAPG, 148–153.
    [Google Scholar]
  13. Cobban, W. A., Walaszczyk, I., Obradovich, J. D., & McKinney, K. C. (2006). A USGS zonal table for the Upper Cretaceous middle Cenomanian‐Maastrichtian of the Western Interior of the United States based on ammonites, inoceramids, and radiometric ages. U.S. Geological Survey Open‐File Report, 1250, 46.
    [Google Scholar]
  14. Copeland, P. (2020). On the use of geochronology of detrital grains in determining the time of deposition of clastic sedimentary strata. Basin Research, 32(6), 1532–1546.
    [Google Scholar]
  15. Coutts, D. S., Matthews, W. A., & Hubbard, S. M. (2019). Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geoscience Frontiers, 10(4), 1421–1435.
    [Google Scholar]
  16. Cox, R., Coleman, D. S., Chokel, C. B., DeOreo, S. B., Wooden, J. L., Collins, A. S., De Waele, B., & Kröner, A. (2004). Proterozoic tectonostratigraphy and paleogeography of central Madagascar derived from detrital zircon U‐Pb age populations. The Journal of Geology, 112(4), 379–399.
    [Google Scholar]
  17. Currie, B. S. (1997). Sequence stratigraphy of nonmarine Jurassic–Cretaceous rocks, central Cordilleran foreland‐basin system. Geological Society of America Bulletin, 109(9), 1206–1222.
    [Google Scholar]
  18. DeCelles, P. G. (2004). Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western USA. American Journal of Science, 304(2), 105–168.
    [Google Scholar]
  19. Dickinson, W. R. (1976). Sedimentary basins developed during evolution of Mesozoic–Cenozoic arc–trench system in western North America. Canadian Journal of Earth Sciences, 13(9), 1268–1287.
    [Google Scholar]
  20. Dickinson, W. R., & Gehrels, G. E. (2009). Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1–2), 115–125.
    [Google Scholar]
  21. Dickinson, W. R., & Gehrels, G. E. (2010). Insights into North American paleogeography and paleotectonics from U–Pb ages of detrital zircons in Mesozoic strata of the Colorado Plateau, USA. International Journal of Earth Sciences, 99(6), 1247–1265.
    [Google Scholar]
  22. Dodson, M. H., Compston, W., Williams, I. S., & Wilson, J. F. (1988). A search for ancient detrital zircons in Zimbabwean sediments. Journal of the Geological Society, 145(6), 977–983.
    [Google Scholar]
  23. Dröllner, M., Barham, M., Kirkland, C. L., & Ware, B. (2021). Every zircon deserves a date: Selection bias in detrital geochronology. Geological Magazine, 158(6), 1135–1142.
    [Google Scholar]
  24. Ejembi, J. I., Potter‐McIntyre, S. L., Sharman, G. R., Smith, T. M., Saylor, J. E., Hatfield, K., & Ferré, E. C. (2021). Detrital zircon geochronology and provenance of the Middle to Late Jurassic Paradox Basin and Central Colorado trough: Paleogeographic implications for southwestern Laurentia. Geosphere, 17(5), 1494–1516.
    [Google Scholar]
  25. Fedo, C. M., Sircombe, K. N., & Rainbird, R. H. (2003). Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy and Geochemistry, 53(1), 277–303.
    [Google Scholar]
  26. Fildani, A., McKay, M. P., Stockli, D., Clark, J., Dykstra, M. L., Stockli, L., & Hessler, A. M. (2016). The ancestral Mississippi drainage archived in the late Wisconsin Mississippi deep‐sea fan. Geology, 44(6), 479–482.
    [Google Scholar]
  27. Galbraith, R. F., & Laslett, G. M. (1993). Statistical models for mixed fission track ages. Nuclear Tracks and Radiation Measurements, 21(4), 459–470.
    [Google Scholar]
  28. Garber, K. L., Finzel, E. S., & Pearson, D. M. (2020). Provenance of synorogenic foreland basin strata in southwestern Montana requires revision of existing models for Laramide tectonism: North American Cordillera. Tectonics, 39(2), e2019TC005944.
    [Google Scholar]
  29. Gardner, C. T., Finzel, E. S., Rosenblume, J. A., & Pearson, D. M. (2022). Foreland basin response to middle Cretaceous thrust belt evolution, southwestern Montana, USA. Geosphere, 18(6), 1783–1803.
    [Google Scholar]
  30. Gehrels, G. (2000). Introduction to detrital zircons studies of Paleozoic and Triassic strata in western Nevada and northern California. In M. J.Soreghan & G. E.Gehrels (Eds.), Paleozoic and Triassic paleogeography and tectonics of western Nevada and northern California (pp. 1–17). Geological Society of America Special Paper.
    [Google Scholar]
  31. Gehrels, G. (2014). Detrital zircon U‐Pb geochronology applied to tectonics. Annual Review of Earth and Planetary Sciences, 42, 127–149.
    [Google Scholar]
  32. Gehrels, G., Giesler, D., Olsen, P., Kent, D., Marsh, A., Parker, W., Rasmussen, C., Mundil, R., Irmis, R., Geissman, J., & Lepre, C. (2020). LA‐ICPMS U–Pb geochronology of detrital zircon grains from the Coconino, Moenkopi, and Chinle formations in the Petrified Forest National Park (Arizona). Geochronology, 2(2), 257–282.
    [Google Scholar]
  33. Gehrels, G. E., Dickinson, W. R., Ross, G. M., Stewart, J. H., & Howell, D. G. (1995). Detrital zircon reference for Cambrian to Triassic miogeoclinal strata of western North America. Geology, 23(9), 831–834.
    [Google Scholar]
  34. Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems, 9(3), 1–13.
    [Google Scholar]
  35. Giles, K. D., Jackson, W. T., Jr., McKay, M. P., Beebe, D. A., Larsen, D., Kwon, Y., & Shaulis, B. (2023). Sediment input, alongshore transport, and coastal mixing in the northeastern Gulf of Mexico based on detrital‐zircon geochronology. Marine and Petroleum Geology, 148, 105997.
    [Google Scholar]
  36. Haq, B. U., Hardenbol, J. A. N., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156–1167.
    [Google Scholar]
  37. Herriott, T. M., Crowley, J. L., Schmitz, M. D., Wartes, M. A., & Gillis, R. J. (2019). Exploring the law of detrital zircon: LA‐ICP‐MS and CA‐TIMS geochronology of Jurassic forearc strata, Cook Inlet, Alaska, USA. Geology, 47(11), 1044–1048.
    [Google Scholar]
  38. Holden, P., Lanc, P., Ireland, T. R., Harrison, T. M., Foster, J. J., & Bruce, Z. (2009). Mass‐spectrometric mining of Hadean zircons by automated SHRIMP multi‐collector and single‐collector U/Pb zircon age dating: The first 100,000 grains. International Journal of Mass Spectrometry, 286(2–3), 53–63.
    [Google Scholar]
  39. Horstwood, M. S., Košler, J., Gehrels, G., Jackson, S. E., McLean, N. M., Paton, C., Pearson, N. J., Sircombe, K., Sylvester, P. J., Vermeesch, P., Bowring, J. F., Condon, D. J., & Schoene, B. (2016). Community‐derived standards for LA‐ICP‐MS U‐(Th‐) Pb geochronology—Uncertainty propagation, age interpretation and data reporting. Geostandards and Geoanalytical Research, 40(3), 311–332.
    [Google Scholar]
  40. Hsu, L. (2017). IEDA EarthChem: Supporting the sample‐based geochemistry community with data resources to accelerate scientific discovery. Authorea, 1–13. https://doi.org/10.22541/au.149149402.20537981
    [Google Scholar]
  41. Ibañez‐Mejia, M., Pullen, A., Pepper, M., Urbani, F., Ghoshal, G., & Ibañez‐Mejia, J. C. (2018). Use and abuse of detrital zircon U‐Pb geochronology—A case from the Río Orinoco delta, eastern Venezuela. Geology, 46(11), 1019–1022.
    [Google Scholar]
  42. Johnstone, S. A., Schwartz, T. M., & Holm‐Denoma, C. S. (2019). A stratigraphic approach to inferring depositional ages from detrital geochronology data. Frontiers in Earth Science, 7, 57.
    [Google Scholar]
  43. Kruskal, J. B. (1964). Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29(2), 115–129.
    [Google Scholar]
  44. Laskowski, A. K., DeCelles, P. G., & Gehrels, G. E. (2013). Detrital zircon geochronology of Cordilleran retroarc foreland basin strata, western North America. Tectonics, 32(5), 1027–1048.
    [Google Scholar]
  45. Lawrence, R. L., Cox, R., Mapes, R. W., & Coleman, D. S. (2011). Hydrodynamic fractionation of zircon age populations. Bulletin, 123(1–2), 295–305.
    [Google Scholar]
  46. Lawton, T. F. (1986). Fluvial systems of the Upper Cretaceous Mesaverde Group and Paleocene North Horn Formation, Central Utah: A record of transition from thin‐skinned to thick‐skinned deformation in the foreland region: Part III. Middle Rocky Mountains.
    [Google Scholar]
  47. Leary, R. J., Smith, M. E., & Umhoefer, P. (2020). Grain‐size control on detrital zircon cycloprovenance in the late Paleozoic Paradox and Eagle basins, USA. Journal of Geophysical Research: Solid Earth, 125(7), e2019JB019226.
    [Google Scholar]
  48. Liu, S., & Nummedal, D. (2004). Late Cretaceous subsidence in Wyoming: Quantifying the dynamic component. Geology, 32(5), 397–400.
    [Google Scholar]
  49. Massey, F. J., Jr. (1951). The Kolmogorov‐Smirnov test for goodness of fit. Journal of the American Statistical Association, 46(253), 68–78.
    [Google Scholar]
  50. McKenzie, N. R., Smye, A. J., Hegde, V. S., & Stockli, D. F. (2018). Continental growth histories revealed by detrital zircon trace elements: A case study from India. Geology, 46, 275–278. https://doi.org/10.1130/G39973.1
    [Google Scholar]
  51. Mezger, K., & Krogstad, E. J. (1997). Interpretation of discordant U‐Pb zircon ages: An evaluationt. Journal of metamorphic Geology, 51(1), 127–140.
    [Google Scholar]
  52. Miall, A. D., & Arush, M. (2001). The Castlegate Sandstone of the Book Cliffs, Utah: Sequence stratigraphy, paleogeography, and tectonic controls. Journal of Sedimentary Research, 71(4), 537–548.
    [Google Scholar]
  53. Oldow, J. S., Bally, A. W., Lallemant, H. G. A., & Leeman, W. P. (1989). Phanerozoic evolution of the North American Cordillera; United States and Canada. The Geology of North America: An Overview, 1, 139.
    [Google Scholar]
  54. Olsen, T., Steel, R., Hogseth, K., Skar, T., & Roe, S. L. (1995). Sequential architecture in a fluvial succession; sequence stratigraphy in the Upper Cretaceous Mesaverde Group, Prince Canyon, Utah. Journal of Sedimentary Research, 65(2b), 265–280.
    [Google Scholar]
  55. Painter, C. S., & Carrapa, B. (2013). Flexural versus dynamic processes of subsidence in the North American Cordillera foreland basin. Geophysical Research Letters, 40(16), 4249–4253.
    [Google Scholar]
  56. Parker, S. D., & Pearson, D. M. (2021). Pre‐thrusting stratigraphic control on the transition from a thin‐skinned to thick‐skinned structural style: An example from the double‐decker Idaho‐Montana fold‐thrust belt. Tectonics, 40(5), e2020TC006429.
    [Google Scholar]
  57. Pettit, B. S., Blum, M., Pecha, M., McLean, N., Bartschi, N. C., & Saylor, J. E. (2019). Detrital‐zircon U‐Pb Paleodrainage reconstruction and geochronology of the Campanian Blackhawk–Castlegate succession, Wasatch Plateau and Book Cliffs, Utah, USA. Journal of Sedimentary Research, 89(4), 273–292.
    [Google Scholar]
  58. Pullen, A., Barbeau, D. L., Leier, A. L., Abell, J. T., Ward, M., Bruner, A., & Fidler, M. K. (2022). A westerly wind dominated Puna Plateau during deposition of upper Pleistocene loessic sediments in the subtropical Andes, South America. Nature Communications, 13(1), 1–8.
    [Google Scholar]
  59. Pullen, A., Ibáñez‐Mejía, M., Gehrels, G. E., Ibáñez‐Mejía, J. C., & Pecha, M. (2014). What happens when n = 1000? Creating large‐n geochronological datasets with LA‐ICP‐MS for geologic investigations. Journal of Analytical Atomic Spectrometry, 29, 971–980. https://doi.org/10.1039/c4ja00024b
    [Google Scholar]
  60. Pullen, A., Ibáñez‐Mejia, M., Gehrels, G. E., Giesler, D., & Pecha, M. (2018). Optimization of a laser ablation‐single collector‐inductively coupled plasma‐mass spectrometer (Thermo Element 2) for accurate, precise, and efficient zircon U‐Th‐Pb geochronology. Geochemistry, Geophysics, Geosystems, 19(10), 3689–3705.
    [Google Scholar]
  61. Quinn, D., Linzmeier, B., Sundell, K., Gehrels, G., Goring, S., Marcott, S., Meyers, S., Peters, S., Ross, J., Schmitz, M., & Singer, B. (2021). Implementing the Sparrow laboratory data system in multiple subdomains of geochronology and geochemistry. In EGU General Assembly Conference Abstracts (pp. EGU21‐13832).
    [Google Scholar]
  62. Rittenhouse, G. (1943). Transportation and deposition of heavy mineral. Bulletin of the Geological Society of America, 54(12), 1725–1780.
    [Google Scholar]
  63. Rosenblume, J. A., Finzel, E. S., & Pearson, D. M. (2021). Early Cretaceous provenance, sediment dispersal, and foreland basin development in southwestern Montana, North American Cordillera. Tectonics, 40(4), e2020TC006561.
    [Google Scholar]
  64. Rosenblume, J. A., Finzel, E. S., Pearson, D. M., & Gardner, C. T. (2022). Middle Albian provenance, sediment dispersal and foreland basin dynamics in southwestern Montana, North American Cordillera. Basin Research, 34(2), 913–937.
    [Google Scholar]
  65. Satkoski, A. M., Wilkinson, B. H., Hietpas, J., & Samson, S. D. (2013). Likeness among detrital zircon populations—An approach to the comparison of age frequency data in time and space. Bulletin, 125(11–12), 1783–1799.
    [Google Scholar]
  66. Saylor, J. E., Jordan, J. C., Sundell, K. E., Wang, X., Wang, S., & Deng, T. (2018). Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau. Basin Research, 30(3), 544–563.
    [Google Scholar]
  67. Saylor, J. E., & Sundell, K. E. (2016). Quantifying comparison of large detrital geochronology data sets. Geosphere, 12, 203–220. https://doi.org/10.1130/GES01237.1
    [Google Scholar]
  68. Saylor, J. E., Sundell, K. E., Perez, N. D., Hensley, J. B., McCain, P., Runyon, B., Alvarez, P., Cárdenas, J., Usnayo, W. P., & Valer, C. S. (2023). Basin formation, magmatism, and exhumation document southward migrating flat‐slab subduction in the Central Andes. Earth and Planetary Science Letters, 606, 118050.
    [Google Scholar]
  69. Schärer, U., & Allègre, C. J. (1982). Uranium–lead system in fragments of a single zircon grain. Nature, 295(5850), 585–587.
    [Google Scholar]
  70. Schmitz, M. D., & Bowring, S. A. (2001). U‐Pb zircon and titanite systematics of the Fish Canyon Tuff: An assessment of high‐precision U‐Pb geochronology and its application to young volcanic rocks. Geochimica et Cosmochimica Acta, 65(15), 2571–2587.
    [Google Scholar]
  71. Schoene, B. (2014). 4.10‐U–Th–Pb geochronology. Treatise on Geochemistry, 4, 341–378.
    [Google Scholar]
  72. Schwartz, T. M., Schwartz, R. K., & Weislogel, A. L. (2019). Orogenic recycling of detrital zircons characterizes age distributions of North American Cordilleran strata. Tectonics, 38(12), 4320–4334.
    [Google Scholar]
  73. Schwartz, T. M., Souders, A. K., Lundstern, J. E., Gilmer, A. K., & Thompson, R. A. (2023). Revised age and regional correlations of Cenozoic strata on Bat Mountain, Death Valley region, California, USA, from zircon U‐Pb geochronology of sandstones and ash‐fall tuffs. Geosphere, 19(1), 235–257.
    [Google Scholar]
  74. Sharman, G. R., & Malkowski, M. A. (2021). Needles in a haystack: Detrital zircon UPb ages and the maximum depositional age of modern global sediment. Earth‐Science Reviews, 203, 103109.
    [Google Scholar]
  75. Sharman, G. R., Sharman, J. P., & Sylvester, Z. (2018). detritalPy: A Python‐based toolset for visualizing and analysing detrital geo‐thermochronologic data. The Depositional Record, 4(2), 202–215.
    [Google Scholar]
  76. Sircombe, K. N., Bleeker, W., & Stern, R. A. (2001). Detrital zircon geochronology and grain‐size analysis of a ∼2800 Ma Mesoarchean proto‐cratonic cover succession, Slave Province, Canada. Earth and Planetary Science Letters, 189(3–4), 207–220.
    [Google Scholar]
  77. Sitar, M. C., & Leary, R. J. (2023). colab_zirc_dims: A Google Colab‐compatible toolset for automated and semi‐automated measurement of mineral grains in laser ablation–inductively coupled plasma–mass spectrometry images using deep learning models. Geochronology, 5(1), 109–126.
    [Google Scholar]
  78. Stacey, J. T., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two‐stage model. Earth and Planetary Science Letters, 26(2), 207–221.
    [Google Scholar]
  79. Stern, R. A., Bodorkos, S., Kamo, S. L., Hickman, A. H., & Corfu, F. (2009). Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostandards and Geoanalytical Research, 33(2), 145–168.
    [Google Scholar]
  80. Sundell, K. E., Gehrels, G. E., & Pecha, M. E. (2021). Rapid U‐Pb geochronology by laser ablation multi‐collector ICP‐MS. Geostandards and Geoanalytical Research, 45(1), 37–57.
    [Google Scholar]
  81. Sundell, K., Saylor, J. E., & Pecha, M. (2019). Provenance and recycling of detrital zircons from Cenozoic Altiplano strata and the crustal evolution of western South America from combined U‐Pb and Lu‐Hf isotopic analysis. In Andean tectonics (pp. 363–397). Elsevier.
    [Google Scholar]
  82. Sundell, K. E., Saylor, J. E., Lapen, T. J., Styron, R. H., Villarreal, D. P., Usnayo, P., & Cárdenas, J. (2018). Peruvian Altiplano stratigraphy highlights along‐strike variability in foreland basin evolution of the Cenozoic Central Andes. Tectonics, 37(6), 1876–1904.
    [Google Scholar]
  83. Tatsumoto, M., & Patterson, C. (1964). Age studies of zircon and feldspar concentrates from the Franconia sandstone. The Journal of Geology, 72(2), 232–242.
    [Google Scholar]
  84. Thomas, W. A. (2011). Detrital‐zircon geochronology and sedimentary provenance. Lithosphere, 3(4), 304–308.
    [Google Scholar]
  85. Van Wagoner, J. C. (1995). Sequence stratigraphy and marine to nonmarine facies architecture of foreland basin strata, Book Cliffs, Utah, USA. AAPG Bulletin, 1995, 137–223.
    [Google Scholar]
  86. Van Wagoner, J. C., Mitchum, R. M., Campion, K. M., & Rahmanian, V. D. (1990). Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: Concepts for high‐resolution correlation of time and facies. American Association of Petroleum Geologists, 1990, III‐55.
    [Google Scholar]
  87. Vermeesch, P. (2004). How many grains are needed for a provenance study?Earth and Planetary Science Letters, 224(3–4), 441–451.
    [Google Scholar]
  88. Vermeesch, P. (2013). Multi‐sample comparison of detrital age distributions. Chemical Geology, 341, 140–146. https://doi.org/10.1016/j.chemgeo.2013.01.010
    [Google Scholar]
  89. Vermeesch, P. (2018a). Dissimilarity measures in detrital geochronology. Earth‐Science Reviews, 178, 310–321. https://doi.org/10.1016/j.earscirev.2017.11.027
    [Google Scholar]
  90. Vermeesch, P. (2018b). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479–1493.
    [Google Scholar]
  91. Vermeesch, P. (2020). Maximum depositional age estimation revisited. Geoscience Frontiers, 12, 843–850. https://doi.org/10.1016/j.gsf.2020.08.008
    [Google Scholar]
  92. Wendt, I., & Carl, C. (1991). The statistical distribution of the mean squared weighted deviation. Chemical Geology: Isotope Geoscience Section, 86(4), 275–285.
    [Google Scholar]
  93. Yang, S., Zhang, F., & Wang, Z. (2012). Grain size distribution and age population of detrital zircons from the Changjiang (Yangtze) River system, China. Chemical Geology, 296, 26–38.
    [Google Scholar]
  94. Yonkee, W. A., & Weil, A. B. (2015). Tectonic evolution of the Sevier and Laramide belts within the North American Cordillera orogenic system. Earth‐Science Reviews, 150, 531–593.
    [Google Scholar]
  95. Yoshida, S. (2000). Sequence and facies architecture of the upper Blackhawk formation and the lower Castlegate Sandstone (Upper Cretaceous), Book Cliffs, Utah, USA. Sedimentary Geology, 136(3–4), 239–276.
    [Google Scholar]
  96. Young, R. G. (1955). Sedimentary facies and intertonguing in the Upper Cretaceous of the Book Cliffs, Utah‐Colorado. Geological Society of America Bulletin, 66(2), 177–202.
    [Google Scholar]
  97. Zadnik, M. G., Specht, S., & Begemann, F. (1989). Revised isotopic composition of terrestrial mercury. International Journal of Mass Spectrometry and Ion Processes, 89(1), 103–110.
    [Google Scholar]
/content/journals/10.1111/bre.12840
Loading
/content/journals/10.1111/bre.12840
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Book Cliffs; detrital zircon; grain size; maximum depositional age; U–Pb

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error