1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

The syn‐rift architecture of extensional basins records deposition from and interactions between footwall‐, hangingwall‐, and axially‐derived systems. However, the exact controls on their relative contributions and the overall variable depositional architecture, and how their sediment volume varies through time, remains understudied. We undertook a quantitative approach to determine temporal and spatial changes in the contribution of fault‐scarp degradation to the syn‐rift tectono‐stratigraphic development of the Thebe‐0 fault system on the Exmouth Plateau (NW Shelf, offshore Australia), using high‐quality 3D seismic reflection and boreholes data. The magnitude of footwall erosion was measured in terms of vertical (VE) and headward (HE) erosion by calculating the volume of eroded material along the footwall scarp. A detailed seismic‐stratigraphic and facies analysis allowed us to constrain the architectural variability of the hangingwall depositional systems and the types of resulting deposits (i.e., fault‐controlled base‐of‐scarp, settling from suspension, and hangingwall‐derived). After addressing the syn‐rift tectono‐stratigraphic framework, we suggest that periods of significant erosion along the Thebe‐0 fault scarp are related to the accumulation of fault‐controlled base‐of‐scarp deposits characterised by comprising a lower wedge with chaotic to low‐continuity reflections. Footwall‐derived deposits characterised by an upward decrease in stratigraphic dip are interpreted as related to periods of reduced fault activity and sustained sediment delivery sourced from the footwall scarp and systems beyond it (e.g., antecedent systems). We then analysed the tectono‐stratigraphic framework and the volumetric comparison between material eroded from the fault‐scarp and accumulated in the basin, aiming to estimate the contribution of fault‐scarp degradation to the hangingwall syn‐rift fill. Our results suggest periods of enhanced fault activity control fault‐scarp degradation variability through time, and we agree with that described by previous researchers—fault throw variability along‐strike regulates the variability in the magnitude of erosion. However, we propose that fault‐scarp degradation timing and its spatial variability are also influenced by the interaction and linkage with adjacent normal faults and by sea level variations. Lastly, we determine broader similarities and differences with a system located in the same fault array (i.e., Thebe‐2 fault system), aiming to give insights into the tectono‐stratigraphic evolution of a broader area and the spatial variability in fault‐scarp degradation.

,

3D view of the Thebe‐0 fault system. The top pre‐rift surface (TR30.1TS) is displayed to reveal the fault system geometry. Two seismic profiles are displayed oriented perpendicular to the fault and showing the hanging wall syn‐rift interval of interest (latest Triassic to Early Cretaceous). The studied fault‐scarp degradation complex extension is shaded in brown.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12842
2024-01-18
2025-05-13
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12842.html?itemId=/content/journals/10.1111/bre.12842&mimeType=html&fmt=ahah

References

  1. Adamson, K. R., Lang, S. C., Marshall, N. G., Seggie, R. J., Adamson, N. J., & Bann, K. L. (2013). Understanding the late Triassic Mungaroo and brigadier deltas of the northern Carnarvon Basin, North‐West shelf, Australia. In M.Keep & S. J.Moss (Eds.), The Sedimentary Basins of Western Australia IV. Proceedings of Petroleum Exploration Society of Australia Symposium (pp. 1–29). PESA.
    [Google Scholar]
  2. Alghuraybi, A., Bell, R. E., & Jackson, C.A.‐L. (2021). The geometric and temporal evolution of fault‐related folds constrain normal fault growth patterns, Barents Sea, Offshore Norway. Basin Research, 34, 618–639. https://doi.org/10.1111/bre.12633
    [Google Scholar]
  3. Allen, P. A., & Densmore, A. L. (2000). Sediment flux from an uplifting fault block. Basin Research, 12, 367–380.
    [Google Scholar]
  4. Badr, R., El‐Barkooky, A. N., El‐Araby, A.‐M., Bernhardt, A., & Nicholas Christie‐Blick, N. (2022). Syn‐rift sedimentary response to growth folding along a rift‐margin transfer zone: An example from the early Miocene of the Gulf of Suez, Egypt. Sedimentary Geology, 432, 106–121. https://doi.org/10.1016/j.sedgeo.2022.106121
    [Google Scholar]
  5. Barrett, B. J., Gawthorpe, R. L., Collier, R. E. L., Hodgson, D. M., & Cullen, T. M. (2020). Syn‐rift delta interfan successions: Archives of sedimentation and basin evolution. The Depositional Record, 6(1), 117–143. https://doi.org/10.1002/dep2.95
    [Google Scholar]
  6. Barrett, B. J., Hodgson, D. M., Jackson, C.A.‐L., Lloyd, C., Casagrande, J., & Collier, R. E. L. (2021). Quantitative analysis of a footwall‐scarp degradation complex and syn‐rift stratigraphic architecture, Exmouth Plateau, NW Shelf, offshore Australia. Basin Research, 33(2), 1135–1169. https://doi.org/10.1111/bre.12508
    [Google Scholar]
  7. Berger, M., & Roberts, A. M. (1999). The Zeta Structure: A footwall degradation complex formed by gravity sliding on the western margin of the Tampen Spur, Northern North Sea. In A. J.Fleet & S. A. R.Boldy (Eds.), Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference, Volume 1 (Vol. 5, pp. 107–116). Geological Society, London. https://doi.org/10.1144/0050107
    [Google Scholar]
  8. BHP Billiton Petroleum Pty Ltd . (2008a). Thebe‐1 and Thebe‐1CH Well Completion Report—Basic data volume WA‐346‐P. BHP Billiton Petroleum Pty Ltd.
    [Google Scholar]
  9. BHP Billiton Petroleum Pty Ltd . (2008b). Thebe‐1 and Thebe‐1CH Well Completion Report—Interpretive volume WA‐346‐P. BHP Billiton Petroleum Pty Ltd.
    [Google Scholar]
  10. Bilal, A., McClay, K., & Scarselli, N. (2018). Fault‐scarp degradation in the Central Exmouth Plateau, North West Shelf, Australia. Geological Society, London, Special Publications, 476(1), 231–257. https://doi.org/10.1144/sp476.11
    [Google Scholar]
  11. Bilal, A., & McClay, K. (2021). Tectonic and stratigraphic evolution of the central Exmouth Plateau, NW Shelf of Australia. Marine and Petroleum Geology, 136, 105447. https://doi.org/10.1016/j.marpetgeo.2021.105447
    [Google Scholar]
  12. Black, M., McCormack, K. D., Elders, C., & Robertson, D. (2017). Extensional fault evolution within the Exmouth Sub‐basin, North West Shelf, Australia. Marine and Petroleum Geology, 85(0264–8172), 301–315. https://doi.org/10.1016/j.marpetgeo.2017.05.022
    [Google Scholar]
  13. Bradshaw, M. T., Bradshaw, J., Murray, A. P., Needham, D. J., Spencer, L., Summons, R. E., Wilmot, J., & Winn, S. (1994). Petroleum systems in west Australian basins. In P. G.Purcell & R. R.Purcell (Eds.), The sedimentary basins of Western Australia: Proceedings of the Petroleum exploration Society of Australia Symposium (pp. 93–118). PESA.
    [Google Scholar]
  14. Cartwright, J. A., Mansfield, C., & Trudgill, B. (1996). The growth of normal faults by segment linkage. In P. G.Buchanan & D. A.Nieuwland (Eds.), Modern developments in structural interpretation, validation and modelling (Vol. 99, pp. 163–177). Geological Society, London, Special Publication.
    [Google Scholar]
  15. Chevron Australia Pty Ltd . (2010a). Kentish Knock‐1, Carnarvon Basin: WA‐365‐P, well completion report (interpretive data). Chevron Australia Pty Ltd.
    [Google Scholar]
  16. Chevron Australia Pty Ltd . (2010b). Guardian‐1, Carnarvon Basin: WA‐365‐P, Well Completion Report (Interpretive Data). Chevron Australia Pty Ltd.
    [Google Scholar]
  17. Chevron Australia Pty Ltd . (2011). Brederode‐1, Carnarvon Basin: WA‐364‐P (R1), Well Completion Report (Interpretive Data). Chevron Australia Pty Ltd.
    [Google Scholar]
  18. Chevron Australia Pty Ltd . (2013). Arnhem‐1, final well completion report. Carnarvon Basin: WA‐364‐P (R1). Chevron Australia Pty Ltd.
    [Google Scholar]
  19. Chevron Australia Pty Ltd . (2014). Kentish Knock South‐1, final well completion report. Carnarvon Basin: WA‐365‐P (R1). Chevron Australia Pty Ltd.
    [Google Scholar]
  20. Chiarella, D., Capella, W., Longhitano, S. G., & Muto, F. (2021). Fault‐controlled base‐of‐scarp deposits. Basin Research, 33(2), 1056–1075. https://doi.org/10.1111/bre.12505
    [Google Scholar]
  21. Chiarella, D., & Joel, D. (2021). Stratigraphic and sedimentological characterization of the Late Cretaceous post‐rift intra Lange Sandstones of the Gimsan Basin and Grinda Graben (Halten Terrace, Norwegian Sea). In D.Chiarella, S. G.Archer, J. A.Howell, C. A.‐L.Jackson, H.Kombrink, & S.Patruno (Eds.), Cross‐border themes in Petroleum geology II: Atlantic margin and Barents Sea (Vol. 495, pp. 179–197). Geological Society, London, Special Publications.
    [Google Scholar]
  22. Childs, C., Holdsworth, R. E., Jackson, C. A.‐L., Manzocchi, T., Walsh, J. J., & Yielding, G. (2017). Introduction to the geometry and growth of normal faults. In C.Childs, R. E.Holdsworth, C. A.‐L.Jackson, T.Manzocchi, J. JWalsh, & G.Yielding (Eds.), The geometry and growth of Normal faults (Vol. 439, pp. 1–9). Geological Society, London, Special Publications.
    [Google Scholar]
  23. Colella, A. (1988). Fault‐controlled marine Gilbert‐type fan deltas. Geology, 16, 1031–1034.
    [Google Scholar]
  24. Cullen, T. M., Coolier, R. E., Gawthorpe, R. L., Hodgson, D. M., & Barrett, B. J. (2019). Axial and transverse deep‐water sediment supply to syn‐rift fault terraces: Insights from the West Xylokastro Fault Block, Gulf of Corinth, Greece. Basin Research, 32, 1105–1139. https://doi.org/10.1111/bre.12416
    [Google Scholar]
  25. Dahl, N., & Solli, T. (1993). The structural evolution of the Snorre Field and surrounding areas. In J. R.Parker (Ed.), Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference on Petroleum Geology of NW, Europe (Vol. 4, pp. 1159–1166). Geological Society, London. https://doi.org/10.1144/0041159
    [Google Scholar]
  26. Deng, H., & McClay, K. (2019). Tectono‐stratigraphy of the Dampier Sub‐basin, North West Shelf of Australia. Geological Society, London, Special Publications, 476(1), 259–285. https://doi.org/10.1144/sp476‐2018‐180
    [Google Scholar]
  27. Dorobek, S. T. (2008). Tectonic and depositional controls on syn‐rift carbonate platforms sedimentation. SEPM Special Publication, 89, 57–81.
    [Google Scholar]
  28. Elliot, G. M., Wilson, P., Jackson, C.A.‐L., Gawthorpe, R. L., Michelsen, L., & Sharp, I. R. (2012). The linkage between fault throw and footwall scarp erosion patterns: An example from the Bremstein fault complex, offshore mid‐Norway. Basin Research, 24, 180–197. https://doi.org/10.1111/j.1365‐2117.2001.00524.x
    [Google Scholar]
  29. Esso Australia Limited . (1981). Eendracht‐1 Well Completion Report. Data Repository. Australian Government, Geoscience Australia.
    [Google Scholar]
  30. Exon, N. F., & Wilcox, J. B. (1978). Geology and petroleum potential of Exmouth Plateau area off Western Australia. AAPG Bulletin, 62(1), 40–72. https://doi.org/10.1306/c1ea47f2‐16c9‐11d7‐8645000102c1865d
    [Google Scholar]
  31. Faure Walker, J. P., Roberts, G. P., Cowie, P. A., Papanikolaou, I. D., Sammonds, P. R., Michetti, A. M., & Phillips, R. J. (2009). Horizontal strain‐rates and throw‐rates across breached relat zones, central Italy: Implications for the preservation of throw deficits at points of normal fault linkage. Journal of Structural Geology, 31, 1145–1160. https://doi.org/10.1016/j.jsg.2009.06.011
    [Google Scholar]
  32. Ferentinos, G., Papatheodorou, G., & Collins, M. B. (1988). Sediment transport processes on an active submarine fault escarpment: Gulf of Corinth, Greece. Marine Geology, 83(1–4), 43–61. https://doi.org/10.1016/0025‐3227(88)90051‐5
    [Google Scholar]
  33. Fraser, S. I., Robinson, A. M., Johnson, H. D., Underhill, J. R., Kadolsky, D. G. A., Connell, R., Johannessen, P., & Ravnås, R. (2002). Upper Jurassic. In A.Armour, D.Evans, & C.Hickey (Eds.), The millennium atlas: Petroleum geology of the central and northern North Sea (pp. 157–189). The Geological Society of London.
    [Google Scholar]
  34. Galybin, K. (2007). Thebe‐1 well seismic processing report—Zero offset VSP survey. Schlumberger Oilfield Australia Pty Ltd.
    [Google Scholar]
  35. Gartrell, A., Torres, J., Dixon, M., & Keep, M. (2016). Mesozoic rift onset and its impact on the sequence stratigraphic architecture of the Northern Carnarvon Basin. The APPEA Journal, 56(1), 143. https://doi.org/10.1071/aj15012
    [Google Scholar]
  36. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218.
    [Google Scholar]
  37. Gawthrope, R. L., Jackson, C. A.‐L., Young, M. J., Sharp, I. R., Moustafa, A. R., & Leppard, C. W. (2003). Normal fault growth, displacement localisation and the evolution of normal fault populations: The Hammam Faraun fault block, Suez rift, Egypt. Journal of Structural Geology, 25, 883–895.
    [Google Scholar]
  38. Ge, Z., Nemec, W., Gawthorpe, R. L., & Hansen, E. W. M. (2017). Response of unconfined turbidity current to normal‐fault topography. Sedimentology, 64, 932–959.
    [Google Scholar]
  39. Geoscience Australia . (2021). Regional Geology of the Northern Carnarvon Basin. Geoscience Australia, Australian Government. Department of Industry, Science, Energy and Resourceshttps://www.ga.gov.au/scientific‐topics/energy/province‐sedimentary‐basin‐geology/petroleum/acreagerelease/northerncarnarvon
    [Google Scholar]
  40. Heine, C., & Müller, R. (2005). Late Jurassic rifting along the Australian North West Shelf: Margin geometry and spreading ridge configuration. Australian Journal of Earth Sciences, 52(1), 27–39. https://doi.org/10.1080/08120090500100077
    [Google Scholar]
  41. Henstra, G. A., Grundvåg, S.‐A., Johannessen, E. P., Kristensen, T. B., Midtkandal, I., Nystuen, J. P., Rotevatn, A., Surlyk, F., Sæther, T., & Windelstad, J. (2016). Depositional processes and stratigraphic architecture within a coarse‐grained rift‐margin turbidite system: The Wollaston Forland group, east Greenland. Marine and Petroleum Geology, 76(2016), 187–209. https://doi.org/10.1016/j.marpetgeo.2016.05.018
    [Google Scholar]
  42. Hesthammer, J., & Fossen, H. (1999). Evolution and geometries of gravitational collapse structures with examples from the Statfjord field, northern North Sea. Marine and Petroleum Geology, 16(3), 259–281. https://doi.org/10.1016/s0264‐8172(98)00071‐3
    [Google Scholar]
  43. Hoth, S., Knaust, D., Sánchez‐López, A., Kassold, S., & Sviland‐Østre, S. (2018). The Gudrun field: Gravity‐flow deposition during rifting and inversion. In C. C.Turner & B. T.Cronin (Eds.), Rift‐related coarse‐grained submarine fan reservoirs; the Brae Play, South Viking Graben, North Sea (Vol. 115, pp. 387–422). AAPG Memoir.
    [Google Scholar]
  44. Hughes, A., Escartín, J., Olive, J.‐A., Billant, J., Deplus, C., Feuillet, N., Leclerc, F., & Malatesta, L. (2021). Quantification of gravitational mass wasting and controls on submarine scarp morphology along the Roseau fault, Lesser Antilles. Journal of Geophysical Research: Earth Surface, 126, e2020JF005892. https://doi.org/10.1029/2020JF005892
    [Google Scholar]
  45. Jackson, C.A.‐L., Bell, R. E., Rotevatn, A., & Tvedt, A. B. M. (2017). Techniques to determine the kinematics of syn‐sedimentary normal faults and implications for fault growth models. In C.Childs, R. E.Holdsworth, C. A.‐L.Jackson, T.Manzocchi, J. J.Walsh, & G.Yielding (Eds.), The geometry and growth of Normal faults (Vol. 439, pp. 187–217). Geological Society, London, Special Publications.
    [Google Scholar]
  46. Kokkalas, S., & Koukouvelas, I. K. (2005). Fault‐scarp degradation modelling in central Greece: The Kaparelli and Eliki faults (Gulf of Corinth) as a case study. Journal of Geodynamics, 40(2–3), 200–215. https://doi.org/10.1016/j.jog.2005.07.006
    [Google Scholar]
  47. Leeder, M. R., & Jackson, J. A. (1993). The interaction between normal faulting and drainage in active extensional basins, with examples from the western United States and Central Greece. Basin Research, 5(2), 79–102. https://doi.org/10.1111/j.1365‐2117.1993.tb00059.x
    [Google Scholar]
  48. Leppard, C. W., & Gawthorpe, R. L. (2006). Sedimentology of rift climax deep water systems; Lower Rudeis Formation, Hammam Faraun Fault Block, Suez Rift, Egypt. Sedimentary Geology, 191(1–2), 67–87. https://doi.org/10.1016/j.sedgeo.2006.01.006
    [Google Scholar]
  49. Lewis, M. M., Jackson, C. A.‐L., & Gawthorpe, R. L. (2017). Tectono‐sedimentary development of early syn‐rift deposits: The Abura Graben, Suez Rift, Egypt. Basin Research, 29, 327–351.
    [Google Scholar]
  50. Lezzi, F., Mildon, Z., Faure Walker, J. P., Roberts, G., Goodall, H., Wilkinson, M., & Robertson, J. (2018). Coseismic throw variation across along‐strike bends on active Normal faults: Implications for displacement versus length scaling of earthquake ruptures. Journal of Geophysical Research: Solid Earth, 123, 9817–9841. https://doi.org/10.1029/2018JB016732
    [Google Scholar]
  51. Longley, I., Buessenschuett, C., Clydsdale, L., Cubitt, C. J., Davis, R. C., Johnson, M. K., Marshall, N., Murray, A., Somerville, R., Spry, T. B., & Thompson, N. B. (2002). The north west shelf of Australia—A Woodside perspective. In M.Keep & S. J.Moss (Eds.), The sedimentary Basins of Western Australia III: Proceedings of the Petroleum Society of Australia Symposium (p. 966). Petroleum Exploration Society of Australia.
    [Google Scholar]
  52. Mann‐Kalil, J., Rumyantseve, A., & Kjørlaug, I. (2023). Northern Viking Graben—Chasing the upper Jurassic play. Geo Exprohttps://geoexpro.com/category/exploration‐opportunities/cgg/
    [Google Scholar]
  53. Marshall, N. G., & Lang, S. C. (2013). A new sequence stratigraphic framework for the north west shelf, Australia. In M.Keep & S. J.Moss (Eds.), The sedimentary basins of Western Australia IV: Proceedings of Petroleum exploration Society of Australia Symposium (pp. 18–21). Petroleum Exploration Society of Australia.
    [Google Scholar]
  54. Maseiro, I., Burgess, P., Hollis, C., Manifold, L., Gawthorpe, R., Lecomte, I., Marshall, J., & Rotevatn, A. (2021). Syn‐rift carbonate platforms in space and time: Testing and refining conceptual models using stratigraphic and seismic numerical forward modelling. Geological Society, London, Special Publications, 509, 179–203. https://doi.org/10.1144/SP509‐2019‐217
    [Google Scholar]
  55. McCormack, K. D., & McClay, K. (2013). Structural architecture of the Gorgon Platform, North West Shelf, Australia. In M.Keep & S. J.Moss (Eds.), The sedimentary Basins of Western Australia IV. Proceedings of Petroleum Exploration Society of Australia Symposium (pp. 18–21). Petroleum Exploration Society of Australia.
    [Google Scholar]
  56. McLeod, A. E., & Underhill, J. R. (1999). Processes and products of footwall degradation, northern Brent field, northern North Sea. Geological Society, London, Petroleum Geology Conference Series, 5(1), 91–106. https://doi.org/10.1144/0050091
    [Google Scholar]
  57. Metcalfe, I. (2013). Gondwana dispersion and Asian accretion: Tectonic and Palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66(1367–9120), 1–33. https://doi.org/10.1016/j.jseaes.2012.12.020
    [Google Scholar]
  58. Morley, C. K., Ionnikoff, Y., Pinyochon, N., & Seusutthiya, K. (2007). Degradation of a footwall fault block with hanging‐wall fault propagation in a continental‐lacustrine setting: How a new structural model impacted field development plans, the Sirikit field, Thailand. AAPG Bulletin, 91(11), 1637–1661. https://doi.org/10.1306/06280707014
    [Google Scholar]
  59. Muravchik, M., Gawthorpe, R. L., Sharp, I. R., Rarity, F., & Hodgetts, D. (2018). Sedimentary environment evolution in a marine Hangingwall Dipslope setting. El Qaa fault block, Suez rift, Egypt. Basin Research, 30. 452–478. 10.1111/bre.12231
    [Google Scholar]
  60. Nakken, L., Chiarella, D., & Jackson, C. A.‐L. (2023). Late Jurassic rift physiography of the Froan Basin and Frøya High, offshore Mid‐Normay: Development of a syn‐rift shallow marine system. Basin Research, 35, 1908–1932. https://doi.org/10.1111/bre.12785
    [Google Scholar]
  61. Nemec, W. (1990). Deltas – Remarks on terminology and classification. In A.Colella & D. B.Prior (Eds.), Coarse‐grained deltas (Vol. 10, pp. 3–12). IAS Special Publication.
    [Google Scholar]
  62. Nøttvedt, A., Berge, A. M., Dawers, N. H., Færseth, R. B., Häger, K. O., Mangerud, G., & Puigdefabregas, C. (2000). Syn‐rift evolution and resulting play models in the snorre‐H area, northern North Sea. Geological Society, London, Special Publications, 167, 179–218. https://doi.org/10.1144/GSL.SP.2000.167.01.08
    [Google Scholar]
  63. Pan, S., Bell, R. E., Jackson, C.A.‐L., & Naliboff, J. (2021). Evolution of normal fault displacement and length as continental lithosphere stretches. Basin Research, 34(1), 121–140.
    [Google Scholar]
  64. Prosser, S. (1993). Rift‐related linked depositional systems and their seismic expression. Geological Society, London, Special Publication, 71, 35–66.
    [Google Scholar]
  65. Ravnås, R., & Bondevik, K. (1997). Architecture and controls on Bathonian‐Kimmeridgian shallow‐marine synrift wedges of the Oseberg‐Brage area, northern North Sea. Basin Research, 9, 197–226.
    [Google Scholar]
  66. Ravnås, R., Nøttvedt, A., Steel, R. L., & Windelstad, J. (2000). Syn‐rift sedimentary architecture in the northern North Sea. In A.Nøttvedt (Ed.), Dynamics of the Norwegian Margin (Vol. 197, pp. 133–177). Geological Society, London, Special Publications.
    [Google Scholar]
  67. Ravnås, R., & Steel, R. J. (1998). Architecture of marine riftbasin successions. AAPG Bulletin, 82, 110–146. https://doi.org/10.1306/1D9BC3A9‐172D‐11D7‐8645000102C1865D
    [Google Scholar]
  68. Reeve, M. T., Jackson, C. A. L., Bell, R. E., Magee, C., & Bastow, I. D. (2016). The stratigraphic record of prebreakup geodynamics: Evidence from the Barrow Delta, offshore Northwest Australia. Tectonics, 35(8), 1935–1968. https://doi.org/10.1002/2016tc004172
    [Google Scholar]
  69. Sarhan, M. A., Collier, R. E. L., Basal, A., & Abdel Aal, M. H. (2014). Late Miocene normal faulting beneath the northern Nile Delta: NNW propagation of the Gulf of Suez Rift. Arabian Journal of Geosciences, 7, 4563–4571. https://doi.org/10.1007/s12517‐013‐1089‐9
    [Google Scholar]
  70. Scarselli, N., Bilal, A., McClay, K., Ferrer, O., Gumprecht, S., & Paten, T. (2022). Charpter‐3—Seismic geomorphology as a tool to explore the georesource potential of slope failures‐examples from offshore North West Shelf, Australia. In R.Bell, D.Iacopini, & M.Vardy (Eds.), Interpreting subsurface seismic data (pp. 33–59). Elsevier.
    [Google Scholar]
  71. Schlische, R. W. (1995). Geometry and origin of fault‐related folds in extensional settings. AAPG Bulletin, 79(11), 1661–1678. https://doi.org/10.1306/7834DE4A‐1721‐11D7‐8645000102C1865D
    [Google Scholar]
  72. Strachan, L. J., Rarity, F., Gawthorpe, R. L., Wilson, P., Sharp, I., & Hodgetts, D. (2013). Submarine slope processes in rift‐margin basins, Miocene Suez Rift, Egypt. GSA Bulletin, 125(1–2), 109–127. https://doi.org/10.1130/B30665.1
    [Google Scholar]
  73. Tillmans, F., Gawthorpe, R. L., Jackson, C. A.‐L., & Rotevatn, A. (2021). Syn‐rift sediment gravity flow deposition on a late Jurassic fault‐terraced slope, northern North Sea. Basin Research, 33, 1844–1879. https://doi.org/10.1111/bre.12538
    [Google Scholar]
  74. Tipper, J. C. (2016). Measured rates of sedimentation: What exactly are we estimating, and why?Sedimentary Geology, 339, 151–171.
    [Google Scholar]
  75. Underhill, J. R., Sawyer, M. J., Hodgson, P., Shallcross, M. D., & Gawthorpe, R. L. (1997). Implications of fault scarp degradation for Brent Group Prospectivity, Ninian field, northern North Sea. AAPG Bulletin, 81(6), 999–1022. https://doi.org/10.1306/522b49bf‐1727‐11d7‐8645000102c1865d
    [Google Scholar]
  76. Veeken, P. C. (2007). Seismic stratigraphy, basin analysis and reservoir characterisation. Elsevier.
    [Google Scholar]
  77. Velayatham, T., Holford, S., Bunch, M., King, R. C., & Magee, C. (2019). 3D seismic analysis of ancient subsurface fluid flow in the Exmouth Plateau, offshore Western Australia. In M.Keep & S. J.Moss (Eds.), The Sedimentary Basins of Western Australia V: Proceedings of the Petroleum exploration Society of Australia Symposium (p. 24). Petroleum Exploration Society of Australia.
    [Google Scholar]
  78. Walsh, J. J., Bailey, W. R., Childs, C., Nicol, A., & Bonson, C. G. (2003). Formation of segmented normal faults: A 3‐D perspective. Journal of Structural Geology, 25, 1251–1262. https://doi.org/10.1016/S0191‐8141(02)00161‐X
    [Google Scholar]
  79. Welbon, A. I. F., Brockbank, P. J., Brunsden, D., & Olsen, T. S. (2007). Characterizing and producing from reservoirs in landslides: Challenges and opportunities. In Jolley, S. J., Barr, D., Walsh, J. J., & Knipe, R. J., (Eds.), Structurally complex reservoirs (Vol. 292, No. 1, pp. 49–74). Geological Society, London, Special Publications. https://doi.org/10.1144/SP292.3
    [Google Scholar]
  80. WesternGeco . (2007). 2006/7 Bonaventure M3D Data Processing Report. Data Repository. Australian Government, Geoscience Australia.
    [Google Scholar]
  81. Whipp, P. S., Jackson, C.A.‐L., Schlische, R. W., Withjack, M. O., & Gawthorpe, R. L. (2016). Spatial distribution and evolution of fault‐segment boundary types in rift systems: Observations from experimental clay models. Geological Society, London, Special Publications, 439(1), 79–107. https://doi.org/10.1144/sp439.7
    [Google Scholar]
  82. Yang, X.‐M., & Elders, C. (2016). The Mesozoic structural evolution of the gorgon platform, North Carnarvon Basin, Australia. Australian Journal of Earth Sciences, 63(6), 755–770. https://doi.org/10.1080/068120099.2016.1243579
    [Google Scholar]
  83. Young, M. J., Gawthorpe, R. L., & Hardy, S. (2001). Growth and linkage of a segmented normal fault zone: The Late Jurassic Murchison‐Statfjord North Fault, northern North Sea. Journal of Structural Geology, 23, 1933–1952.
    [Google Scholar]
/content/journals/10.1111/bre.12842
Loading
/content/journals/10.1111/bre.12842
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error