1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

Since the influence of structural inheritance on rift geometry has been widely documented, it is easy to assume that rift segmentation, a prominent feature of rift geometry, may have been also influenced by structural heterogeneity. However, limited studies using high‐quality seismic data have considered how basement reactivation is accommodated at individual fault scale and then how this results in rift segmentation at sub‐basin scale. Using extensive high‐quality 3D seismic data and 76 borehole data, we investigate the characteristics of rift architecture, rift‐related fault systems, basement structures and rift evolution in the Hailar‐Tamtsag Rift, northeast Asia. We identify three distinct rift segments which are defined by three rift‐related fault systems and accompanied by three underlying basement structure systems. We recognize three phases of basement reactivation and three types (including five styles) of interactions between basement structures and rift‐related faults. Our study shows that rift segmentation has been caused by reactivation of multiple basement structure systems which not only influence the orientation of rift segments and type of rift architecture, but also control the location, strike, dip and style of the major rift‐related faults. Rift segmentation was completely achieved through multiple phases of basement reactivation, while the main structural framework of segmentation was established through ‘extensive reactivation’ during the second phase extension. Our study examines how multiple basement structure systems control rift segmentation at both individual fault and sub‐basin scales, which can significantly improve our understanding of relationship between structural inheritance and rift segmentation.

,

The pre‐rift 3D geometries of multiple basement structure systems (a) and their influence on rift segmentation (b).

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12841
2024-01-18
2025-04-26
Loading full text...

Full text loading...

References

  1. Bell, R. E., Jackson, C. A. L., Whipp, P. S., & Clements, B. (2014). Strain migration during multiphase extension: Observations from the northern North Sea. Tectonics, 33(10), 1936–1963. https://doi.org/10.1002/2014TC003551
    [Google Scholar]
  2. Bird, P. C., Cartwright, J. A., & Davies, T. L. (2015). Basement reactivation in the development of rift basins; an example of reactivated Caledonide structures in the West Orkney Basin. Journal of the Geological Society, 172(1), 77–85. https://doi.org/10.1144/jgs2013‐098
    [Google Scholar]
  3. Chen, J. (2011). Research of structural feature and structural evolution in the Hailar‐Tamtsag Basin [Doctoral thesis]. Chengdu University of Technology, China. (In Chinese with English abstract).
  4. Cheng, Y., Wu, Z., Su, W., Chen, M., Zhang, J., Liu, Y., & Wu, Q. (2023). Basement structures exert a crucial influence on the structural configuration of later rift development: Insights from the Shanan and Chengbei sag, Bohai Bay Basin. Marine and Petroleum Geology, 153, 106272. https://doi.org/10.1016/j.marpetgeo.2023.106272
    [Google Scholar]
  5. Claringbould, J. S., Bell, R. E., Jackson, C. A. L., Gawthorpe, R. L., & Odinsen, T. (2020). Pre‐breakup extension in the northern North Sea defined by complex strain partitioning and heterogeneous extension rates. Tectonics, 39(8), e2019TC005924. https://doi.org/10.1029/2019TC005924
    [Google Scholar]
  6. Clemson, J., Cartwright, J., & Booth, J. (1997). Structural segmentation and the influence of basement structure on the Namibian passive margin. Journal of the Geological Society, 154(3), 477–482. https://doi.org/10.1144/gsjgs.154.3.0477
    [Google Scholar]
  7. Collanega, L., Siuda, K., Jackson, C. A.‐L., Bell, R. E., Coleman, A. J., Lenhart, A., Magee, C., & Breda, A. (2019). Normal fault growth influenced by basement fabrics: The importance of preferential nucleation from pre‐existing structures. Basin Research, 31(4), 659–687. https://doi.org/10.1111/bre.12327
    [Google Scholar]
  8. Corti, G., Cioni, R., Franceschini, Z., Sani, F., Scaillet, S., Molin, P., Isola, I., Mazzarini, F., Brune, S., Keir, D., Erbello, A., Muluneh, A., Illsley‐Kemp, F., & Glerum, A. (2019). Aborted propagation of the Ethiopian rift caused by linkage with the Kenyan rift. Nature Communications, 10(1), 1309. https://doi.org/10.1038/s41467‐019‐09335‐2
    [Google Scholar]
  9. Corti, G., Molin, P., Sembroni, A., Bastow, I. D., & Keir, D. (2018). Control of pre‐rift lithospheric structure on the architecture and evolution of continental rifts; insights from the Main Ethiopian Rift, East Africa. Tectonics, 37(2), 477–496. https://doi.org/10.1002/2017TC004799
    [Google Scholar]
  10. Dong, S., Zhang, Y., Li, H., Shi, W., Xue, H., Li, J., Huang, S., & Wang, Y. (2018). The Yanshan orogeny and late Mesozoic multi‐plate convergence in East Asia—Commemorating 90th years of the “Yanshan Orogeny”. Science China Earth Sciences, 61, 1888–1909. https://doi.org/10.1007/s11430‐017‐9297‐y
    [Google Scholar]
  11. Fazlikhani, H., Fossen, H., Gawthorpe, R. L., Faleide, J. I., & Bell, R. E. (2017). Basement structure and its influence on the structural configuration of the northern North Sea Rift. Tectonics, 36(6), 1151–1177. https://doi.org/10.1002/2017TC004514
    [Google Scholar]
  12. Fournier, M., Bellahsen, N., Fabbri, O., & Gunnell, Y. (2004). Oblique rifting and segmentation of the NE Gulf of Aden passive margin. Geochemistry, Geophysics, Geosystems, 5(11), Q11005. https://doi.org/10.1029/2004GC000731
    [Google Scholar]
  13. Franke, D., Neben, S., Ladage, S., Schreckenberger, B., & Hinz, K. (2007). Margin segmentation and volcano‐tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic. Marine Geology, 244(1–4), 46–67. https://doi.org/10.1016/j.margeo.2007.06.009
    [Google Scholar]
  14. Fu, X., Chen, Z., Yan, B., Yang, M., & Sun, Y. (2013). Analysis of main controlling factors for hydrocarbon accumulation in central rift zones of the Hailar‐Tamtsag Basin using a fault‐caprock dual control mode. Science China Earth Sciences, 2013(56), 1357–1370. https://doi.org/10.1007/s11430‐013‐4622‐5
    [Google Scholar]
  15. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12(3–4), 195–218. https://doi.org/10.1111/j.1365‐2117.2000.00121.x
    [Google Scholar]
  16. Ge, J., Zhu, X., Wang, R., Jones, B. G., & Chen, W. (2018). Tectono‐sedimentary evolution and hydrocarbon reservoirs in the Early Cretaceous Tanan depression, Tamtsag Basin, Mongolia. Marine and Petroleum Geology, 94, 43–64. https://doi.org/10.1016/j.marpetgeo.2018.03.041
    [Google Scholar]
  17. Gouiza, M., & Naliboff, J. (2021). Rheological inheritance controls the formation of segmented rifted margins in cratonic lithosphere. Nature Communications, 12(1), 4653. https://doi.org/10.1038/s41467‐021‐24945‐5
    [Google Scholar]
  18. Gouiza, M., & Paton, D. A. (2019). The role of inherited lithospheric heterogeneities in defining the crustal architecture of rifted margins and the magmatic budget during continental breakup. Geochemistry, Geophysics, Geosystems, 20(4), 1836–1853. https://doi.org/10.1029/2018GC007808
    [Google Scholar]
  19. Greenroyd, C. J., Peirce, C., Rodger, M., Watts, A. B., & Hobbs, R. W. (2008). Do fracture zones define continental margin segmentation?—Evidence from the French Guiana margin. Earth and Planetary Science Letters, 272(3), 553–566. https://doi.org/10.1016/j.epsl.2008.05.022
    [Google Scholar]
  20. Guan, W., Huang, L., Liu, C., Peng, G., Li, H., Liang, C., Zhang, L., Li, H., Wu, Z., Li, X., & Hu, R. (2023). Interactions between pre‐existing structures and rift faults: Implications for basin geometry in the northern South China Sea. Basin Research, 00, 1–27. https://doi.org/10.1111/bre.12822
    [Google Scholar]
  21. Hao, S., Mei, L., Shi, H., Paton, D., Mortimer, E., Du, J., Deng, P., & Xu, X. (2021). Rift migration and transition during multiphase rifting: Insights from the proximal domain, northern South China Sea rifted margin. Marine and Petroleum Geology, 123, 104729. https://doi.org/10.1016/j.marpetgeo.2020.104729
    [Google Scholar]
  22. Hayward, N. J., & Ebinger, C. J. (1996). Variations in the along‐axis segmentation of the Afar Rift system. Tectonics, 15(2), 244–257. https://doi.org/10.1029/95TC02292
    [Google Scholar]
  23. Heilman, E., Kolawole, F., Atekwana, E. A., & Mayle, M. (2019). Controls of basement fabric on the linkage of rift segments. Tectonics, 38(4), 1337–1366. https://doi.org/10.1029/2018TC005362
    [Google Scholar]
  24. Henstra, G. A., Gawthorpe, R. L., Helland‐Hansen, W., Ravnas, R., & Rotevatn, A. (2017). Depositional systems in multiphase rifts: Seismic case study from the Lofoten margin, Norway. Basin Research, 29(4), 447–469. https://doi.org/10.1111/bre.12183
    [Google Scholar]
  25. Heron, P. J., Peace, A. L., McCaffrey, K. J. W., Welford, J. K., Wilson, R., van Hunen, J., & Pysklywec, R. N. (2019). Segmentation of rifts through structural inheritance; creation of the Davis Strait. Tectonics, 38(7), 2411–2430. https://doi.org/10.1029/2019TC005578
    [Google Scholar]
  26. Ji, Z., Meng, Q. A., Wan, C. B., Zhu, D. F., Ge, W. C., Zhang, Y. L., Yang, H., & Dong, Y. (2019). Geodynamic evolution of flat‐slab subduction of Paleo‐Pacific Plate: Constraints from Jurassic adakitic lavas in the Hailar Basin, NE China. Tectonics, 38(12), 4301–4319. https://doi.org/10.1029/2019TC005687
    [Google Scholar]
  27. Ji, Z., Wan, C. B., Meng, Q. A., Zhu, D. F., Ge, W. C., Zhang, Y. L., Yang, H., Dong, Y., & Jing, Y. (2020). Chronostratigraphic framework of late Mesozoic terrestrial strata in the Hailar–Tamtsag Basin, Northeast China, and its geodynamic implication. Geological Journal, 55(7), 5197–5215. https://doi.org/10.1002/gj.3731
    [Google Scholar]
  28. Jia, J., Liu, Z., Miao, C., Fang, S., Zhou, R., Meng, Q., Chen, Y., Yan, L., & Yang, D. (2014). Depositional model and evolution for a deep‐water sublacustrine fan system from the syn‐rift Lower Cretaceous Nantun Formation of the Tanan Depression (Tamtsag Basin, Mongolia). Marine and Petroleum Geology, 57, 264–282. https://doi.org/10.1016/j.marpetgeo.2014.05.022
    [Google Scholar]
  29. Katumwehe, A. B., Abdelsalam, M. G., & Atekwana, E. A. (2015). The role of pre‐existing Precambrian structures in rift evolution: The Albertine and Rhino grabens, Uganda. Tectonophysics, 646, 117–129. https://doi.org/10.1016/j.tecto.2015.01.022
    [Google Scholar]
  30. Kolawole, F., Firkins, M., Al‐Wahaibi, T. S., Atekwana, E. A., & Soreghan, M. J. (2021). Rift interaction zones and the stages of rift linkage in active segmented continental rift systems. Basin Research, 33(6), 2984–3020. https://doi.org/10.1111/bre.12592
    [Google Scholar]
  31. Lao‐Davila, D. A., Al‐Salmi, H. S., Abdelsalam, M. G., & Atekwana, E. A. (2015). Hierarchical segmentation of the Malawi rift: The influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts. Tectonics, 34(12), 2399–2417. https://doi.org/10.1002/2015TC003953
    [Google Scholar]
  32. Leroy, S., Lucazeau, F., D'Acremont, E., Watremez, L., Autin, J., Rouzo, S., Bellahsen, N., Tiberi, C., Ebinger, C., Beslier, M., Perrot, J., Razin, P., Rolandone, F., Sloan, H., Stuart, G., Al Lazki, A., Al‐Toubi, K., Bache, F., Bonneville, A., … Khanbari, K. (2010). Contrasted styles of rifting in the eastern Gulf of Aden: A combined wide‐angle, multichannel seismic, and heat flow survey. Geochemistry, Geophysics, Geosystems, 11(7), Q07004. https://doi.org/10.1029/2009GC002963
    [Google Scholar]
  33. Liu, H. (2014). Research on coupling between structure and sedimentary system and its controlling on oil‐gas accumulation in Wuerxun‐Beier depression [Doctoral thesis]. Northeast Petroleum University, China. (In Chinese with English abstract).
  34. Manighetti, I., Caulet, C., Barros, L. D., Perrin, C., Cappa, F., & Gaudemer, Y. (2015). Generic along‐strike segmentation of Afar normal faults, East Africa: Implications on fault growth and stress heterogeneity on seismogenic fault planes. Geochemistry, Geophysics, Geosystems, 16(2), 443–467. https://doi.org/10.1002/2014GC005691
    [Google Scholar]
  35. Yi, Z., & Meert, J. G. (2020). A closure of the Mongol‐Okhotsk Ocean by the Middle Jurassic; reconciliation of paleomagnetic and geological evidence. Geophysical Research Letters, 47(15), e2020GL088235. https://doi.org/10.1029/2020GL088235
    [Google Scholar]
  36. Meisling, K. E., Cobbold, P. R., & Mount, V. S. (2001). Segmentation of an obliquely rifted margin, Campos and Santos basins, southeastern Brazil. AAPG Bulletin, 85(11), 1903–1924. https://doi.org/10.1306/8626D0A9‐173B‐11D7‐8645000102C1865D
    [Google Scholar]
  37. Min‐Na, A., Zhang, F., Yang, S., Chen, H., Batt, G. E., Sun, M., Meng, Q., Zhu, D., Cao, R., & Li, J. (2013). Early Cretaceous provenance change in the southern Hailar Basin, northeastern China and its implication for basin evolution. Cretaceous Research, 40, 21–42. https://doi.org/10.1016/j.cretres.2012.05.005
    [Google Scholar]
  38. Morley, C. K. (2014). The widespread occurrence of low‐angle normal faults in a rift setting; review of examples from Thailand, and implications for their origin and evolution. Earth‐Science Reviews, 133, 18–42. https://doi.org/10.1016/j.earscirev.2014.02.007
    [Google Scholar]
  39. NMBGMR (Nei Mongol Bureau of Geology and Mineral Resources) . (1991). Regional geology of the Nei Mongol autonomous region. Geological Press. (In Chinese with English summary).
    [Google Scholar]
  40. Osagiede, E. E., Rotevatn, A., Gawthorpe, R., Kristensen, T. B., Jackson, C. A.‐L., & Marsh, N. (2020). Pre‐existing intra‐basement shear zones influence growth and geometry of non‐colinear normal faults, western Utsira High–Heimdal Terrace, North Sea. Journal of Structural Geology, 130, 103908. https://doi.org/10.1016/j.jsg.2019.103908
    [Google Scholar]
  41. Paton, D. A. (2006). Influence of crustal heterogeneity on normal fault dimensions and evolution: Southern South Africa extensional system. Journal of Structural Geology, 28(5), 868–886. https://doi.org/10.1016/j.jsg.2006.01.006
    [Google Scholar]
  42. Pereira, R., & Alves, T. M. (2011). Margin segmentation prior to continental break‐up: A seismic–stratigraphic record of multiphased rifting in the North Atlantic (Southwest Iberia). Tectonophysics, 505(1), 17–34. https://doi.org/10.1016/j.tecto.2011.03.01
    [Google Scholar]
  43. Peron‐Pinvidic, G., & Osmundsen, P. T. (2018). The mid Norwegian—NE Greenland conjugate margins: Rifting evolution, margin segmentation, and breakup. Marine and Petroleum Geology, 98, 162–184. https://doi.org/10.1016/j.marpetgeo.2018.08.011
    [Google Scholar]
  44. Philippon, M., Willingshofer, E., Sokoutis, D., Corti, G., Sani, F., Bonini, M., & Cloetingh, S. (2015). Slip re‐orientation in oblique rifts. Geology, 43(2), 147–150. https://doi.org/10.1130/G36208.1
    [Google Scholar]
  45. Phillips, T. B., Fazlikhani, H., Gawthorpe, R. L., Fossen, H., Jackson, C. A. L., Bell, R. E., Faleide, J. I., & Rotevatn, A. (2019). The influence of structural inheritance and multiphase extension on rift development, the northern North Sea. Tectonics, 38(12), 4099–4126. https://doi.org/10.1029/2019TC005756
    [Google Scholar]
  46. Phillips, T. B., Jackson, C. A., Bell, R. E., Duffy, O. B., & Fossen, H. (2016). Reactivation of intrabasement structures during rifting: A case study from offshore southern Norway. Journal of Structural Geology, 91, 54–73. https://doi.org/10.1016/j.jsg.2016.08.008
    [Google Scholar]
  47. Phillips, T. B., & McCaffrey, K. J. W. (2019). Terrane boundary reactivation, barriers to lateral fault propagation and reactivated fabrics: Rifting across the median batholith zone, great South Basin, New Zealand. Tectonics, 38(11), 4027–4053. https://doi.org/10.1029/2019TC005772
    [Google Scholar]
  48. Pichel, L. M., Antunes, A. F., Fossen, H., Rapozo, B. F., Finch, E., & Córdoba, V. C. (2023). The interplay between basement fabric, rifting, syn‐rift folding, and inversion in the Rio do Peixe Basin, NE Brazil. Basin Research, 35(1), 61–85. https://doi.org/10.1111/bre.12704
    [Google Scholar]
  49. Ravnas, R., Nottvedt, A., Steel, R. J., Windelstad, J., & Nottvedt, A. (2000). Syn‐rift sedimentary architectures in the northern North Sea. Geological Society Special Publications, 167(1), 133–177. https://doi.org/10.1144/GSL.SP.2000.167.01.07
    [Google Scholar]
  50. Samsu, A., Micklethwaite, S., Williams, J. N., Fagerend, A., & Cruden, A. R. (2023). Structural inheritance in amagmatic rift basins: Manifestations and mechanisms for how pre‐existing structures influence rift‐related faults. Earth‐Science Reviews, 246, 104568. https://doi.org/10.1016/j.earscirev.2023.104568
    [Google Scholar]
  51. Scholz, C. A., Shillington, D. J., Wright, L. J. M., Accardo, N., Gaherty, J. B., & Chindandali, P. (2020). Intrarift fault fabric, segmentation, and basin evolution of the Lake Malawi (Nyasa) Rift, East Africa. Geosphere, 16(5), 1293–1311. https://doi.org/10.1130/GES02228.1
    [Google Scholar]
  52. Shaban, S. N., Kolawole, F., & Scholz, C. A. (2023). The deep basin and underlying basement structure of the Tanganyika Rift. Tectonics, 42(7), e2022TC007726. https://doi.org/10.1029/2022TC007726
    [Google Scholar]
  53. Song, J., Liu, Z., Wang, C., Gao, X., & Liu, X. (2019). Multistage structural deformations of a superimposed basin system and its tectonic response to regional geological evolution: A case study from the Late Jurassic‐Early Cretaceous Tanan depression, Hailar‐Tamtsag basin. Marine and Petroleum Geology, 110, 1–20. https://doi.org/10.1016/j.marpetgeo.2019.06.051
    [Google Scholar]
  54. Soto, M., Morales, E., Veroslavsky, G., de Santa Ana, H., Ucha, N., & Rodríguez, P. (2011). The continental margin of Uruguay: Crustal architecture and segmentation. Marine and Petroleum Geology, 28(9), 1676–1689. https://doi.org/10.1016/j.marpetgeo.2011.07.001
    [Google Scholar]
  55. Strogen, D. P., Seebeck, H., Nicol, A., & King, P. R. (2017). Two‐phase Cretaceous–Paleocene rifting in the Taranaki Basin region, New Zealand; implications for Gondwana break‐up. Journal of the Geological Society, 174(5), 929–946. https://doi.org/10.1144/jgs2016‐160
    [Google Scholar]
  56. Strugale, M., Schmitt, R. D. S., & Cartwright, J. (2021). Basement geology and its controls on the nucleation and growth of rift faults in the northern Campos Basin, offshore Brazil. Basin Research, 33(3), 1906–1933. https://doi.org/10.1111/bre.12540
    [Google Scholar]
  57. Sun, W., & Zhang, L. (2022). Preface: Pacific plate subduction and the Yanshanian movement in Eastern China. Journal of Earth Science, 33(3), 541–543. https://doi.org/10.1007/s12583‐022‐1311‐3
    [Google Scholar]
  58. Tang, J., Xu, W., Wang, F., & Ge, W. (2018). Subduction history of the Paleo‐Pacific slab beneath Eurasian continent: Mesozoic‐Paleogene magmatic records in Northeast Asia. Earth Science, 61(5), 527–559. https://doi.org/10.1007/s11430‐017‐9174‐1
    [Google Scholar]
  59. Tasrianto, R., & Escalona, A. (2015). Rift architecture of the Lofoten‐Vesterålen margin, offshore Norway. Marine and Petroleum Geology, 64, 1–16. https://doi.org/10.1016/j.marpetgeo.2015.02.036
    [Google Scholar]
  60. Upcott, N. M., Mukasa, R. K., Ebinger, C. J., & Karner, G. D. (1996). Along‐axis segmentation and isostasy in the Western rift, East Africa. Journal of Geophysical Research: Solid Earth, 101(B2), 3247–3268. https://doi.org/10.1029/95JB01480
    [Google Scholar]
  61. Wang, D., Li, P., Shan, X., Lu, Q., Liu, Y., & Yu, H. (2019). Seismic evidence for nappes in basins west of the Da Hinggan Mountains. Chinese Journal of Geophysics, 62(3), 1129–1138. (In Chinese with English abstract).
    [Google Scholar]
  62. Wang, D., Zhang, X., Yang, L., Chen, X., Ma, S., & Wu, Z. (2022). Influence of pre‐existing faults on Cenozoic structures in the Chengbei sag and the Wuhaozhuang area, Bohai Bay Basin, East China. Marine and Petroleum Geology, 138, 105539. https://doi.org/10.1016/j.marpetgeo.2022.105539
    [Google Scholar]
  63. Wang, L., Maestrelli, D., Corti, G., Zou, Y., & Shen, C. (2021). Normal fault reactivation during multiphase extension: Analogue models and application to the Turkana depression, East Africa. Tectonophysics, 811, 228870. https://doi.org/10.1016/j.tecto.2021.228870
    [Google Scholar]
  64. Wang, T., Guo, L., Zhang, L., Yang, Q., Zhang, J., Tong, Y., & Ye, K. (2015). Timing and evolution of Jurassic–Cretaceous granitoid magmatisms in the Mongol–Okhotsk belt and adjacent areas, NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings. Journal of Asian Earth Sciences, 97, 365–392. https://doi.org/10.1016/j.jseaes.2014.10.005
    [Google Scholar]
  65. Wu, L., Mei, L., Paton, D. A., Liu, Y., Shen, C., Liu, Z., Luo, J., Min, C., Li, M., & Wen, H. (2020). Basement structures have crucial influence on rift development: Insights from the Jianghan Basin, Central China. Tectonics, 39(2), e2019TC005671. https://doi.org/10.1029/2019TC005671
    [Google Scholar]
  66. Wu, L., Shen, C., Paton, D. A., Hou, Y., Mei, L., Zeng, X., & Shi, G. (2022). The nature of the Late Syn‐rift Sag Basin (LSSB). Terra Nova, 34(6), 512–522. https://doi.org/10.1111/ter.12616
    [Google Scholar]
  67. Wu, L., Shen, C., Paton, D. A., Hou, Y., Mortimer, E. J., Mei, L., Sun, R., Zeng, X., & Shi, G. (2023). A rift‐scale view at strain partitioning during multiphase rifting: Insights from the Hailar Basin, northeast Asia. Basin Research, 35(4), 1362–1385. https://doi.org/10.1111/bre.12757
    [Google Scholar]
  68. Wu, Z., Zhang, M., Zhang, X., Wang, D., & Cheng, Y. (2022). Evolution and reservoir characteristics of the “Chengbei‐Kendong” structural transfer zone in the Bohai Bay Basin. Oil & Gas Geology, 43(6), 1321–1333. (In Chinese with English abstract).
    [Google Scholar]
  69. Yang, G., Yin, H., Gan, J., Wang, W., Zhu, J., Jia, D., Xiong, X., & Xu, W. (2022). Explaining structural difference between the eastern and western zones of the Qiongdongnan Basin, northern South China Sea: Insights from scaled physical models. Tectonics, 41(2), e2021TC006899. https://doi.org/10.1029/2021TC006899
    [Google Scholar]
  70. Yang, Y., Guo, Z., Song, C., Li, X., & He, S. (2015). A short‐lived but significant Mongol–Okhotsk collisional orogeny in latest Jurassic–earliest Cretaceous. Gondwana Research, 28(3), 1096–1116. https://doi.org/10.1016/j.gr.2014.09.010
    [Google Scholar]
  71. Ye, Q., Mei, L., Shi, H., Du, J., Deng, P., Shu, Y., & Camanni, G. (2020). The influence of pre‐existing basement faults on the Cenozoic structure and evolution of the proximal domain, northern South China Sea rifted margin. Tectonics, 39(3), 2019TC005845. https://doi.org/10.1029/2019TC005845
    [Google Scholar]
  72. Zhang, G., Qu, H., Jia, Q., Zhang, L., Yang, B., Chen, S., Ji, M., Sun, R., Guan, L., & Hayat, K. (2021). Passive continental margin segmentation of the marginal seas and its effect on hydrocarbon accumulation: A case study of the northern continental margin in South China Sea. Marine and Petroleum Geology, 123, 104741. https://doi.org/10.1016/j.marpetgeo.2020.104741
    [Google Scholar]
  73. Zhang, K., Deng, B., Zhang, F., Chen, H., Tang, S., Meng, Q., Liang, J., & Wang, Z. (2016). Determination of early stage of Early Cretaceous compressive event in Hailar Basin, NE China, and its tectonic significance. Earth Science, 41(7), 1141–1155. (In Chinese with English abstract).
    [Google Scholar]
  74. Zhang, Y., Qiu, E., Dong, S., Li, J., & Shi, W. (2022). Late Mesozoic intracontinental deformation and magmatism in North and NE China in response to multi‐plate convergence in NE Asia: An overview and new view. Tectonophysics, 835, 229377. https://doi.org/10.1016/j.tecto.2022.229377
    [Google Scholar]
  75. Zhao, F., Alves, T. M., Xia, S., Li, W., Wang, L., Mi, L., Wu, S., Cao, J., & Fan, C. (2020). Along‐strike segmentation of the South China Sea margin imposed by inherited pre‐rift basement structures. Earth and Planetary Science Letters, 530, 115862. https://doi.org/10.1016/j.epsl.2019.115862
    [Google Scholar]
  76. Zhao, P., Xu, B., & Chen, Y. (2023). Evolution and final closure of the Mongol‐Okhotsk Ocean. Science China Earth Sciences, 66(11), 2497–2513. https://doi.org/10.1007/s11430‐023‐1165‐9
    [Google Scholar]
  77. Zhong, X., & Escalona, A. (2020). Evidence of rift segmentation and controls of Middle to Late Jurassic synrift deposition in the Ryggsteinen ridge area, northern North Sea. AAPG Bulletin, 104(7), 1531–1565. https://doi.org/10.1306/03172018173
    [Google Scholar]
  78. Zhou, J., & Li, L. (2017). The Mesozoic accretionary complex in Northeast China: Evidence for the accretion history of Paleo‐Pacific subduction. Journal of Asian Earth Sciences, 145, 91–100. https://doi.org/10.1016/j.jseaes.2017.04.013
    [Google Scholar]
  79. Zhou, Y., Ji, Y., Pigott, J. D., Meng, Q., & Wan, L. (2014). Tectono‐stratigraphy of Lower Cretaceous Tanan sub‐basin, Tamtsag Basin, Mongolia: Sequence architecture, depositional systems and controls on sediment infill. Marine and Petroleum Geology, 49, 176–202. https://doi.org/10.1016/j.marpetgeo.2013.10.005
    [Google Scholar]
  80. Zhu, J. C., Meng, Q. R., Feng, Y. L., Yuan, H. Q., Wu, F. C., Wu, H. B., Wu, G. L., Zhu, R. X., Xiao, W., Xiao, W., Xiao, W., Liu, Y., Schulmann, K., Somerville, I., Kusky, T., & Seltmann, R. (2020). Decoding stratigraphic evolution of the Hailar Basin; implications for the late Mesozoic tectonics of NE China. Geological Journal, 55(3), 1750–1762. https://doi.org/10.1002/gj.3563
    [Google Scholar]
  81. Zwaan, F., & Schreurs, G. (2017). How oblique extension and structural inheritance influence rift segment interaction; insights from 4D analog models. Interpretation, 5(1), SD119–SD138. https://doi.org/10.1190/INT‐2016‐0063.1
    [Google Scholar]
/content/journals/10.1111/bre.12841
Loading
/content/journals/10.1111/bre.12841
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error