1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

Time–temperature models for the Sturt 8, Pogona 1, Dunoon 1, Pinna 1, Narcoonowie 1 and combined Moomba 1 and Moomba 72 wells, shown by location within the Cooper–Eromanga Basin. The apatite partial annealing zone (APAZ) is the thermal range at which fission tracks in apatite sensitive over geological time scales (ca. 120–60°C; Gleadow et al., 1986; Wagner & Van den haute, 1992), and has been indicated for each reconstruction. Present day stratigraphic levels of the Eromanga Basin, Cooper Basin and pre‐Permian basement are shown to the right of each thermal history profile. Wells previously studied for thermal history and referenced from Duddy and Moore (1999) and Duddy et al. (2002) are additionally shown, with well names as follows: Bu2 = Burley 2; Da1 = Daralingie 1; Gi1 = Gidgelpa 1; Gi5 = Gidgelpa 5; Gi7 = Gidgelpa 7; Me2 = Merrimelia 2; Me4 = Merrimelia 4; Pa1 = Pando 1; St7 = Sturt 7; TT1 = Tinga Tingana 1.

, Abstract

The prolific hydrocarbon and geothermal potential of the Cooper–Eromanga Basin has long been recognised and studied, however, the thermal history which underpins these resources has largely remained elusive. This study presents new apatite fission track and U–Pb data for eight wells within the southwestern domain of the Cooper–Eromanga Basin, from which thermal history and detrital provenance reconstructions were conducted. Samples taken from sedimentary rocks of the upper Eromanga Basin (Winton, Mackunda and Cadna‐owie Formations) yield dominant Early‐Cretaceous and minor Late‐Permian–Triassic apatite U–Pb ages that are (within uncertainty) equivalent to corresponding fission track age populations. Furthermore, the obtained Cretaceous apatite ages correlate well with the stratigraphic ages for each analysed formation, suggesting (1) little time lag between apatite exposure in the source region and sediment deposition, and (2) that no significant (>ca. 100°C) reheating affected these formations in this region following deposition. Cretaceous apatites were likely distally sourced from an eastern Australian volcanic arc, (e.g. the Whitsunday Igneous Association), and mixed with Permian–Triassic sediment sources from the New England and/or Mossman Orogens. Deeper samples (>2000 m) from within the southwestern Cooper Basin yielded partially reset fission track ages, indicative of heating to temperatures exceeding ca. 100–80°C after deposition. The associated thermal history models are broadly consistent with previous studies and suggest that maximum temperatures were reached at ca. 100–70 Ma as a result of hydrothermal circulation correlating with high rates of sedimentation. Subsequent Late‐Cretaceous–Palaeogene cooling is interpreted to reflect post magmatic thermal subsidence and cessation of hydrothermal activity, as well as potential modified rock thermal conductivity as a response to fluid flow. Five of the seven modelled wells record a Neogene heating event, the geological significance of which remains tentative but may suggest possible reactivation of the Cooper Hot Spot and associated hydrothermal circulation.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12843
2024-01-10
2025-05-19
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12843.html?itemId=/content/journals/10.1111/bre.12843&mimeType=html&fmt=ahah

References

  1. Alexander, E. M., & Hibburt, J. (1996). The petroleum geology of South Australia: Volume 2—Eromanga Basin. SA Department of Mines and Energy.
  2. Allen, C. M., Williams, I. S., Stephens, C. J., & Fielding, C. R. (1998). Granite genesis and basin formation in an extensional setting: The magmatic history of the Northernmost New England Orogen. Australian Journal of Earth Sciences, 45(6), 875–888. https://doi.org/10.1080/08120099808728442
    [Google Scholar]
  3. Apak, S. N., Stuart, W. J., Lemon, N. M., & Wood, G. (1997). Structural evolution of the Permian–Triassic Cooper Basin, Australia: Relation to hydrocarbon trap styles. AAPG Bulletin, 81(4), 533–555. https://doi.org/10.1306/522b43c5‐1727‐11d7‐8645000102c1865d
    [Google Scholar]
  4. Armstrong, P. A. (2005). Thermochronometers in sedimentary basins. In P. W.Reiners & T. A.Ehlers (Eds.), Low‐temperature thermochronology: Techniques, interpretations, and applications (pp. 499–525). Mineralogical Society of America.
    [Google Scholar]
  5. Barham, M., Kirkland, C. L., Reynolds, S., O'Leary, M. J., Evans, N. J., Allen, H., Haines, P. W., Hocking, R. M., McDonald, B. J., Belousova, E., & Goodall, J. (2016). The answers are blowin' in the wind: Ultra‐distal ashfall zircons, indicators of Cretaceous super‐eruptions in eastern Gondwana. Geology, 44(8), 643–646. https://doi.org/10.1130/g38000.1
    [Google Scholar]
  6. Beardsmore, G. (2004). The influence of basement on surface heat flow in the Cooper Basin. Exploration Geophysics, 35(4), 223–235. https://doi.org/10.1071/EG04223
    [Google Scholar]
  7. Beech, A. J. (1985). Dunoon 1 well completion report. Geological Survey of South Australia (WCR 06047) https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/image/DDD/DUNOON001.zip
  8. Black, L. P., McClenaghan, M. P., Korsch, R. J., Everard, J. L., & Foudoulis, C. (2005). Significance of Devonian–Carboniferous igneous activity in Tasmania as derived from U–Pb SHRIMP dating of zircon. Australian Journal of Earth Sciences, 52(6), 807–829. https://doi.org/10.1080/08120090500304232
    [Google Scholar]
  9. Boult, P. J., Theologou, P. M., & Foden, J. (1997). Capillary seals within the Eromanga Basin, Australia: Implications for exploration and prodution. AAPG Memoir, 67, 143–167.
    [Google Scholar]
  10. Bradshaw, B. E., Rollet, N., Iwanec, J., & Bernecker, T. (2022). A regional chronostratigraphic framework for play‐based resource assessments in the Eromanga Basin. The APPEA Journal, 62, S392–S399. https://doi.org/10.1071/AJ21097
    [Google Scholar]
  11. Braz, C., Zahirovic, S., Salles, T., Flament, N., Harrington, L., & Müller, R. D. (2021). Modelling the role of dynamic topography and eustasy in the evolution of the Great Artesian Basin. Basin Research, 33(6), 3378–3405. https://doi.org/10.1111/bre.12606
    [Google Scholar]
  12. Bryan, S. E., Constantine, A. E., Stephens, C. J., Ewart, A., Schön, R. W., & Parianos, J. (1997). Early Cretaceous volcano‐sedimentary successions along the eastern Australian continental margin: Implications for the break‐up of eastern Gondwana. Earth and Planetary Science Letters, 153(1), 85–102. https://doi.org/10.1016/S0012‐821X(97)00124‐6
    [Google Scholar]
  13. Bryan, S. E., Cook, A. G., Allen, C. M., Siegel, C., Purdy, D. J., Greentree, J. S., & Uysal, I. T. (2012). Early‐mid Cretaceous tectonic evolution of eastern Gondwana: From siliciclastic LIP magmatism to continental rupture. Episodes, 35(1), 142–152.
    [Google Scholar]
  14. Bryan, S. E., Ewart, A., Stephens, C. J., Parianos, J., & Downes, P. J. (2000). The Whitsunday Volcanic Province, Central Queensland, Australia: Lithological and stratigraphic investigations of a silicic‐dominated large igneous province. Journal of Volcanology and Geothermal Research, 99(1), 55–78. https://doi.org/10.1016/S0377‐0273(00)00157‐8
    [Google Scholar]
  15. Cawood, P. A., Leitch, E. C., Merle, R. E., & Nemchin, A. A. (2011). Orogenesis without collision: Stabilizing the Terra Australis accretionary orogen, eastern Australia. GSA Bulletin, 123(11–12), 2240–2255. https://doi.org/10.1130/b30415.1
    [Google Scholar]
  16. Chaney, A. J., Cubitt, C. J., & Williams, B. P. J. (1997). Reservoir potential of glacio‐fluvial sandstones: Merrimelia Formation, Cooper Basin, South Australia. The APPEA Journal, 37(1), 154–177. https://doi.org/10.1071/AJ96009
    [Google Scholar]
  17. Chew, D. M., O'Sullivan, G., Caracciolo, L., Mark, C., & Tyrrell, S. (2020). Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U‐Pb provenance analysis. Earth‐Science Reviews, 202, 103093. https://doi.org/10.1016/j.earscirev.2020.103093
    [Google Scholar]
  18. Chew, D. M., Petrus, J. A., & Kamber, B. S. (2014). U‐Pb LA‐ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology, 363, 185–199. https://doi.org/10.1016/j.chemgeo.2013.11.006
    [Google Scholar]
  19. Chew, D. M., & Spikings, R. A. (2015). Geochronology and thermochronology using apatite: Time and temperature, lower crust to surface. Elements, 11(3), 189–194. https://doi.org/10.2113/gselements.11.3.189
    [Google Scholar]
  20. Cogné, N., Chew, D. M., Donelick, R. A., & Ansberque, C. (2020). LA‐ICP‐MS apatite fission track dating: A practical zeta‐based approach. Chemical Geology, 531, 119302. https://doi.org/10.1016/j.chemgeo.2019.119302
    [Google Scholar]
  21. Collins, W. J. (1991). A reassessment of the ‘Hunter‐Bowen Orogeny’: Tectonic implications for the southern New England fold belt. Australian Journal of Earth Sciences, 38(4), 409–423. https://doi.org/10.1080/08120099108727981
    [Google Scholar]
  22. Crook, K. A. W. (1980). Fore‐arc evolution in the Tasman Geosyncline: The origin of the southeast Australian continental crust. Journal of the Geological Society of Australia, 27(1–2), 215–232. https://doi.org/10.1080/00167618008729136
    [Google Scholar]
  23. Deighton, I., & Hill, A. J. (1998). Thermal and burial history. In D. I.Gravestock, J. E.Hibburt, & J. F.Drexel (Eds.), The petroleum geology of South Australia, volume 4 (pp. 143–153). SA Department of Mines and Energy.
    [Google Scholar]
  24. Donelick, R. A., & Miller, D. S. (1991). Enhanced TINT fission‐track densities in low spontaneous track density apatites using 252Cf‐derived fission fragment tracks: A model and experimenal observations. Nuclear Tracks and Radiation Measurements, 18(3), 301–307.
    [Google Scholar]
  25. Drexel, J. F., & Preiss, W. V. (1995). The geology of South Australia, Volume 2. Geological Survey of South Australia.
    [Google Scholar]
  26. Duddy, I. R., & Moore, M. E. (1999). Thermal history reconstruction in Cooper‐Eromanga Basin wells using apatite and zircon fission track analysis and vitrinite reflectance. Geotrack International Report 668.
    [Google Scholar]
  27. Duddy, I. R., Moore, M. E., Marshallsea, S. J., & Green, P. F. (2002). Provenance and thermal history studies in Cooper‐Eromanga Basin wells. Geotrack International.
    [Google Scholar]
  28. Ewart, A., Schon, R. W., & Chappell, B. W. (1992). The Cretaceous volcanic‐plutonic province of the Central Queensland (Australia) coast—A rift related ‘calc‐alkaline’ province. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1–2), 327–345. https://doi.org/10.1017/S0263593300008002
    [Google Scholar]
  29. Fergusson, C. L., Fanning, C. M., Phillips, D., & Ackerman, B. R. (2005). Structure, detrital zircon U–Pb ages and 40Ar/39Ar geochronology of the Early Palaeozoic Girilambone group, Central New South Wales: Subduction, contraction and extension associated with the Benambran orogeny. Australian Journal of Earth Sciences, 52(1), 137–159. https://doi.org/10.1080/08120090500100044
    [Google Scholar]
  30. Fergusson, C. L., & Henderson, R. A. (2015). Early Palaeozoic continental growth in the Tasmanides of Northeast Gondwana and its implications for Rodinia assembly and rifting. Gondwana Research, 28(3), 933–953. https://doi.org/10.1016/j.gr.2015.04.001
    [Google Scholar]
  31. Flowers, R. M., Farley, K. A., & Ketcham, R. A. (2015). A reporting protocol for thermochronologic modeling illustrated with data from the Grand Canyon. Earth and Planetary Science Letters, 432, 425–435. https://doi.org/10.1016/j.epsl.2015.09.053
    [Google Scholar]
  32. Foden, J., Elburg, M. A., Dougherty‐Page, J., & Burtt, A. (2006). The timing and duration of the Delamerian orogeny: Correlation with the Ross Orogen and implications for Gondwana assembly. The Journal of Geology, 114(2), 189–210. https://doi.org/10.1086/499570
    [Google Scholar]
  33. Frears, R. A. (1978). Narcoonowie 1 well completion report. Geological Survey of South Australia (WCR 03204) https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/image/DDD/NARCOONOWIE001.zip
  34. Gallagher, K. (1988). The subsidence history and thermal state of the Eromanga and Cooper basins. PhD thesis, Australian National University, Canberra.
  35. Gallagher, K. (2012). Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research: Solid Earth, 117, 1–16. https://doi.org/10.1029/2011jb008825
    [Google Scholar]
  36. Gatehouse, C. G., Fanning, C. M., & Flint, R. B. (1995). Geochronology of the Big Lake Suite, Warburton Basin, northeastern South Australia, Quarterly Geological Notes. Geological Survey of South Australia, 128, 8–16.
    [Google Scholar]
  37. Geological Survey of South Australia . (2022). SARIG. https://map.sarig.sa.gov.au/
  38. Gillespie, J., Glorie, S., Khudoley, A., & Collins, A. S. (2018). Detrital apatite U‐Pb and trace element analysis as a provenance tool: Insights from the Yenisey ridge (Siberia). Lithos, 314‐315, 140–155. https://doi.org/10.1016/j.lithos.2018.05.026
    [Google Scholar]
  39. Gleadow, A. J. W., Duddy, I. R., Green, P. F., & Lovering, J. F. (1986). Confined fission track lengths in apatite: A diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology, 94(4), 405–415. https://doi.org/10.1007/bf00376334
    [Google Scholar]
  40. Gleadow, A. J. W., Gleadow, S. J., Belton, D. X., Kohn, B. P., Krochmal, M. S., & Brown, R. W. (2009). Coincidence mapping—A key strategy for the automatic counting of fission tracks in natural minerals. Geological Society, London, Special Publications, 324(1), 25–36. https://doi.org/10.1144/sp324.2
    [Google Scholar]
  41. Glorie, S., Alexandrov, I., Nixon, A., Jepson, G., Gillespie, J., & Jahn, B. M. (2017). Thermal and exhumation history of Sakhalin Island (Russia) constrained by apatite U‐Pb and fission track thermochronology. Journal of Asian Earth Sciences, 143, 326–342. https://doi.org/10.1016/j.jseaes.2017.05.011
    [Google Scholar]
  42. Glorie, S., March, S., Nixon, A., Meeuws, F., O'Sullivan, G. J., Chew, D. M., Kirkland, C. L., Konopelko, D., & De Grave, J. (2020). Apatite U–Pb dating and geochemistry of the Kyrgyz South Tian Shan (Central Asia): Establishing an apatite fingerprint for provenance studies. Geoscience Frontiers, 11(6), 2003–2015. https://doi.org/10.1016/j.gsf.2020.06.003
    [Google Scholar]
  43. Gravestock, D. I., Hibburt, J., & Drexel, J. F. (1998). The petroleum geology of South Australia: Volume 4—Cooper Basin. Geological Survey of South Australia.
    [Google Scholar]
  44. Gurnis, M., Müller, R. D., & Moresi, L. (1998). Cretaceous vertical motion of Australia and the Australian‐Antarctic discordance. Science, 279(5356), 1499–1504. https://doi.org/10.1126/science.279.5356.1499
    [Google Scholar]
  45. Haines, P. W., Hand, M., & Sandiford, M. (2001). Palaeozoic synorogenic sedimentation in central and northern Australia: A review of distribution and timing with implications for the evolution of intracontinental orogens. Australian Journal of Earth Sciences, 48(6), 911–928. https://doi.org/10.1046/j.1440‐0952.2001.00909.x
    [Google Scholar]
  46. Hall, L. S., Hill, A., Troup, A., Korsch, R., Radke, B., Nicoll, R. S., Palu, T., Wang, L., & Stacey, A. (2015). Cooper Basin architecture and lithofacies: Regional hydrocarbon prospectivity of the Cooper Basin, part 1. Geoscience Australia (Record 2015/31). https://doi.org/10.11636/Record.2015.031
    [Google Scholar]
  47. Hall, L. S., Palu, T. J., Murray, A. P., Boreham, C. J., Edwards, D. S., Hill, A. J., & Troup, A. (2019). Hydrocarbon prospectivity of the Cooper Basin, Australia. AAPG Bulletin, 103(1), 31–63. https://doi.org/10.1306/05111817249
    [Google Scholar]
  48. Hannaford, C., Young, M., Watts, C., Charles, A., Cooling, J., & Rollet, N. (2022). Palynological data review of selected wells and new sampling results in the Great Artesian Basin. Geoscience Australia (Record 2022/001). https://doi.org/10.11636/Record.2022.001
    [Google Scholar]
  49. Hardman, J. P. A., Holford, S. P., Schofield, N., Bunch, M., & Gibbins, D. (2019). The Warnie volcanic province: Jurassic intraplate volcanism in Central Australia. Gondwana Research, 76, 322–347. https://doi.org/10.1016/j.gr.2019.06.012
    [Google Scholar]
  50. Henderson, R. A., Innes, B. M., Fergusson, C. L., Crawford, A. J., & Withnall, I. W. (2011). Collisional accretion of a Late Ordovician oceanic Island arc, northern Tasman orogenic zone, Australia. Australian Journal of Earth Sciences, 58(1), 1–19. https://doi.org/10.1080/08120099.2010.535564
    [Google Scholar]
  51. Idnurm, M., & Senoir, B. R. (1978). Palaeomagnetic ages of late Cretaceous and tertiary weathered profiles in the Eromanga Basin, Queensland. Palaeogeography, Palaeoclimatology, Palaeoecology, 24(4), 263–277. https://doi.org/10.1016/0031‐0182(78)90010‐X
    [Google Scholar]
  52. Jadoon, Q. K., Roberts, E. M., Henderson, B., Blenkinsop, T. G., Wüst, R. A. J., & Mtelela, C. (2017). Lithological and facies analysis of the Roseneath and Murteree shales, Cooper Basin, Australia. Journal of Natural Gas Science and Engineering, 37, 138–168. https://doi.org/10.1016/j.jngse.2016.10.047
    [Google Scholar]
  53. Kulikowski, D., & Amrouch, K. (2017). Combining geophysical data and calcite twin stress inversion to refine the tectonic history of subsurface and offshore provinces: A case study on the Cooper‐Eromanga Basin, Australia. Tectonics, 36(3), 515–541. https://doi.org/10.1002/2016TC004366
    [Google Scholar]
  54. Kulikowski, D., & Amrouch, K. (2018). 3D seismic analysis investigating the relationship between stratigraphic architecture and structural activity in the intra‐cratonic Cooper and Eromanga basins, Australia. Marine and Petroleum Geology, 91, 381–400. https://doi.org/10.1016/j.marpetgeo.2018.01.019
    [Google Scholar]
  55. Kulikowski, D., Amrouch, K., & Cooke, D. (2016). Geomechanical modelling of fault reactivation in the Cooper Basin, Australia. Australian Journal of Earth Sciences, 63(3), 295–314. https://doi.org/10.1080/08120099.2016.1212925
    [Google Scholar]
  56. Li, P. F., Rosenbaum, G., & Rubatto, D. (2012). Triassic asymmetric subduction rollback in the southern New England Orogen (eastern Australia): The end of the Hunter‐Bowen orogeny. Australian Journal of Earth Sciences, 59(6), 965–981. https://doi.org/10.1080/08120099.2012.696556
    [Google Scholar]
  57. Lloyd, J., Collins, A. S., Payne, J. L., Glorie, S., Holford, S. P., & Reid, A. J. (2016). Tracking the Cretaceous transcontinental Ceduna River through Australia: The hafnium isotope record of detrital zircons from offshore southern Australia. Geoscience Frontiers, 7(2), 237–244. https://doi.org/10.1016/j.gsf.2015.06.001
    [Google Scholar]
  58. MacDonald, J. D., Holford, S. P., Green, P. F., Duddy, I. R., King, R. C., & Backé, G. (2013). Detrital zircon data reveal the origin of Australia's largest delta system. Journal of the Geological Society, 170(1), 3–6. https://doi.org/10.1144/jgs2012‐093
    [Google Scholar]
  59. Mavromatidis, A. (2006). Burial/exhumation histories for the Cooper–Eromanga Basins and implications for hydrocarbon exploration, Eastern Australia. Basin Research, 18(3), 351–373. https://doi.org/10.1111/j.1365‐2117.2006.00294.x
    [Google Scholar]
  60. Mavromatidis, A. (2007). Exhumation study in the Cooper‐Eromanga basins, Australia and the implications for hydrocarbon exploration. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 29(7), 631–648. https://doi.org/10.1080/009083190957775
    [Google Scholar]
  61. Mavromatidis, A. (2008). Two layer model of lithospheric compression and uplift/exhumation in an intracratonic setting: An example from the Cooper–Eromanga basins, Australia. International Journal of Earth Sciences, 97(3), 623–634. https://doi.org/10.1007/s00531‐007‐0260‐5
    [Google Scholar]
  62. Mavromatidis, A., & Hillis, R. (2005). Quantification of exhumation in the Eromanga Basin and its implications for hydrocarbon exploration. Petroleum Geoscience, 11(1), 79–92. https://doi.org/10.1144/1354‐079304‐621
    [Google Scholar]
  63. McDowell, F. W., McIntosh, W. C., & Farley, K. A. (2005). A precise Ar‐40‐Ar‐39 reference age for the Durango apatite (U‐Th)/He and fission‐track dating standard. Chemical Geology, 214(3–4), 249–263. https://doi.org/10.1016/j.chemgeo.2004.10.002
    [Google Scholar]
  64. McLaren, S., & Dunlap, W. J. (2006). Use of 40Ar/39Ar K‐feldspar thermochronology in basin thermal history reconstruction: An example from the Big Lake Suite granites, Warburton Basin, South Australia. Basin Research, 18(2), 189–203. https://doi.org/10.1111/j.1365‐2117.2006.00288.x
    [Google Scholar]
  65. McLaren, S., Sandiford, M., Powell, R., Neumann, N. L., & Woodhead, J. D. (2006). Palaeozoic intraplate crustal anatexis in the mount Painter Province, South Australia: Timing, thermal budgets and the role of crustal heat production. Journal of Petrology, 47, 2281–2302.
    [Google Scholar]
  66. Meixner, A. J., Kirkby, A. L., & Horspool, N. (2014). Using constrained gravity inversions to identify high‐heat‐producing granites beneath thick sedimentary cover in the Cooper Basin region of Central Australia. Geothermics, 51, 483–495. https://doi.org/10.1016/j.geothermics.2013.10.010
    [Google Scholar]
  67. Middleton, M. F. (1979). Heat flow in the Moomba, Big Lake and Toolachee gas fields of the Cooper Basin and implications for hydrocarbon maturation. Exploration Geophysics, 10(2), 149–155. https://doi.org/10.1071/EG979149
    [Google Scholar]
  68. Moore, P. S., & Elliott, P. (1980). Pinna 1 well completion report. Geological Survey of South Australia (WCR 03945). https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/image/DDD/PINNA001.zip
    [Google Scholar]
  69. Moya, C. E., Raiber, M., Taulis, M., & Cox, M. E. (2015). Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: A multivariate statistical approach. Science of the Total Environment, 508, 411–426. https://doi.org/10.1016/j.scitotenv.2014.11.099
    [Google Scholar]
  70. Munson, T. J. (2014). Petroleum geology and potential of the onshore Northern Territory, 2014 (pp. 1–242). Northern Territory Geological Survey (NTGS Report 22). https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81558
    [Google Scholar]
  71. Norvick, M. S. (2005). Plate tectonic reconstructions of Australia's southern margins. Geoscience Australia (Record 2005/007). https://pid.geoscience.gov.au/dataset/ga/61826
    [Google Scholar]
  72. Ostler, S. (1990). Pogona 1 well completion report. Geological Survey of South Australia (WCR 07275/000) https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/image/DDD/POGONA001.zip
  73. Ostler, S. (1993). Moomba 72 well completion report. Geological Survey of South Australia (WCR 07425/000) https://mer‐wcr.s3.amazonaws.com/2027707/MOOMBA072.zip
  74. O'Sullivan, P. B., Kohn, B. P., Foster, D. A., & Gleadow, A. J. W. (1995). Fission track data from the Bathurst Batholith: Evidence for rapid mid‐Cretaceous uplift and erosion within the eastern highlands of Australia. Australian Journal of Earth Sciences, 42(6), 597–607. https://doi.org/10.1080/08120099508728228
    [Google Scholar]
  75. O'Sullivan, P. B., & Parrish, R. R. (1995). The importance of apatite composition and single‐grain ages when interpreting fission track data from plutonic rocks: A case study from the coast ranges, British Columbia. Earth and Planetary Science Letters, 132(1), 213–224. https://doi.org/10.1016/0012‐821X(95)00058‐K
    [Google Scholar]
  76. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508–2518. https://doi.org/10.1039/C1JA10172B
    [Google Scholar]
  77. Pirlo, M. C. (2004). Hydrogeochemistry and geothermometry of thermal groundwaters from the Birdsville Track Ridge, Great Artesian Basin, South Australia. Geothermics, 33(6), 743–774. https://doi.org/10.1016/j.geothermics.2004.07.001
    [Google Scholar]
  78. Pochon, A., Poujol, M., Gloaguen, E., Branquet, Y., Cagnard, F., Gumiaux, C., & Gapais, D. (2016). U‐Pb LA‐ICP‐MS dating of apatite in mafic rocks: Evidence for a major magmatic event at the Devonian‐Carboniferous boundary in the Armorican Massif (France). American Mineralogist, 101(11), 2430–2442. https://doi.org/10.2138/am‐2016‐5736
    [Google Scholar]
  79. Polak, E. J., & Horsfall, C. L. (1979). Geothermal gradients in the Great Artesian Basin, Australia. Exploration Geophysics, 10(2), 144–148. https://doi.org/10.1071/EG979144
    [Google Scholar]
  80. Quentin de Gromard, R. (2013). The significance of E–W structural trends for the Alice Springs Orogeny in the Charters Towers Province, North Queensland. Tectonophysics, 587, 168–187. https://doi.org/10.1016/j.tecto.2012.09.002
    [Google Scholar]
  81. Reynolds, S. D., Mildren, S. D., Hillis, R. R., & Meyer, J. J. (2006). Constraining stress magnitudes using petroleum exploration data in the Cooper–Eromanga basins, Australia. Tectonophysics, 415(1), 123–140. https://doi.org/10.1016/j.tecto.2005.12.005
    [Google Scholar]
  82. Roberts, J., & Engel, B. A. (1987). Depositional and tectonic history of the southern New England Orogen. Australian Journal of Earth Sciences, 34(1), 1–20. https://doi.org/10.1080/08120098708729391
    [Google Scholar]
  83. Rosenbaum, G. (2018). The Tasmanides: Phanerozoic tectonic evolution of eastern Australia. Annual Review of Earth and Planetary Sciences, 46(1), 291–325. https://doi.org/10.1146/annurev‐earth‐082517‐010146
    [Google Scholar]
  84. Rosenbaum, G., Li, P., & Rubatto, D. (2012). The contorted New England Orogen (eastern Australia): New evidence from U‐Pb geochronology of early Permian granitoids. Tectonics, 31, TC1006. https://doi.org/10.1029/2011tc002960
    [Google Scholar]
  85. Röth, J. (2022). Thermo‐tectonic evolution and source rock maturation in the Gippsland Basin (offshore Victoria) and in the central Eromanga Basin (Cooper region), Australia. PhD thesis, RWTH Aachen University https://doi.org/10.18154/RWTH‐2021‐11953
  86. Röth, J., & Littke, R. (2022). Down under and under cover ‐ the tectonic and thermal history of the Cooper and Central Eromanga Basins (Central Eastern Australia). Geosciences, 12(3), 117. https://doi.org/10.3390/geosciences12030117
    [Google Scholar]
  87. Röth, J., Parent, A., Warren, C., Hall, L. S., Palmowski, D., Koronful, N., Husein, S. S., Sachse, V., & Littke, R. (2022). Lithospheric evolution, thermo‐tectonic history and source‐rock maturation in the Gippsland Basin, Victoria, southeastern Australia. Australian Journal of Earth Sciences, 69(1), 83–112. https://doi.org/10.1080/08120099.2021.1938219
    [Google Scholar]
  88. Schwebel, D. (1980). Pelketa 1 well completion report. Geological Survey of South Australia (WCR 03640). https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/image/DDD/PELKETA001.zip
    [Google Scholar]
  89. Senior, B. R., Harrison, P. L., & Mond, A. (1978). Geology of the Eromanga Basin (Vol. 167). Bureau of Mineral Resources Geology and Geophysics, Bulletin.
    [Google Scholar]
  90. Siégel, C., Bryan, S., Purdy, D., Allen, C., Schrank, C., Uysal, T., Gust, D., & Beardsmore, G. (2012). Evaluating the role of deep granitic rocks in generating anomalous temperatures in south‐West Queensland (pp. 95–102). Geological Survey of Queensland (Record 2012/14).
  91. Siégel, C., Bryan, S. E., Allen, C. M., Purdy, D. J., Cross, A. J., Uysal, I. T., & Gust, D. A. (2018). Crustal and thermal structure of the Thomson Orogen: Constraints from the geochemistry, zircon U–Pb age, and Hf and O isotopes of subsurface granitic rocks. Australian Journal of Earth Sciences, 65(7–8), 967–986. https://doi.org/10.1080/08120099.2018.1447998
    [Google Scholar]
  92. Siégel, C., Schrank, C. E., Bryan, S. E., Beardsmore, G. R., & Purdy, D. J. (2014). Heat‐producing crust regulation of subsurface temperatures: A stochastic model re‐evaluation of the geothermal potential in southwestern Queensland, Australia. Geothermics, 51, 182–200. https://doi.org/10.1016/j.geothermics.2014.01.005
    [Google Scholar]
  93. Sircombe, K. N. (1999). Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sedimentary Geology, 124(1), 47–67. https://doi.org/10.1016/S0037‐0738(98)00120‐1
    [Google Scholar]
  94. Stephens, A., Reid, A., Hore, S., Gilmore, P., & Hill, S. (2017). Provenance of Mesozoic sediments in the southern Eromanga Basin, NSW: Implications for the source of placer gold of the Tibooburra goldfields. MESA Journal, 84(3), 10–18.
    [Google Scholar]
  95. Takemura, T., Sato, M., Chiba, T., Uemura, K., Ito, Y., & Funabiki, A. (2017). Effect of sedimentary facies and geological properties on thermal conductivity of Pleistocene volcanic sediments in Tokyo, Central Japan. Bulletin of Engineering Geology and the Environment, 76(1), 191–203. https://doi.org/10.1007/s10064‐016‐0856‐8
    [Google Scholar]
  96. Torgersen, T., Habermehl, M. A., & Clarke, W. B. (1992). Crustal helium fluxes and heat flow in the Great Artesian Basin, Australia. Chemical Geology, 102(1), 139–152. https://doi.org/10.1016/0009‐2541(92)90152‐U
    [Google Scholar]
  97. Toupin, D., Eadington, P. J., Person, M., Morin, P., Wieck, J., & Warner, D. (1997). Petroleum hydrogeology of the Cooper and Eromanga basins, Australia: Some insights from mathematical modeling and fluid inclusion data. AAPG Bulletin, 81(4), 577–603. https://doi.org/10.1306/522b43d9‐1727‐11d7‐8645000102c1865d
    [Google Scholar]
  98. Tucker, R. T., Roberts, E. M., Henderson, R. A., & Kemp, A. I. S. (2016). Large igneous province or long‐lived magmatic arc along the eastern margin of Australia during the Cretaceous? Insights from the sedimentary record. GSA Bulletin, 128(9–10), 1461–1480. https://doi.org/10.1130/b31337.1
    [Google Scholar]
  99. Turner, M. (1991). Sturt 8 well completion report. Geological Survey of South Australia WCR 07312/000. https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/image/DDD/STURT008.zip
  100. Veevers, J. J. (1984). Phanerozoic earth history of Australia. Oxford Geological Science Series, 2, 90–333.
    [Google Scholar]
  101. Veevers, J. J. (2000). Change of tectono‐stratigraphic regime in the Australian plate during the 99 Ma (Mid‐Cretaceous) and 43 Ma (Mid‐Eocene) swerves of the Pacific. Geology, 28(1), 47–50. https://doi.org/10.1130/0091‐7613(2000)28<47:COTRIT>2.0.CO;2
    [Google Scholar]
  102. Veevers, J. J., Powell, C. M., & Roots, S. R. (1991). Review of sea‐floor spreading around Australia. 1. Synthesis of the patterns of spreading. Australian Journal of Earth Sciences, 38(4), 373–389. https://doi.org/10.1080/08120099108727979
    [Google Scholar]
  103. Vermeesch, P. (2017). Statistics for LA‐ICP‐MS based fission track dating. Chemical Geology, 456, 19–27. https://doi.org/10.1016/j.chemgeo.2017.03.002
    [Google Scholar]
  104. Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
    [Google Scholar]
  105. Wagner, G. A., & Van den haute, P. (1992). Fission‐track dating. Kluwer Academic Publishers.
    [Google Scholar]
  106. Watts, K. J. (1987). The Hutton Sandstone‐Birkhead Formation transition, ATP 269P (1), Eromanga Basin. The APPEA Journal, 27(1), 215–229. https://doi.org/10.1071/AJ86018
    [Google Scholar]
  107. Whitford, D. J., Hamilton, P. J., & Scott, J. (1994). Sedimentary provenance studies in Australian basins using neodymium model ages. The APPEA Journal, 34(1), 320–329. https://doi.org/10.1071/AJ93029
    [Google Scholar]
/content/journals/10.1111/bre.12843
Loading
/content/journals/10.1111/bre.12843
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error