1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

Middle Miocene Volcanic Flare‐up Preceding and Synchronous with the Langhian/Serravallian Sea Level Decline in the North Pannonian Basin. The top part of the graphical abstract depicts a geological overview of the Pannonian Basin System, featuring the Danube Basin within it. This period is marked by significant volcanic activity and tectonic shifts as evidenced by the displayed Middle Miocene volcanic fields, and faults. Key geographical markers are labeled: TR – Transdanubian Range; EA – Eastern Alps; WC – Western Carpathians; HDL – Hurbanovo–Diósjenő Fault; DB – Danube Basin; PBS – Pannonian Basin System. The middle part of the figure shows detailed geo‐seismic profile of the line MXS3‐93, through the Gabčíkovo‐Győr sub‐basin with projected Kráľová‐1 well which documents the presence of the Kráľová stratovolcano. The lower part of the figure describes a comprehensive map highlighting the top of pre‐Cenozoic basement and the topography of the Kráľová stratovolcano, all displayed in the True Vertical Depth (TVD) domain.

, Abstract

The Pannonian Basin System originated from the collision of the African and European tectonic plates, followed by the Miocene extensional collapse that led to the development of a back‐arc basins. Accurate dating is essential to comprehend the tectono‐volcanic evolution of the region, particularly in the under‐studied Danube Basin. Single‐grain 40Ar/39Ar dating has revealed that volcanic activity in the Danube Basin commenced around 14.1 million years ago, aligning with previous biostratigraphic and radioisotope data from nearby volcanic fields. The initial Middle Miocene pyroclastic deposits were generated by intermediate high K calc‐alkaline magmas, contributing significantly to the deposition of thick layers of fine vitric tuffs. The timing and chemistry of the volcanism are consistent with the Badenian rift phase in the Middle Miocene within the Carpathian–Pannonian region, suggesting an intraplate back‐arc volcanic environment. Three‐dimensional imaging has exposed the buried Kráľová stratovolcano, revealing its impressive scale with a thickness between 2620 and 5000 m and a base diameter of 18–30 km. Such dimensions place it among the ranks of the world's largest stratovolcanoes, indicating its substantial impact on the evolution of the Carpathian–Pannonian area. The complex formation history of the stratovolcano points to multiple phases of growth. Furthermore, the basin controlling Mojmírovce‐Rába fault's intersection with the stratovolcano implies that fault activity was subsequent to the volcanic activity, being younger than 14.1 million years. Regional age data consistently indicates that volcanic activity in the Danube Basin reached its zenith just prior to and during the lower/upper Badenian sea‐level fall (Langhian/Serravallian). K‐metasomatism is unique to the stratovolcanic structures and is not observed in the wider regional setting. This study supports the notion of an intricate, interconnected subterranean intrusive system within the stratovolcano, underscoring the complex interplay between geological structures and volcanic processes.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12844
2024-01-10
2025-06-24
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12844.html?itemId=/content/journals/10.1111/bre.12844&mimeType=html&fmt=ahah

References

  1. Agnini, C., Monechi, S., & Raffi, I. (2017). Calcareous nannofossil biostratigraphy: Historical background and application in Cenozoic chronostratigraphy. Lethaia, 50, 447–463. https://doi.org/10.1111/let.12218
    [Google Scholar]
  2. Ali, S., & Ntaflos, T. (2011). Alkali basalts from Burgenland, Austria: Petrological constraints on the origin of the westernmost magmatism in the Carpathian–Pannonian Region. Lithos, 121(1–4), 176–188. https://doi.org/10.1016/j.lithos.2010.11.001
    [Google Scholar]
  3. Badurina, L., Šegvić, B., Mandic, O., & Slovenec, D. (2021). Miocene tuffs from the Dinarides and Eastern Alps as proxies of the Pannonian Basin lithosphere dynamics and tropospheric circulation patterns in Central Europe. Journal of the Geological Society, 178(6), jgs2020‐262. https://doi.org/10.1144/jgs2020‐262
    [Google Scholar]
  4. Balázs, A., Magyar, I., Matenco, L., Sztanó, O., Tőkés, L., & Horváth, F. (2018). Morphology of a large paleo‐lake: Analysis of compaction in the Miocene‐Quaternary Pannonian Basin. Global and Planetary Change, 171, 134–147.
    [Google Scholar]
  5. Balázs, A., Matenco, L., Magyar, I., Horváth, F., & Cloetingh, S. (2016). The link between tectonics and sedimentation in back–arc basins. New genetic constraints from the analysis of the Pannonian Basin. Tectonics, 35(6), 1526–1559.
    [Google Scholar]
  6. Biela, A. (1978). Deep wells in the covered regions of inner Western Carpathians II. Regional Geology of Western Carpathians, 10, 1–224. (in Slovak).
    [Google Scholar]
  7. Bischoff, A., Barrier, A., Beggs, M., Nicol, A., Cole, J., & Sahoo, T. (2020). Volcanoes buried in Te Riu‐a‐Māui/Zealandia sedimentary basins, New Zealand. Journal of Geology and Geophysics, 63, 378–401. https://doi.org/10.1080/00288306.2020.1773510
    [Google Scholar]
  8. Bischoff, A., Rossetti, M., Nicol, A., & Kennedy, B. (2019). Seismic reflection and petrographic interpretation of a buried monogenetic volcanic field (part 1). Bulletin of Volcanology, 81(9), 56. https://doi.org/10.1007/s00445‐019‐1316‐7
    [Google Scholar]
  9. Bojar, A.‐V., Barbu, V., Wojtowicz, A., Bojar, H.‐P., Hałas, S., & Duliu, O. G. (2018). Miocene Slănic tuff, Eastern Carpathians, Romania, in the context of Badenian salinity crisis. Geosciences, 8(2), 73. https://doi.org/10.3390/geosciences8020073
    [Google Scholar]
  10. Bondarenková, Z., Zbořil, Ľ., & Motlíková, H. (1980). Bratislava ‐ Rusovce ‐ Geotermálny vrt HGB‐1, vyhľadávací HGP, účel: Možnosti získať termálnu vodu v tejto oblasti. Geofond Bratislava ‐ Manuskript, archive number 48993.
  11. Brlek, M., Kutterolf, S., Gaynor, S., Kuiper, K., Belak, M., Brčić, V., Holcová, K., Wang, K.‐L., Bakrač, K., Hajek‐Tadesse, V., Mišur, I., Horvat, M., Šuica, S., & Schaltegger, U. (2020). Miocene syn‐rift evolution of the North Croatian Basin (Carpathian–Pannonian Region): New constraints from Mts. Kalnik and Požeška gora volcaniclastic record with regional implications. International Journal of Earth Sciences, 109, 2775–2800. https://doi.org/10.1007/s00531‐020‐01927‐4
    [Google Scholar]
  12. Brlek, M., Tapster, S. R., Schindlbeck‐Belo, J., Gaynor, S. P., Kutterolf, S., Hauff, F., Georgiev, S. V., Trinajstić, N., Šuica, S., Brčić, V., Wang, K.‐L., Lee, H.‐Y., Beier, C., Abersteiner, A. B., Mišur, I., Peytcheva, I., Kukoč, D., Németh, B., Trajanova, M., … Lukács, R. (2023). Tracing widespread Early Miocene ignimbrite eruptions and petrogenesis at the onset of the Carpathian‐Pannonian Region silicic volcanism. Gondwana Research, 116, 40–60. https://doi.org/10.1016/j.gr.2022.12.015
    [Google Scholar]
  13. Brown, L. F., Jr., & Fisher, W. L. (1980). Seismic stratigraphic interpretation and petroleum exploration. Continuing education course note no. 16. AAPG.
    [Google Scholar]
  14. Bukowski, K., Sant, K., Pilarz, M., Kuiper, K., & Garecka, M. (2018). Radio‐isotopic age and biostratigraphic position of a lower Badenian tuffite from the western Polish Carpathian Foredeep Ba sin (Cieszyn area). Geological Quarterly, 62(2), 303–318. https://doi.org/10.7306/gq.1402
    [Google Scholar]
  15. Chernyshev, I. V., Konečný, V., Lexa, J., Kovalenker, V. A., Jeleň, S., Lebedev, V. A., & Goltsman, Y. V. (2013). K–Ar and Rb–Sr geochronology and evolution of the Štiavnica stratovolcano (Central Slovakia). Geologica Carpathica, 64, 327–351. https://doi.org/10.2478/geoca‐2013‐0023
    [Google Scholar]
  16. Christidis, G. E. (1998). Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite, in the islands of Milos and Kimolos, Aegean, Greece. Clays and Clay Minerals, 46, 379–399. https://doi.org/10.1346/CCMN.1998.0460403
    [Google Scholar]
  17. Clynne, M. A., Christiansen, R. L., Stauffer, P. H., Hendley, J. W., II, & Stauffer, P. H. (2005). Volcano hazards of the Lassen volcanic national park area, California. US Geological Survey Fact Sheet, 022‐00.
  18. Coe, A. L. (Ed.). (2003). The sedimentary record of sea‐level change. Cambridge University Press, 277 p.
    [Google Scholar]
  19. Csibri, T., Rybár, S., Šarinová, K., Jamrich, M., Sliva, Ľ., & Kováč, M. (2018). Miocene fan delta conglomerates in the north‐western part of the Danube Basin: Provenance, paleoenvironment, paleotransport and depositional mechanisms. Geologica Carpathica, 69(5), 467–482. https://doi.org/10.1515/geoca‐2018‐0027
    [Google Scholar]
  20. Csontos, L., & Vörös, A. (2004). Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(1), 1–56. https://doi.org/10.1016/j.palaeo.2004.02.033
    [Google Scholar]
  21. de Leeuw, A., Bukowski, K., Krijgsman, W., & Kuiper, K. F. (2010). Age of the Badenian salinity crisis; impact of Miocene climate variability on the circum‐Mediterranean region. Geology, 38(8), 715–718. https://doi.org/10.1130/G30982.1
    [Google Scholar]
  22. de Leeuw, A., Tulbure, M., Kuiper, K. F., Melinte‐Dobrinescu, M. C., Stoica, M., & Krijgsman, W. (2018). New 40Ar/39Ar, magnetostratigraphic and biostratigraphic constraints on the termination of the Badenian salinity crisis: Indications for tectonic improvement of basin interconnectivity in Southern Europe. Global and Planetary Change, 169, 1–15. https://doi.org/10.1016/j.gloplacha.2018.07.001
    [Google Scholar]
  23. Dilek, Y. (2006). Collision tectonics of the Mediterranean region: Causes and consequences. In Y.Dilek & S.Pavlides (Eds.), Geological Society of America special papers, Vol. 409 (pp. 1–13). Geological Society of America. https://doi.org/10.1130/2006.2409(01)
    [Google Scholar]
  24. Ennis, D. J., Dunbar, N. W., Campbell, A. R., & Chapin, C. E. (2000). The effects of K‐metasomatism on the mineralogy and geochemistry of silicic ignimbrites near Socorro, New Mexico. Chemical Geology, 167, 285–312. https://doi.org/10.1016/S0009‐2541(99)00223‐5
    [Google Scholar]
  25. Fischer, K. C., & Veeken, P. (2015). Seismic and sequence stratigraphy. Montan Universität, 112 p.
    [Google Scholar]
  26. Fodor, L., Balázs, A., Csillag, G., Dunkl, I., Héja, G., Kelemen, P., Kövér, S., Németh, A., Nyíri, D., Oravecz, É., Selmeczi, I., Trajanova, M., Vrabec, M., & Vrabec, M. (2021). Migration of deformation, subsidence, and basin formation in the SW Pannonian Basin (central Europe) and the change to contractional deformation. EGU General Assembly, egu21‐13300. https://doi.org/10.5194/egusphere‐egu21‐13300
    [Google Scholar]
  27. Franko, O., Pereszlényi, M., & Bodiš, D. (2011). Genesis of the brines in the south‐eastern part of the Danube Basin, Slovakia. Mineralia Slovaca, 43, 463–478. (Slovak with english summary).
    [Google Scholar]
  28. Fusán, O., Biely, A., Ibrmajer, J., Plančár, J., & Rozložník, L. (1987). Basement of the Tertiary of the inner West Carpathians. GÚDŠ, 123 p.
    [Google Scholar]
  29. Gaža, B. (1966). Geologické zhodnotenie hlbokého štruktúrneho vrtu Kráľová‐1. Geofond Bratislava ‐ Manuscript, archive number 16971.
  30. Hók, J., Kováč, M., Pelech, O., Pešková, I., Vojtko, R., & Králiková, S. (2016). The alpine tectonic evolution of the Danube Basin and its northernperiphery (southwestern Slovakia). Geologica Carpathica, 67(5), 495–505. https://doi.org/10.1515/geoca‐2016‐0031
    [Google Scholar]
  31. Hók, J., Šujan, M., & Šipka, F. (2014). Tektonické členenie Západných Karpát – Prehľad názorov a nový prístup. Acta Geologica Slovaca, 6(2), 135–143.
    [Google Scholar]
  32. Harangi, S. (2001). Neogene magmatism in the Alpine‐Panonnonian Transition Zone ‐ A model for melt generation in complex geodynamic setting. Acta Vulcanologica, 13(1–2), 25–39.
    [Google Scholar]
  33. Harangi, S., Jankovics, M. É., Sági, T., Kiss, B., Lukács, R., & Soós, I. (2015). Origin and geodynamic relationships of the Late Miocene to Quaternary alkaline basalt volcanism in the Pannonian basin, eastern–central Europe. International Journal of Earth Sciences, 104, 2007–2032. https://doi.org/10.1007/s00531‐014‐1105‐7
    [Google Scholar]
  34. Harangi, S., & Lenkey, L. (2007). Genesis of the Neogene to Quaternary volcanism in the Carpathian‐Pannonian region: Role of subduction, extension, and mantle plume. In L.Beccaluva, G.Bianchini, & M.Wilson (Eds.), Cenozoic volcanism in the Mediterranean area, Special paper 418 (pp. 67–92). Geological Society of America. https://doi.org/10.1130/2007.2418(04)
    [Google Scholar]
  35. Harangi, S., Vaselli, O., Tonarini, S., Szabó, C. S., Harangi, R., & Coradossi, N. (1995). Petrogenesis of Neogene extension‐related alkaline volcanic rocks of the Little Hungarian Plain Volcanic Field (Western Hungary). Acta Vulcanologica, 7(2), 173–187.
    [Google Scholar]
  36. Harzhauser, M., & Mandic, O. (2008). Neogene lake systems of Central and South‐Eastern Europe: Faunal diversity, gradients and interrelations. Palaeogeography, Palaeoclimatology, Palaeoecology, 260, 417–434.
    [Google Scholar]
  37. Hastie, A. R., Kerr, A. C., Pearce, J. A., & Mitchell, S. F. (2007). Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th‐Co discrimination diagram. Journal of Petrology, 48(12), 2341–2357. https://doi.org/10.1093/petrology/egm062
    [Google Scholar]
  38. Hawthorne, F. C., Oberti, R., Harlow, G. E., Marech, W. V., Martin, R. F., Schumacher, J. C., & Welch, M. D. (2012). IMA report ‐ Nomenclature of the amphibole supergroup. American Mineralogist, 97, 2031–2048. https://doi.org/10.2138/am.2012.4276
    [Google Scholar]
  39. Hoch, A. R., Reddy, M. M., & Drever, J. I. (1999). Importance of mechanical disaggregation in chemical weathering in a cold alpine environment, San Juan Mountains, Colorado. GSA Bulletin, 111(2), 304–314.
    [Google Scholar]
  40. Holcová, K., Dašková, J., Fordinál, K., Hrabovský, J., Milovský, R., Scheiner, F., & Vacek, F. (2019). A series of ecostratigraphic events across the Langhian/Serravallian boundary in an epicontinental setting: The northern Pannonian Basin. Facies, 65, 36. https://doi.org/10.1007/s10347‐019‐0576‐1
    [Google Scholar]
  41. Horváth, F., Bada, G., Szafián, P., Tari, G., Ádám, A., & Cloetingh, S. (2006). Formation and deformation of the Pannonian Basin: Constraints from observational data. Geological Society, London, Memoirs, 32(1), 191–206. https://doi.org/10.1144/gsl.mem.2006.032.01.11
    [Google Scholar]
  42. Horváth, F., Musitz, B., Balázs, A., Végh, A., Uhrin, A., Nádor, A., Koroknai, B., Pap, N., Tóth, T., & Wórum, G. (2015). Evolution of the Pannonian Basin and its geothermal resources. Geothermics, 53, 328–352. https://doi.org/10.1016/j.geothermics.2014.07.009
    [Google Scholar]
  43. Hrušecký, I. (1999). Central part of the Danube Basin in Slovakia: Geophysical and geological model in regard to hydrocarbon prospection. Exploration Geophysics, Remote Sensing and Environment, 6(1), 2–55.
    [Google Scholar]
  44. Hudáčková, N., Kováč, M., Ruman, A., Halásová, E., Jamrich, M., Kováčová, M., Rybár, S., Šujan, M., & Šarinová, K. (2018). Biostratigraphic study: Špačince‐4 and Dubové‐2 wells. Manuscript, archív Nafta a.s., 33 p. (In Slovak).
  45. Jeong, G. Y., Hillier, S., & Kemp, R. A. (2011). Changes in mineralogy of loess–paleosol sections across the Chinese Loess Plateau. Quaternary Research, 75, 245–255. https://doi.org/10.1016/j.yqres.2010.09.001
    [Google Scholar]
  46. John, C. M., Karner, G. D., Browning, E. R., Leckie, M., Mateo, Z., Carson, B., & Lowery, C. (2011). Timing and magnitude of Miocene eustasy derived from the mixed siliciclastic‐carbonate stratigraphic record of the northeastern Australian margin. Earth and Planetary Science Letters, 304(3–4), 455–467. https://doi.org/10.1016/j.epsl.2011.02.013
    [Google Scholar]
  47. Jourdan, F., & Renne, P. (2007). Age calibration of the Fish Canyon sanidine 40Ar/39Ar dating standard using primary K–Ar standards. Geochimica et Cosmochimica Acta, 71, 387–402. https://doi.org/10.1016/j.gca.2006.09.002
    [Google Scholar]
  48. Kantor, J. (1987). Izotopický výskum a rádiometrické datovanie z okolia veľkej Bratislavy. Geofond Bratislava ‐ Manuscript, arch. number 65227.
  49. Karátson, D., BiróT, P. M., Kiss, B., Paquette, J. L., Cseri, Z., Hencz, M., Németh, K., Lahitte, P., Márton, E., Kordos, L., Józsa, S., Hably, L., Müller, S., & Szarvas, I. (2022). Large‐magnitude (VEI ≥ 7) ‘wet’ explosive silicic eruption preserved a Lower Miocene habitat at the Ipolytarnóc Fossil Site, North Hungary. Scientific Reports, 12(1), 9743. https://doi.org/10.1038/s41598‐022‐13586‐3
    [Google Scholar]
  50. Karátson, D., Favalli, M., Tarquini, S., Fornaciai, A., & Wörner, G. (2010). The regular shape of stratovolcanoes: A DEM‐based morphometrical approach. Journal of Volcanology and Geothermal Research, 193, 171–181. https://doi.org/10.1016/j.jvolgeores.2010.03.012
    [Google Scholar]
  51. Karátson, D., Márton, E., Harangi, S., Józsa, S., Balogh, K., Pécskay, Z., Kovácsvölgyi, S., Szakmány, G., & Dulai, A. (2000). Volcanic evolution and stratigraphy of the Miocene Börzsony Mountains, Hungary: An integrated study. Geologica Carpathica, 51, 325–343.
    [Google Scholar]
  52. Karátson, D., Oláh, I., Pécskay, Z., Márton, E., Harangi, S., Dulai, A., Zelenka, T., & Kósik, S. (2007). Miocene volcanism in the Visegrád Mountains (Hungary): An integrated approach to regional volcanic stratigraphy. Geologica Carpathica, 58(6), 541–563.
    [Google Scholar]
  53. Karolusová, E. (1970). Litofaciálne a petrografické štúdium bazálnych pyroklastík v areály stredoslovenských neovulkanitov. Zborník Geologických Prác Západné Karpaty, rad ZK, Zväzok, 12, 55–84.
    [Google Scholar]
  54. Kohút, M., & Larionov, A. N. (2021). From subduction to collision: Genesis of the Variscan granitic rocks from the Tatric Superunit (Western Carpathians, Slovakia). Geologica Carpathica, 72(2), 96–113. https://doi.org/10.31577/GeolCarp.72.2.2
    [Google Scholar]
  55. Konečný, V., Kováč, M., Lexa, J., & Šefara, J. (2002). Neogene evolution of the Carpatho‐Pannonian region: An interplay of subduction and back‐arc diapiric uprise in the mantle. EGU Stephan Mueller Special Publication Series, 1, 105–123.
    [Google Scholar]
  56. Konečný, V., Lexa, J., & Hojstrovičová, V. (1995). The central Slovakia Neogene volcanic field: A review. Acta Vulcanologica, 7(2), 63–78.
    [Google Scholar]
  57. Konečný, P., & Konečný, V. (2017). Litologicko‐petrografické charakteristiky vulkanických hornín vo vrtoch Š‐1 (Šurany), D‐1 (Dubník) a ZM‐1 (Zlaté Moravce) v oblasti Podunajskej panvy. Čiastková záverečná správa ku geologickej úlohe 17 13, téma D‐01/14. In Ľ.Hraško, D.Boorová, R.Demko, K.Fordinál, B.Kronome, Z.Németh, P.Konečný, J.Maglay, P.Šefčík, L.Šimon, A.Zlinská, K.Žecová, M.Radvanec, M.Vlačiky, M.Antalík, & R.Cibula (Eds.), Výskum geologickej stavby a zostavenie geologických máp v problematických územiach Slovenskej republiky, regionálny geologický výskum. Štátny Geologický Ústav Dionýza Štúra; Ministerstvo Životného Prostredia Slovenskej Republiky. 107 p., Geofond Bratislava ‐ Manuscript, archive number 97194. https://www.geology.sk/sluzby/digitalny‐archiv/
    [Google Scholar]
  58. Koppers, A. A. P. (2002). ArArCALC‐software for 40Ar/39Ar age calculations. Computers & Geosciences, 28, 605–619. https://doi.org/10.1016/S0098‐3004(01)00095‐4
    [Google Scholar]
  59. Kováč, M., Rybár, S., Halásová, E., Hudáčková, N., Šarinová, K., Šujan, M., Baranyi, V., Kováčová, M., Ruman, A., Klučiar, T., & Zlinská, A. (2018). Changes in Cenozoic depositional environment and sediment provenance in the Danube Basin. Basin Research, 30, 97–131. https://doi.org/10.1111/bre.12244
    [Google Scholar]
  60. Kronome, B., Baráth, I., Nagy, A., Uhrin, A., Maros, G., Berka, R., & Černák, R. (2014). Geological model of the Danube Basin; Transboundary correlation of geological and geophysical data. Slovak Geological Magazine, 14(2), 17–35.
    [Google Scholar]
  61. Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali‐silica diagram. Journal of Petrology, 27(3), 745–750. https://doi.org/10.1093/petrology/27.3.745
    [Google Scholar]
  62. Lexa, J., & Konečný, V. (1998). Geodynamic aspects of the Neogene to Quaternary volcanism. In M.Rakús (Ed.), Geodynamic development of the Western Carpathians (pp. 219–240). ŠGÚDŠ, 290 p.
    [Google Scholar]
  63. Lexa, J., & Pécskay, Z. (2010). Radiometric dating of rhyolite of Jastrabá Fm. by conventional K/Ar method. In R.Demko (Ed.), Paleo‐volcanic reconstruction maps of rhyolite volcanics of Slovakia an analysis of magmatic and hydrothermal processes. Final report of the geological task 15 06. Geofond Bratislava‐Open file report (pp. 86–100). ŠGÚDŠ. (in Slovak).
    [Google Scholar]
  64. Lexa, J., Seghedi, I., Németh, K., Szakács, A., Konečný, V., Pécskay, Z., Fülöp, A., & Kovacs, M. (2010). Neogene‐Quaternary volcanic forms in the Carpathian‐Pannonian region: A review. Central European Journal of Geosciences, 2(3), 207–270. https://doi.org/10.2478/v10085‐010‐0024‐5
    [Google Scholar]
  65. Locock, A. J. (2014). An excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers & Geosciences, 62, 1–11. https://doi.org/10.1016/j.cageo.2013.09.011
    [Google Scholar]
  66. Lukács, R., Guillong, M., Bachmann, O., Fodor, L., & Harangi, S. (2021). Tephrostratigraphy and magma evolution based on combined zircon trace element and U‐Pb age data: Fingerprinting Miocene silicic pyroclastic rocks in the Pannonian Basin. Frontiers in Earth Science, 9, 615768. https://doi.org/10.3389/feart.2021.615768
    [Google Scholar]
  67. Lukács, R., Harangi, S., Bachmann, O., Guillong, M., Danišík, M., Buret, Y., von Quadt, A., Dunkl, I., Fodor, L., Sliwinski, J., Soós, I., & Szepesi, J. (2015). Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Mid‐Miocene ignimbrite flare‐up in the Pannonian Basin, eastern central Europe. Contributions to Mineralogy and Petrology, 170, 52. https://doi.org/10.1007/s00410‐015‐1206‐8
    [Google Scholar]
  68. Lukács, R., Harangi, S., Gál, P., Szepesi, J., Di Capua, A., Norini, G., Sulpizio, R., Groppelli, G., & Fodor, L. (2022). Formal definition and description of lithostratigraphic units related to the Miocene silicic pyroclastic rocks outcropping in Northern Hungary: A revision. Geologica Carpathica, 73(2), 137–158. https://doi.org/10.31577/GeolCarp.73.2.3
    [Google Scholar]
  69. Lukács, R., Harangi, S., Guillong, M., Bachmann, O., Fodor, L., Buret, Y., Dunkl, I., Sliwinski, J., von Quadt, A., Peytcheva, I., & Zimmerer, M. (2018). Early to Mid‐Miocene syn‐extensional massive silicic volcanism in the Pannonian Basin (East‐Central Europe): Eruption chronology, correlation potential and geodynamic implications. Earth‐Science Reviews, 179, 1–19. https://doi.org/10.1016/j.earscirev.2018.02.005
    [Google Scholar]
  70. Magee, C., Hunt‐Stewart, E., & Jackson, C. A.‐L. (2013). Volcano growth mechanisms and the role of sub‐volcanic intrusions: Insights from 2D seismic reflection data. Earth and Planetary Science Letters, 373, 41–53.
    [Google Scholar]
  71. Magyar, I., Müller, P., Ggeary, D. H., Sanders, H. C., & Tari, G. (1999). Diachronous deposits of lake Pannon in the Kisalföld Basin reflect basin and mollusc evolution. Abhandlungen der Geologischen Bundesanstalt Wien, 56, 669–678.
    [Google Scholar]
  72. Magyar, I., Radivojevič, D., Sztanó, O., Synak, R., Ujszászi, K., & Pócsik, M. (2013). Progradation of the paleo‐Danube shelfmargin across the Pannonian Basin during the Late Miocene and Early Pliocene. Global and Planetary Change, 103, 168–173. https://doi.org/10.1016/j.gloplacha.2012.06.007
    [Google Scholar]
  73. Mandic, O., Sant, K., Kallanxhi, M.‐E., Ćorić, S., Theobalt, D., Grunert, P., de Leeuw, A., & Krijgsman, W. (2019). Integrated bio‐magnetostratigraphy of the Badenian reference section Ugljevik in southern Pannonian Basin – Implications for the Paratethys history (middle Miocene, Central Europe). Global and Planetary Change, 172, 374–395. https://doi.org/10.1016/j.gloplacha.2018.10.010
    [Google Scholar]
  74. Marković, F., Kuiper, K., Ćorić, S., Hajek‐Tadesse, V., Kučenjak, M. H., Bakrač, K., Pezelj, Đ., & Kovačić, M. (2021). Middle Miocene marine flooding: New 40Ar/39Ar age constraints with integrated biostratigraphy on tuffs from the North Croatian Basin. Geologia Croatica, 74(3), 237–252. https://doi.org/10.4154/gc.2021.18
    [Google Scholar]
  75. Martin, U., & Németh, K. (2004). Mio/Pliocene phreatomagmatic volcanism in the Little Hungarian Plain Volcanic Fied (Hungary) and at the western margin of the Pannonian Basin (Austria, Slovenia). Geologica Hungarica Series Geologica Tomus, 26, 153–184.
    [Google Scholar]
  76. Matenco, L., & Radivojević, D. (2012). On the formation and evolution of the Pannonian Basin: Constraints derived from the structure of the junction area between the Carpathians and Dinarides. Tectonics, 31(6), TC6007. https://doi.org/10.1029/2012tc003206
    [Google Scholar]
  77. McLennan, S. M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2, 2000GC000109. https://doi.org/10.1029/2000GC000109
    [Google Scholar]
  78. Mihaliková, A. (1962). Petrografická charakteristika vulkanickej série z vrtu Š‐1 Šurany. Geofond Bratislava ‐ Manuscript, archive number 12991/80.
  79. Miyaji, N., & Koyama, M. (2003). Eruptive history of Mount Fuji since 11,000 yr BP. Quaternary International, 105(1), 5–13.
    [Google Scholar]
  80. Molina, J. F., Scarrow, J. H., Montero, P. G., & Bea, F. (2009). High‐Ti amphibole as a petrogenetic indicator of magma chemistry: Evidence for mildly alkalic‐hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia. Contributions to Mineralogy and Petrology, 158, 69–98. https://doi.org/10.1007/s00410‐008‐0371‐4
    [Google Scholar]
  81. Morley, C. K. (2018). 3‐D seismic imaging of the plumbing system of the Kora Volcano, Taranaki Basin, New Zealand: The influence of syn‐rift structure on shallow igneous intrusion architecture. Geosphere, 14(6), 2533–2584. https://doi.org/10.1130/GES01645.1
    [Google Scholar]
  82. Mothes, P., Hall, M., & Ramón, P. (2004). The eruptive history and magmatic evolution of Cotopaxi volcano, Ecuador. Bulletin of Volcanology, 66(4), 326–343.
    [Google Scholar]
  83. Namayandeh, A., Modabberi, S., & López‐Galindo, A. (2020). Trace and rare earth element distribution and mobility during diagenetic alteration of volcanic ash to bentonite in eastern Iranian bentonite deposits. Clays and Clay Minerals, 68, 50–66. https://doi.org/10.1007/s42860‐019‐00054‐9
    [Google Scholar]
  84. Nováková, P., Rybár, S., Šarinová, K., Nagy, A., Hudáčková, N., Jamrich, M., Teodoridis, V., Kováčová, M., Šujan, M., Vlček, T., & Kováč, M. (2020). The late Badenian ‐ Sarmatian (Serravallian) paleoenvironmental transition, calibrated by sequence stratigraphy (Eastern Danube Basin). Geologica Carpathica, 71(4), 291–313. https://doi.org/10.31577/GeolCarp.71.4.1
    [Google Scholar]
  85. Pálfy, J., Mundil, R., Renne, P. R., Bernor, R. L., Kordos, L., & Gasparik, M. (2007). U–Pb and 40Ar/39Ar dating of the Miocene fossil track site at Ipolytarnóc (Hungary) and its implications. Earth and Planetary Science Letters, 258, 160–174. https://doi.org/10.1016/j.epsl.2007.03.029
    [Google Scholar]
  86. Pánisová, J., Balázs, A., Zs, Z., Bielik, M., Horváth, F., Harangi, S., Schmidt, S., & Götze, H.‐J. (2018). Intraplate volcanism in the Danube Basin of NW Hungary: 3D geophysical modelling of the Late Miocene Pásztori volcano. International Journal of Earth Sciences, 107, 1713–1730. https://doi.org/10.1007/s00531‐017‐1567‐5
    [Google Scholar]
  87. Pécskay, Z., Lexa, J., Szakács, A., Balogh, K., Seghedi, I., Konečný, V., Kovacs, M., Márton, E., Kaličiak, M., Széky‐Fux, V., Póka, T., Gyarmati, P., Edelstein, O., Rosu, E., & Žec, B. (1995). Space and time distribution of Neogene‐Quaternary volcanism in the Carpatho‐Panwonian Region. Acta Vulcanologica, 7(2), 15–28.
    [Google Scholar]
  88. Pécskay, Z., Lexa, J., Szakács, A., Seghedi, I., Balogh, K., Konečný, V., Zelenka, T., Kovacs, M., Póka, T., Fülöp, A., Márton, E., Panaiotu, C., & Cvetković, V. (2006). Geochronology of Neogene magmatism in the Carpathian arc and intra Carpathian area. Geologica Carpathica, 57(6), 511–530.
    [Google Scholar]
  89. Pearce, J. A. (1983). Role of the sub‐continental lithosphere in magma genesis at active continental margins. In C. J.Hawkesworth & M. J.Norry (Eds.), Continental basalts and mantle xenoliths (pp. 230–249). Shiva Cheshire.
    [Google Scholar]
  90. Pearce, J. A. (1996). A user's guide to basalt discrimination diagrams. In D. A.Wyman (Ed.), Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration. Short course notes 12 (pp. 79–113). Geological Association of Canada.
    [Google Scholar]
  91. Petrik, A., Fodor, L., Bereczki, L., Klembala, Z., Lukács, R., Baranyi, V., Beke, B., & Harangi, S. (2018). Variation in style of magmatism and emplacement mechanism induced by changes in basin environments and stress fields (Pannonian Basin, Central Europe). Basin Research, 31, 380–404. https://doi.org/10.1111/bre.12326
    [Google Scholar]
  92. Planke, S., Symonds, P. A., Alvestad, E., & Skogseid, J. (2000). Seismic volcanostratigraphy of large‐volume basaltic extrusive complexes on rifted margins. Journal of Geophysical Research, 105(B8), 19335–19351.
    [Google Scholar]
  93. Press, F. (1966). Section 9: Seismic velocities. In T. J.Ahrens (Ed.), Handbook of physical constants (pp. 195–218). Geological Society of America. https://doi.org/10.1130/mem97‐p195
    [Google Scholar]
  94. Raffi, I., Wade, B. S., Palike, H., Beu, A. G., Cooper, R., Crundwell, M. P., Krijgsman, W., Moore, T., Raine, I., Sardella, R., & Vernyhorova, Y. V. (2020). Chapter 29: The Neogene period. In F. M.Gradstein, J. G.Ogg, M. D.Schmitz, & G. M.Ogg (Eds.), Geologic time scale (pp. 923–978). Elsevier.
    [Google Scholar]
  95. Renne, P. R., Balco, G., Ludwig, K. R., Mundil, R., Min, K., & Min, K. (2011). Response to the comment by W.H. Schwarz et al. on “Joint determination of 40K decay constants and 40Ar*/ 40K for the Fish Canyon sanidine standard, and improved accuracy for40Ar/39Ar geochronology” by P.R. Renne et al. (2010). Geochimica et Cosmochimica Acta, 74, 5349–5367. https://doi.org/10.1016/j.gca.2011.06.021
    [Google Scholar]
  96. Renne, P. R., Deino, A. L., Hilgen, F. J., Kuiper, K. F., Mark, D. F., Mitchell, W. S., Morgan, L. E., Mundil, R., & Smit, J. (2013). Timescales of critical events around the Cretaceous‐Paleogene boundary. Science, 339(6120), 684–687. https://doi.org/10.1126/science.1230492
    [Google Scholar]
  97. Renne, P. R., Mundil, R., Balco, G., Min, K., & Ludwig, K. R. (2010). Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for40Ar/39Ar geochronology. Geochimica et Cosmochimica Acta, 75(17), 5097–5100. https://doi.org/10.1016/j.gca.2010.06.017
    [Google Scholar]
  98. Rider, M., & Kennedy, M. (2011). The geological interpretation of well logs (3rd ed.). Rider‐French Consulting Limited, 432 p.
    [Google Scholar]
  99. Rieder, M., Cavazzini, G., D'yakonov, Y. S., Frank‐Kamenetskii, V. A., Gottardi, G., Guggenheim, S., Koval', P. W., Müller, G., Neiva, A. M. R., Radoslovich, E. W., Robert, J.‐L., Sassi, F. P., Takeda, H., Weiss, Z., & Wones, D. R. (1998). Nomenclature of the micas. Clays and Clay Minerals, 46, 586–595. https://doi.org/10.1346/CCMN.1998.0460513
    [Google Scholar]
  100. Robertson, A. H. F. (2012). Late Palaeozoic–Cenozoic tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region. International Geology Review, 54(4), 373–454. https://doi.org/10.1080/00206814.2010.543791
    [Google Scholar]
  101. Roetzel, R., de Leeuw, A., Mandic, O., Márton, E., Nehyba, S., Kuiper, K., Scholger, R., & Wimmer‐Frey, I. (2014). Lower Miocene (upper Burdigalian, Karpatian) volcanic ash fall at the south‐eastern margin of the Bohemian Massif in Austria ‐ New evidence from Ar/Ar‐dating, palaeomagnetic, geochemical and mineralogical investigations. Austrian Journal of Earth Sciences, 107(2), 2–22.
    [Google Scholar]
  102. Rotár‐Szalkai, Á., Nádor, A., Szőcs, T., Gy, M., Goetzl, G., & Zekiri, F. (2017). Outline and joint characterization of transboundary geothermalreservoirs at the western part of the Pannonian basin. Geothermics, 70, 1–16. https://doi.org/10.1016/j.geothermics.2017.05.005
    [Google Scholar]
  103. Rybár, S., Halásová, E., Hudáčková, N., Kováč, M., Kováčová, M., Šarinová, K., & Šujan, M. (2015). Biostratigraphy, sedimentology and paleoenvironments of the northern Danube Basin: Ratkovce‐1 well case study. Geologica Carpathica, 66(1), 51–67. https://doi.org/10.1515/geoca‐2015‐0010
    [Google Scholar]
  104. Rybár, S., & Kotulová, J. (2023). Petroleum play types and source rocks in the Pannonian basin, insight from the Slovak part of the Danube Basin. Marine and Petroleum Geology, 149, 106092. https://doi.org/10.1016/j.marpetgeo.2022.106092
    [Google Scholar]
  105. Rybár, S., Kováč, M., Šarinová, K., Halásová, E., Hudáčková, N., Šujan, M., Kováčová, M., Ruman, A., & Klučiar, T. (2016). Neogene changes in paleogeography, paleoenvironment and the provenance of sediment in the northern Danube Basin. Bulletin of Geosciences, 91(2), 367–398. https://doi.org/10.3140/bull.geosci.1571
    [Google Scholar]
  106. Rybár, S., Nováková, P., Šarinová, K., Kotulová, J., Jourdan, F., & Mayers, C. (In preparation). Spatio‐temporal evolution of orogen to basin transition induced by lateral extrusion. Insights from Danube Basin subsidence history modeling Basin Research.
  107. Rybár, S., Šarinová, K., Sant, K., Kuiper, K., Kováčová, M., Vojtko, R., Reiser, M., Fordinál, K., Teodoridis, V., Nováková, P., & Vlček, T. (2019). New 40Ar/39Ar, fission track and sedimentological data on a middle Miocene tuff occurring in the Vienna Basin: Implications for the north‐western Central Paratethys region. Geologica Carpathica, 70(5), 386–404. https://doi.org/10.2478/geoca‐2019‐0022
    [Google Scholar]
  108. Sant, K., Kuiper, K. F., Rybár, S., Grunert, P., Harzhauser, M., Mandic, O., Jamrich, M., Šarinová, K., Hudáčková, N., & Krijgsman, W. (2020). 40Ar/39Ar geochronology using high sensitivity mass spectrometry: Examples from middle Miocene horizons of the Central Paratethys. Geologica Carpathica, 71(2), 166–182. https://doi.org/10.31577/GeolCarp.71.2.5
    [Google Scholar]
  109. Šarinová, K., Hudáčková, N., Rybár, S., Jamrich, M., Jourdan, F., Frew, A., Mayers, C., Ruman, A., Subová, V., & Sliva, Ľ. (2021). 40Ar/39Ar dating and palaeoenvironments at the boundary of the early‐late Badenian (Langhian‐Serravallian) in the northwest margin of the Pannonian basin system. Facies, 67, 29. https://doi.org/10.1007/s10347‐021‐00637‐w
    [Google Scholar]
  110. Šarinová, K., & Rybár, S. (2018). Cummingtonite‐bearing volcanic rocks: First evidence in the Central Slovak Volcanic Field. Geologica Carpathica, 69(4), 335–346. https://doi.org/10.1515/geoca‐2018‐0020
    [Google Scholar]
  111. Šarinová, K., Rybár, S., Halásová, E., Hudáčková, N., Jamrich, M., Kováčová, M., & Šujan, M. (2018). Integrated biostratigraphical, sedimentological and provenance analyses with implications for lithostratigraphic ranking: The Miocene Komjatice depression of the Danube Basin. Geologica Carpathica, 69, 382–409. https://doi.org/10.1515/geoca‐2018‐0023
    [Google Scholar]
  112. Šarinová, K., Rybár, S., Jourdan, F., Frew, A., Mayers, C., Kováčová, M., Lichtman, B., Nováková, P., & Kováč, M. (2021). 40Ar/39Ar geochronology of Burdigalian paleobotanical localities in the central Paratethys (South Slovakia). Geologica Acta, 19(5), 1–19. https://doi.org/10.1344/GeologicaActa2021.19.5
    [Google Scholar]
  113. Sant, K., Palcu, D. V., Turco, E., Di Stefano, A., Baldassini, N., Kouwenhoven, T., Kuiper, K. F., & Krijgsman, W. (2019). The mid‐Langhian flooding in the eastern Central Paratethys: Integrated stratigraphic data from the Transylvanian Basin and SE Carpathian Foredeep. International Journal of Earth Sciences, 108, 2209–2232. https://doi.org/10.1007/s00531‐019‐01757‐z
    [Google Scholar]
  114. Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M., & Ustaszewski, K. (2008). The Alpine‐Carpathian‐Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101(1), 139–183. https://doi.org/10.1007/s00015‐008‐1247‐3
    [Google Scholar]
  115. Seghedi, I., & Downes, H. (2011). Geochemistry and tectonic development of Cenozoic magmatism in the Carpathian–Pannonian region. Gondwana Research, 20(4), 655–672. https://doi.org/10.1016/j.gr.2011.06.009
    [Google Scholar]
  116. Seghedi, I., Downes, H., Szakács, A., Mason, P. R. D., Thirlwall, M. F., Roşu, E., Pécskay, Z., Márton, E., & Panaiotu, C. (2004). Neogene–Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: A synthesis. Lithos, 72, 117–146. https://doi.org/10.1016/j.lithos.2003.08.006
    [Google Scholar]
  117. Šegvić, B., Lukács, R., Mandic, O., Strauss, P., Badurina, L., Guillong, M., & Harzhauser, M. (2023). U–Pb zircon age and mineralogy of the St Georgen halloysite tuff shed light on the timing of the middle Badenian (mid‐Langhian) transgression, ash dispersal and palaeoenvironmental conditions in the southern Vienna Basin, Austria. Journal of the Geological Society, 180(2), jgs2022‐106. https://doi.org/10.1144/jgs2022‐106
    [Google Scholar]
  118. Śliwiński, M., Bąbel, M., Nejbert, K., Olszewska‐Nejbert, D., Gąsiewicz, A., Schreiber, B. C., Benowitz, J. A., & Layer, P. (2012). Badenian–Sarmatian chronostratigraphy in the Polish Carpathian Foredeep. Palaeogeography, Palaeoclimatology, Palaeoecology, 326–328, 12–29. https://doi.org/10.1016/j.palaeo.2011.12.018
    [Google Scholar]
  119. Sisson, T. W., & Grove, T. L. (1993). Experimental investigations of the role of H2O in calc‐alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113(2), 143–166.
    [Google Scholar]
  120. Sisson, T. W., & Vallance, J. W. (2009). Frequent eruptions of Mount Rainier over the last ∼2,600 years. Bulletin of Volcanology, 71(6), 595–618.
    [Google Scholar]
  121. Smallwood, J. R., & Maresh, J. (2002). The properties, morphology and distribution of igneous sills: Modelling, borehole data and 3D seismic from the Faroe‐Shetland area. Geological Society, London, Special Publications, 197, 271–306. https://doi.org/10.1144/GSL.SP.2002.197.01.11
    [Google Scholar]
  122. Šujan, M., Rybár, S., Kováč, M., Bielik, M., Majcin, D., Minar, J., Plašienka, D., Nováková, P., & Kotulová, J. (2021). The polyphase rifting and inversion of the Danube Basin revised. Global and Planetary Change, 196, 103375. https://doi.org/10.1016/j.gloplacha.2020.103375
    [Google Scholar]
  123. Sun, S.‐S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
    [Google Scholar]
  124. Sztanó, O., Kováč, M., Magyar, I., Šujan, M., Fodor, L., Uhrin, A., Rybár, S., Csillag, G., & Tőkés, L. (2016). Late Miocene sedimentary record of the Danube/Kisalföld Basin: Interregional correlation of depositional systems, stratigraphy and structural evolution. Geologica Carpathica, 67(6), 525–542. https://doi.org/10.1515/geoca‐2016‐0033
    [Google Scholar]
  125. Tari, G., Horváth, F., & Rumpler, J. (1992). Styles of extension in the Pannonian Basin. Tectonophysics, 208(1–3), 203–219. https://doi.org/10.1016/0040‐1951(92)90345‐7
    [Google Scholar]
  126. Tari, G., Bada, G., Beidinger, A., Csizmeg, J., Danišik, M., Gjerazi, I., Grasemann, B., Kováč, M., Plašienka, D., Šujan, M., & Szafián, P. (2020). The connection between the Alps and the Carpathians beneath the Pannonian Basin: Selective reactivation of Alpine nappe contacts during Miocene extension. Global and Planetary Change, 197, 103401. https://doi.org/10.1016/j.gloplacha.2020.103401
    [Google Scholar]
  127. Tischendorf, G., Förster, H.‐J., Gottesmann, B., & Rieder, M. (2007). True and brittle micas: Composition and solid‐solution series. Mineralogical Magazine, 71(3), 285–320. https://doi.org/10.1180/minmag.2007.071.3.285
    [Google Scholar]
  128. Toksöz, M. N., Cheng, C. H., & Timur, A. (1976). Velocities of seismic waves in porous rocks. Geophysics, 41(4), 621–645. https://doi.org/10.1190/1.1440639
    [Google Scholar]
  129. Vass, D. (2002). Lithostratigraphy of Western Carpathians: Neogene and Buda Paleogene. State Geological Institute of Dionýz Štúr, 200 p.
    [Google Scholar]
  130. Vass, D., Holcová, K., Túny, I., & Beláček, B. (2003). The Hrušov Memer – Marine deposits if the Vinica Formation in thr Krupinská planina Mts. (South Slovakia). Mineralia Slovaca, 35, 89–94.
    [Google Scholar]
  131. Vlček, T., Hudáčková, N., Jamrich, M., Halásová, E., Franců, J., Nováková, P., Kovačová, M., & Kováč, M. (2020). Hydrocarbon potential of the Oligocene and Miocene sediments from the Modrany‐1 and Modrany‐2 wells (Danube Basin, Slovakia). Acta Geologica Slovaca, 12(1), 43–55.
    [Google Scholar]
  132. Vlček, T., Šarinová, K., Rybár, S., Hudáčková, N., Jamrich, M., Šujan, M., Franců, J., Nováková, P., Sliva, Ľ., Kováč, M., & Kováčová, M. (2020). Paleoenvironmental evolution of Central Paratethys Sea and Lake Pannon during the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 559(1), 109892. https://doi.org/10.1016/j.palaeo.2020.109892
    [Google Scholar]
  133. Warr, L. N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291–320. https://doi.org/10.1180/mgm.2021.43
    [Google Scholar]
  134. Wijbrans, J., Németh, K., Martin, U., & Balogh, K. (2007). 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. Journal of Volcanology and Geothermal Research, 164, 193–204. https://doi.org/10.1016/j.jvolgeores.2007.05.009
    [Google Scholar]
  135. Worden, R. H., Griffiths, J., Wooldridge, L. J., Utley, J. E. P., Lawan, A. Y., Muhammed, D. D., Simon, N., & Armitage, P. J. (2020). Chlorite in sandstones. Earth‐Science Reviews, 204, 103105. https://doi.org/10.1016/j.earscirev.2020.103105
    [Google Scholar]
  136. Zelenka, T., Balász, E., Balogh, K., Kiss, J., Kozák, M., Nemesi, L., Pécskay, Z., Püspöki, L., Ravasz, C. S., Széky‐Fux, V., & Újfalussy, A. (2004). Buried Neogene volcanic structures in Hungary. Acta Geologica Hungarica, 47(2–3), 177–219.
    [Google Scholar]
  137. Zlinská, A. (2016). Terciérna mikrofauna z hlbokých vrtov v želiezovskej priehlbine (Dunajská panva). Mineralia Slovaca, 48, 61–82.
    [Google Scholar]
  138. Zlinská, A. (2017). Mikrofaunistické vyhodnotenie hlbokých naftových vrtov, Čiastková záverečná správa ku geologickej úlohe 17 13, téma D‐01/14. In Ľ.Hraško, D.Boorová, R.Demko, K.Fordinál, B.Kronome, Z.Németh, P.Konečný, J.Maglay, P.Šefčík, L.Šimon, A.Zlinská, K.Žecová, M.Radvanec, M.Vlačiky, M.Antalík, & R.Cibula (Eds.), Výskum geologickej stavby a zostavenie geologických máp v problematických územiach Slovenskej republiky, regionálny geologický výskum. Štátny Geologický Ústav Dionýza Štúra; Ministerstvo Životného Prostredia Slovenskej Republiky. 107 p., Geofond Bratislava ‐ Manuscript, archive number 97194. https://www.geology.sk/sluzby/digitalny‐archiv/
    [Google Scholar]
/content/journals/10.1111/bre.12844
Loading
/content/journals/10.1111/bre.12844
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error