1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

(a) Photo showing a panoramic view of the sedimentary architecture of the Rocchenere delta system fan delta deposits of the Messina Gravel and Sands Formation located at the outlet of the tight source‐to‐sink system of the Pagliara basin (b). Sequence and facies boundaries, as well as foresets layering, measured sections and IRSL samples location are also reported. The sampled stratigraphy shows alternation of massive and stratified sedimentary facies, stacked in coarsening‐up meter‐scale bed sets with opposing dips. Numbers refers to the sampled sections of the sequence; (c) the reconstructed and simplified stratigraphic section is also shown by a color's palette according with the deposits’ grain size. The numbers in red refer to the corresponding portion of the measured section, whereas the red asterisks with letters refers to the location along the section of the corresponding facies shown in the pictures of Figure 3b–d above. The dark blue dots represent the gauging stations for sedimentological measurements, whereas the differently open grey triangle, side of the stratigraphic column, indicate the measured paleo‐flow direction. Note that the tringles are open towards the paleo‐flow direction and their openness is related to the total angle range provided by multiple measures at the same gauging location. (d) Rose diagram showing the paleo‐flow direction (shaded area) measurements ( = 29) carried out at different location along the stratigraphic sequence (c). More intense color corresponds to more represented azimuths. Overlapped is the Pagliara fan cone angle (dotted dark red lines).

, Abstract

How tectonic forcing, expressed as base level change, is encoded in the stratigraphic and geomorphic records of coupled source‐to‐sink systems remains uncertain. Using sedimentological, geochronological and geomorphic approaches, we describe the relationship between transient topographic change and sediment deposition for a low‐storage system forced by rapid rock uplift. We present five new luminescence ages and two terrestrial cosmogenic nuclide paleo‐erosion rates for the late Pleistocene Pagliara fan‐delta complex and we model corresponding base level fall history and erosion of the source catchment located on the Ionian flank of the Peloritani Mountains (NE‐Sicily, Italy). The Pagliara delta complex is part of the broader Messina Gravel‐and‐Sands lithostratigraphic unit that outcrops along the Peloritani coastal belt as extensional basins have been recently inverted by both normal faults and regional uplift at the Messina Straits. The deltas exposed at the mouth of the Pagliara River have constructional tops at ca. 300 m a.s.l. and onlap steeply east‐dipping bedrock at the coast to thickness between ca. 100 and 200 m. Five infrared‐stimulated luminescence (IRSL) ages collected from the delta range in age from ca. 327 to 208 ka and indicate a vertical long‐term sediment accumulation rate as rapid as ca. 2.2 cm/yr during MIS 7. Two cosmogenic 10Be concentrations measured in samples of delta sediment indicate paleo‐erosion rates during MIS 8–7 near or slightly higher than the modern rates of ca. 1 mm/yr. Linear inversion of Pagliara fluvial topography indicates an unsteady base level fall history in phase with eustasy that is superimposed on a longer, tectonically driven trend that doubled in rate from ca. 0.95 to 1.8 mm/yr in the past 150 ky. The combination of footwall uplift rate and eustasy determines the accommodation space history to trap the fan‐deltas at the Peloritani coast in hanging wall basins, which are now inverted, uplifted and exposed hundreds of metres above the sea level.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12845
2024-01-17
2025-06-21
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12845.html?itemId=/content/journals/10.1111/bre.12845&mimeType=html&fmt=ahah

References

  1. Aigner, T. (1985). Storm depositional systems, dynamic stratigraphy in modern and ancient shallow‐marine sequences. In Lecture notes in earth sciences (Vol. 3). Springer‐Verlag.
    [Google Scholar]
  2. Aitken, M. J. (1998). An introduction to optical dating: The dating of quaternary sediments by the use of photon‐stimulated luminescence (p. 267). Oxford University Press.
    [Google Scholar]
  3. Aitken, M. J., & Xie, J. (1990). Moisture correction for annual gamma dose. Ancient TL, 8(2), 6–9.
    [Google Scholar]
  4. Alexander, J., Bridge, J. S., Cheel, R. J., & Leclair, S. F. (2001). Bedforms and associated sedimentary structures formed under supercritical water flow over aggradading beds. Sedimentology, 48, 133–152.
    [Google Scholar]
  5. Allen, P. A. (2008). Time scales of tectonic landscapes and their sediment routing systems. In K.Gallagher, S. I.Jones, & R. J.Wainwright (Eds.), Landscape evolution: Denudation, climate and tectonics over different time and space scales (Vol. 296, pp. 7–28). Geological Society, London, Special Publications. https://doi.org/10.1144/SP296.2
    [Google Scholar]
  6. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment (p. 632). John Wiley & Sons.
    [Google Scholar]
  7. Allen, P. A., & Densmore, A. L. (2000). Sediment flux from an uplifting fault block. Basin Research, 12, 367–380.
    [Google Scholar]
  8. Amodio Morelli, L., Bonardi, G., Colonna, V., Dietrich, D., Giunta, G., Ippolito, F., Liguori, V., Lorenzoni, S., Paglionico, A., Perrone, V., Piccarreta, G., Russo, M., Zanettini, L. E., & Zappetta, A. (1976). L'arco calabro‐peloritano nell'orogene appenninico‐maghrebide. Memorie della Societa Geologica Italiana, 17, 1–60.
    [Google Scholar]
  9. Amoruso, A., Crescentini, L., & Scarpa, R. (2002). Source parameters of the 1908 Messina Straits, Italy, earthquakefrom geodetic and seismic data. Journal of Geophysical Research, 107(B4), 2080. https://doi.org/10.1029/2001JB000434
    [Google Scholar]
  10. Antonioli, F., Kershaw, S., Renda, P., Rust, D., Belluomini, G., Cerasoli, M., Radtke, U., & Silenzi, S. (2006). Elevation of the last interglacial highstand in Sicily (Italy): A benchmark of coastal tectonics. Quaternary International, 145–146, 3–18.
    [Google Scholar]
  11. Argnani, A., Brancolini, G., Bonazzi, C., Rovere, M., Accaino, F., Zgur, F., & Lodolo, E. (2009). The results of the Taormina 2006 seismic survey: Possible implications for active tectonics in the Messina Straits. Tectonophysics, 476, 159–169.
    [Google Scholar]
  12. Armitage, J. J., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4(4), 231–235. https://doi.org/10.1038/NGEO1087
    [Google Scholar]
  13. Ashworth, P. J., Best, J. L., & Jones, M. (2004). Relationship between sediment supply and avulsion frequency in braided rivers. Geology, 32, 21–24.
    [Google Scholar]
  14. Ashworth, P. J., Best, J. L., & Jones, M. A. (2007). The relationship between channel avulsion, flow occupancy and aggradation in braided rivers: Insights from an experimental model. Sedimentology, 54, 497–513.
    [Google Scholar]
  15. Azzaro, R., Bernardini, F., Camassi, R., & Castelli, V. (2007). The 1780 seismic sequence in NE Sicily (Italy): Shifting an underestimated and mislocated earthquake to a seismically low rate zone. Natural Hazards, 42, 149–167.
    [Google Scholar]
  16. Bada, J. L., Belluomini, G., Bonfiglio, L., Branca, M., Burgio, E., & Delitalia, L. (1991). Isoleucin epimerization ages of quaternary mammals from Sicily. Il Quaternario, 4(1), 49–54.
    [Google Scholar]
  17. Balescu, S., & Lamothe, M. (1994). Comparison of TL and IRSL age estimates of feldspar coarse grains from waterlain sediments. Quaternary Science Reviews, 13, 437–444.
    [Google Scholar]
  18. Baratta, M. (1910). La catastrofe sismica calabro‐messinese (28 Dicembre 1908). Relazione alla Società Geografica Italiana.
    [Google Scholar]
  19. Barreca, G., Scarfì, L., Gross, F., Monaco, C., & De Guidi, G. (2019). Fault pattern and seismotectonic potential at the south‐western edge of the Ionian subduction system (southern Italy): New field and geophysical constraints. Tectonophysics, 761, 31–45.
    [Google Scholar]
  20. Barrier, P. (1987). Stratigraphie des dépots pliocènes et quaternaires du Detroit de Messine (Italie). Documents et travaux de l'IGAL, 11, 59–81.
    [Google Scholar]
  21. Beaumont, C., Fullsack, P., & Hamilton, J. (1992). Erosional control of active compressional orogens. In K. R.McClay (Ed.), Thrust tectonics. Springer. https://doi.org/10.1007/978‐94‐011‐3066‐0_1
    [Google Scholar]
  22. Billi, A., Barberi, G., Faccenna, C., Neri, G., Pepe, F., & Sulli, A. (2006). Tectonics and seismicity of the Tindari fault system, southern Italy: Crustal deformation at the transition between ongoing contractional and extensional domains located above the edge of a subducting slab. Tectonics, 25, TC2006. https://doi.org/10.1029/2004TC001763
    [Google Scholar]
  23. Blair, T. C., & Bilodeau, W. L. (1988). Development of tectonic cyclothems in rift, pull‐apart, and foreland basins: Sedimentary response to episodic tectonism. Geology, 1988(16), 517–520. https://doi.org/10.1130/0091‐7613(1988)016<0517:DOTCIR>2.3.CO;2
    [Google Scholar]
  24. Boccaletti, M., Cello, G., & Tortorici, L. (1990). Strike‐slip deformation as a fundamental process during the Neogene‐Quaternary evolution of the Tunisian‐Pelagian area. Annales Tectonicae, 4, 104–119.
    [Google Scholar]
  25. Boersma, J. R., & Terwindt, J. H. J. (1981). Neap‐spring tide sequences of intertidal shoal deposits in a mesotidal estuary. Sedimentology, 28, 151–170.
    [Google Scholar]
  26. Bonfiglio, L. (1983). Terrazzi marini e depositi continentali quaternari di Taormina. Quaternaria, 23, 81–98.
    [Google Scholar]
  27. Bonfiglio, L. (1991). Correlazioni tra depositi a mammiferi, depositi marini, linee di costa e terrazzi medio e tardo‐pleistocenici nella Sicilia orientale. Il Quaternario, 4(1b), 205–214.
    [Google Scholar]
  28. Bonfiglio, L., & Violanti, D. (1984). Prima segnalazione di Tirreniano ed evoluzione pleistocenica del Capo Peloro (Sicilia nord‐orientale). Geografia Fisica e Dinamica Quaternaria, 6(1983), 3–15.
    [Google Scholar]
  29. Bonnet, S., & Crave, A. (2003). Landscape response to climate changes: Insights from experimental modeling and implications for tectonic versus climatic uplift of topography. Geology, 31(2), 123–126.
    [Google Scholar]
  30. Boschi, E., Guidoboni, E., Ferrari, G., Valensise, G., & Gasperini, P. (1997). Catalogo dei forti terremoti in Italia dal 461 a.C. al (p. 1990). Istituto Nazionale di Geofisica. S.G.A.
    [Google Scholar]
  31. Bryant, M., Falk, P., & Paola, C. (1995). Experimental‐study of avulsion frequency and rate of deposition. Geology, 23, 365–368.
    [Google Scholar]
  32. Bull, W. B. (1991). Geomorphic responses to climate change (p. 326). Oxford.
    [Google Scholar]
  33. Burbank, D. W. (1992). Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature, 357, 680–682.
    [Google Scholar]
  34. Cammarata, L., Catalano, S., Gambino, S., Palano, M., Pavano, F., Romagnoli, G., Scaltrito, A., & Tortorici, G. (2018). Seismological and structural constraints on the 2011–2013, Mmax 4.6 seismic sequence at the south‐eastern edge of the Calabrian arc (North‐eastern Sicily, Italy). Geomorphology, 723, 56–67.
    [Google Scholar]
  35. Carbone, S., Messina, A., & Lentini, F. (2008). Note Illustrative del F. 601 “Messina‐Reggio di Calabria” della Carta Geologica d'Italia alla scala 1:50.000. APAT (p. 179). S.EL.CA.
    [Google Scholar]
  36. Cartigny, M. J. B., Ventra, D., Postma, G., & Van den Berg, J. H. (2014). Morphodynamics and sedimentary structures of bedforms under supercritical‐flow conditions: New insights from flume experiments. Sedimentology, 61, 712–748.
    [Google Scholar]
  37. Castelltort, S., & Van Den Driessche, J. (2003). How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sedimentary Geology, 157, 3–13.
    [Google Scholar]
  38. Catalano, S., Cirrincione, R., Mazzoleni, P., Pavano, F., Pezzino, A., Romagnoli, G., & Tortorici, G. (2018). The effects of a Meso‐Alpine collision event on the tectono‐metamorphic evolution of the Peloritani mountain belt (eastern Sicily, southern Italy). Geological Magazine, 155(2), 422–437.
    [Google Scholar]
  39. Catalano, S., & De Guidi, G. (2003). Late Quaternary uplift of northeastern Sicily: Relation with the active normal faulting deformation. Journal of Geodynamics, 36, 445–467.
    [Google Scholar]
  40. Catalano, S., De Guidi, G., Monaco, C., Tortorici, G., & Tortorici, L. (2003). Long‐term behavior of the late Quaternary normal faults in the Straits of Messina area (Calabrian arc): Structural and morphological constraints. Quaternary International, 101, 81–91. https://doi.org/10.1016/S1040‐6182(02)00091‐5
    [Google Scholar]
  41. Catalano, S., De Guidi, G., Monaco, C., Tortorici, G., & Tortorici, L. (2008). Active faulting and seismicity along the Siculo‐Calabrian rift zone. Tectonophysics, 453, 177–192.
    [Google Scholar]
  42. Catalano, S., & Di Stefano, A. (1997). Sollevamento e tettogenesi Pleistocenica lungo il margine tirrenico dei Monti Peloritani: integrazione dei dati geomorfologici, strutturali e biostratigrafici. Il Quaternario, 10, 337–342.
    [Google Scholar]
  43. Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., Fielding, C. R., Fisher, W. L., Galloway, W. E., Gibling, M. R., Giles, K. A., Holbrook, J. M., Jordan, R., Kendall, C. G., Macurda, B., Martinsen, O. J., Miall, A. D., Neal, J. E., Nummedal, D., … Winker, C. (2009). Towards the standardization of sequence stratigraphy. Earth Science Reviews, 92, 1–33.
    [Google Scholar]
  44. Cello, G., Guerra, I., Tortorici, L., Turco, E., & Scarpa, R. (1982). Geometry of the neotectonic stress field in southern Italy: Geological and seismological evidence. Journal of Structural Geology, 4, 385–393.
    [Google Scholar]
  45. Clarke, L. E., Quine, T. A., & Nicholas, A. P. (2008). An evaluation of the role of physical models in exploring form process feedbacks in alluvial fans. In J.Schmidt, T.Cochrane, C.Phillips, S.Elliott, T.Davies, & L.Basher (Eds.), Sediment dynamics in changing environments (pp. 175–183). IAHS Publication 325, Proceedings of a Symposium Held in Christchurch, New Zealand.
    [Google Scholar]
  46. Coleman, J. (1975). Deltas: Processes of deposition and models for exploaration. Continuing Education.
    [Google Scholar]
  47. Comerci, V., Vittori, E., Blumetti, A. M., Brustia, E., Di Manna, P., Guerrieri, L., Lucarini, M., & Serva, L. (2015). Environmental effects of the December 28, 1908, Southern Calabria–Messina (Southern Italy) earthquake. Natural Hazards, 76, 1849–1891. https://doi.org/10.1007/s11069‐014‐1573‐x
    [Google Scholar]
  48. Corbett, L. B., Bierman, P. R., & Rood, D. H. (2016). An approach for optimizing in situ cosmogenic 10Be sample preparation. Quaternary Geochronology, 33, 24–34. https://doi.org/10.1016/j.quageo.2016.02.001
    [Google Scholar]
  49. Cyr, A. J., Granger, D. E., Olivetti, V., & Molin, P. (2010). Quantifying rock uplift rates using channel steepness and cosmogenic nuclide–determined erosion rates: Examples from northern and southern Italy. Lithosphere, 2(3), 188–198.
    [Google Scholar]
  50. Dalrymple, R. W., Baker, E. K., Harris, P. T., & Hughes, M. G. (2003). Sedimentology and stratigraphy of a tide‐dominated, foreland‐basin delta (Fly River, Papua New Guinea). Sedimentology, Stratigraphy, and Petroleum Geology Special Publication, 76, 147–173.
    [Google Scholar]
  51. De Guidi, G., Catalano, S., Monaco, C., & Tortorici, L. (2003). Morphological evidence of Holocene coseismic deformation in the Taormina region (NE Sicily). Journal of Geodynamics, 36, 193–211.
    [Google Scholar]
  52. De Guidi, G., Catalano, S., Monaco, C., Tortorici, L., & Di Stefano, A. (2002). Long‐term effects of late Quaternary normal faulting in southern Calabria and eastern Sicily. Studi Geologici Camerti, Nuova Serie, 1, 79–93.
    [Google Scholar]
  53. De Haas, T., Berg, W., Braat, L., & Kleinhans, M. G. (2016). Autogenic avulsion, channelization and backfilling dynamics of debris‐flow fans. Sedimentology, 63, 1596–1619.
    [Google Scholar]
  54. Del Ben, A., Gargano, C., & Lentini, R. (1996). Ricostruzione stratigrafica e strutturale dell'area dello Stretto di Messina mediante analisi comparata dei dati geologici e sismici. Memorie Della Societa'Geologica Italiana, 51, 703–717.
    [Google Scholar]
  55. Densmore, A. L., Allen, P. A., & Simpson, G. (2007). Development and response of a coupled catchment fan system under changing tectonic and climatic forcing. Journal of Geophysical Research, 112, F01002. https://doi.org/10.1029/2006JF000474
    [Google Scholar]
  56. Dewey, J. F., Helman, M. L., Turco, E., Hutton, D. H. W., & Knott, S. D. (1989). Kinematics of the western Mediterranean. In M. P.Coward, R.Gillcrist, & B.Trudgill (Eds.), Alpine tectonics (Vol. 45, pp. 265–283). Geological Society, London, Special Publication. https://doi.org/10.1144/GSL.SP.1989.045.01.15
    [Google Scholar]
  57. Di Biase, R. A. (2018). Short communication: Increasing vertical attenuation length of cosmogenic nuclide production on steep slopes negated topographic shielding corrections for catchment erosion rates: Earth Surface. Dynamics (Pembroke, Ont.), 6, 923–931. https://doi.org/10.5194/esurf‐6‐923‐2018
    [Google Scholar]
  58. Di Stefano, A., & Caliri, A. (1996). Dati biostratigrafici sui depositi pleistocenici di Naso (Messina), Sicilia nord‐orientale. Bollettino della Societa Paleontologica Italiana, 35(3), 229–238.
    [Google Scholar]
  59. Dickinson, W. R., & Suczek, C. A. (1979). Plate tectonics and sandstone composition. American Association of Petroleum Geologists Bulletin, 63, 2164–2172.
    [Google Scholar]
  60. Dorsey, R. J., Umhoefe, P. J., & Falk, P. D. (1997). Earthquake clustering inferred from Pliocene Gilbert‐type fan deltas in the Loreto Basin, Baja California Sur, Mexico. Geology, 25(8), 679–682.
    [Google Scholar]
  61. Dumas, S., & Arnott, R. C. W. (2006). Origin of hummocky and swaley cross‐stratification. The controlling influence of unidirectional current strength and aggradation rate. Geology, 34, 1073–1076.
    [Google Scholar]
  62. Durcan, J. A., King, G. E., & Duller, G. A. T. (2015). DRAC: Dose rate and age calculator for trapped charge dating. Quaternary Geochronology, 28, 54–61.
    [Google Scholar]
  63. Ettensohn, F. R., Lierman, R. T., Udgata, D. B. P., & Mason, C. E. (2012). The Early‐Middle Mississippian Borden–Grainger–Fort Payne delta/basin complex: Field evidence for delta sedimentation, basin starvation, mud‐mound genesis, and tectonism during the Neoacadian Orogeny. In M. C.Eppes & M. J.Bartholomew (Eds.), From the blue ridge to the coastal plain: Field excursions in the southeastern United States (Vol. 29, pp. 345–395). Geological Society of America Field Guide. https://doi.org/10.1130/2012.0029(11)
    [Google Scholar]
  64. Faccenna, C., Molin, P., Orecchio, B., Olivetti, V., Bellier, O., & Funiciello, F. (2011). Topography of the Calabria subduction zone (southern Italy): Clues for the origin of Mt. Etna. Tectonics, 30, TC1003.
    [Google Scholar]
  65. Faccenna, C., Piromallo, C., Crespo‐Blanc, A., Jolivet, L., & Rossetti, F. (2004). Lateral slab deformation and the origin of the western Mediterranean arcs. Tectonics, 23, TC1012. https://doi.org/10.1029/2002TC001488
    [Google Scholar]
  66. Feng, W.‐J., Zhang, C.‐M., Yin, T.‐J., Yin, Y.‐S., Liu, J.‐L., Zhu, R., Xu, Q.‐H., & Chen, Z. (2019). Sedimentary characteristics and internal architecture of a river‐dominated delta controlled by autogenic process: Implications from a flume tank experiment. Petroleum Science, 16, 1237–1254. https://doi.org/10.1007/s12182‐019‐00389‐x
    [Google Scholar]
  67. Ferranti, L., Antonioli, F., Anzidei, M., Monaco, C., & Stocchi, P. (2010). The timescale and spatial extent of recent vertical tectonic motions in Italy: Insights from relative sea‐level changes studies. Journal of the Virtual Explorer, 36, 23. https://doi.org/10.3809/jvirtex.2010.00255
    [Google Scholar]
  68. Fisher, J. A., Pazzaglia, F. J., Anastasio, D. J., & Gallen, S. F. (2022). Linear inversion of fluvial topography in the northern Apennines: Comparison of base‐level fall to crustal shortening. Tectonics, 41, e2022TC007379. https://doi.org/10.1029/2022TC007379
    [Google Scholar]
  69. Foreman, B. Z., & Straub, K. M. (2017). Autogenic geomorphic processes determine the resolution and fidelity of terrestrial paleoclimate records. Science Advances, 3(9), e1700683. https://doi.org/10.1126/sciadv.1700683
    [Google Scholar]
  70. Forte, A. M., & Whipple, K. X. (2019). Short communication: The Topographic Analysis Kit (TAK) for TopoToolbox. Earth Surface Dynamics, 7, 87–95. https://doi.org/10.5194/esurf‐7‐87‐2019
    [Google Scholar]
  71. Forzoni, A., Storms, J. E. A., Whittaker, A. C., & De Jager, G. (2014). Delayed delivery from the sediment factory: Modeling the impact of catchment response time to tectonics on sediment flux and fluvio‐deltaic stratigraphy. Earth Surface Processes and Landforms, 39, 689–704.
    [Google Scholar]
  72. Foti, A., Pavano, F., Romagnoli, G., Tortorici, G., & Catalano, S. (2023). Structural geology of the eastern termination of the Mt. Kumeta‐Alcantara line (NE sicily, Italy). Journal of Maps, 19(1), 2179436. https://doi.org/10.1080/17445647.2023.2179436
    [Google Scholar]
  73. Gallen, S. F. (2018). Lithologic controls on landscape dynamics and aquatic species evolution in post‐orogenic mountains. Earth and Planetary Science Letters, 493, 150–160. https://doi.org/10.1016/j.epsl.2018.04.029
    [Google Scholar]
  74. Gallen, S. F., & Fernández‐Blanco, D. (2021). A new data‐driven Bayesian inversion of fluvial topography clarifies the tectonic history of the corinth rift and reveals a channel steepness threshold. Journal of Geophysical Research: Earth Surface, 126, e2020JF005651. https://doi.org/10.1029/2020JF005651
    [Google Scholar]
  75. Galloway, W. (1975). In M.Broussard (Ed.), Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems (pp. 87–98). Houston Geological Society.
    [Google Scholar]
  76. Ganti, V., Chadwick, A., Hassenruck‐Gudipati, H., Fuller, B., & Lamb, M. (2016). Experimental river delta size set by multiple floods and backwater hydrodynamics. Science Advances, 2, e1501768. https://doi.org/10.1126/sciadv.1501768
    [Google Scholar]
  77. Ganti, V., Chu, Z., Lamb, M. P., Nittrouer, J. A., & Parker, G. (2014). Testing morphodynamic controls on the location and frequency of river avulsions on fans versus deltas: Huanghe (Yellow River), China. Geophysical Research Letters, 41, 7882–7890. https://doi.org/10.1002/2014GL061918
    [Google Scholar]
  78. Giammanco, S., Palano, M., Scaltrito, A., Scarfì, L., & Sortino, F. (2008). Possible role of fluid overpressure in the generation of earthquake swarms in active tectonic areas: The case of the Peloritani Mts. (Sicily, Italy). Journal of Volcanology and Geothermal Research, 178(4), 795–806.
    [Google Scholar]
  79. Godard, V., Tucker, G. E., Burch Fisher, G., Burbank, D. W., & Bookhagen, B. (2013). Frequency‐dependent landscape response to climatic forcing. Geophysical Research Letters, 40(5), 859–863.
    [Google Scholar]
  80. Goren, L., Fox, M., & Willett, S. D. (2014). Tectonics from fluvial topography using formal linear inversion: Theory and applications to the Inyo Mountains, California. Journal of Geophysical Research: Earth Surface, 119(8), 1651–1681. https://doi.org/10.1002/2014JF003079
    [Google Scholar]
  81. Guérin, G., Mercier, N., & Adamiec, G. (2011). Dose‐rate conversion factors: Update. Ancient TL, 29, 5–8.
    [Google Scholar]
  82. Hancock, G. S., Anderson, R. S., & Whipple, K. X. (1998). Beyond power: Bedrock river incision process and form. In K. J.Tinkler & E. E.Wohl (Eds.), Rivers over rock: Fluvial processes in bedrock channels (Vol. 107, pp. 35–60). American Geophysical Union Geophysical Monograph. https://doi.org/10.1029/GM107p0035
    [Google Scholar]
  83. Harms, J. C., Southard, J. B., Spearing, D. R., & Walker, R. G. (1975). Depositional environments as interpreted from primary sedimentary structures and stratification sequences. SEPM Short Course, n. 2.
    [Google Scholar]
  84. Hoffman, P. F., & Grotzinger, J. P. (1993). Orographic precipitation, erosional unloading, and tectonic style. Geology, 21(3), 195–198.
    [Google Scholar]
  85. Howard, A. D. (1994). A detachment‐limited model of drainage basin evolution. Water Resources Research, 30(7), 2261–2285.
    [Google Scholar]
  86. Huntley, D. J., & Baril, M. R. (1997). The K content of the K‐feldspars being measured in optical dating or in the thermoluminescence dating. Ancient TL, 15(1), 11–13.
    [Google Scholar]
  87. Huntley, D. J., & Hancock, R. G. V. (2001). The Rb contents of the K‐feldspar grains being measured in optical dating. Ancient TL, 19(2), 43–46.
    [Google Scholar]
  88. Jerolmack, D. J., & Paola, C. (2010). Shredding of environmental signals by sediment transport. Geophysical Research Letters, 37, L19401. https://doi.org/10.1029/2010GL044638
    [Google Scholar]
  89. Jerolmack, D. J., & Sadler, P. (2007). Transience and persistence in the depositional record of continental margins. Journal of Geophysical Research, 112, F03S13. https://doi.org/10.1029/2006JF000555
    [Google Scholar]
  90. Kastens, K. A., Mascle, J., Auroux, C., Bonatti, E., Broglia, C., Channell, J. E. T., Curzi, P., Emeis, K. C., Glaçon, G., Hasegawa, S., & Hieke, W. (1988). ODP leg 107 in the Tyrrhenian Sea: Insights into passive margin and backarc basin evolution. Geological Society of America Bulletin, 100, 1140–1156.
    [Google Scholar]
  91. Kim, W., & Jerolmack, D. J. (2008). The pulse of calm fan deltas. Journal of Geology, 116, 315–330.
    [Google Scholar]
  92. Kim, W., & Paola, C. (2007). Long‐period cyclic sedimentation with constant tectonic forcing in an experimental relay ramp. Geology, 35(4), 331–334.
    [Google Scholar]
  93. Kim, W., Paola, C., Swenson, J. B., & Voller, V. R. (2006). Shoreline response to autogenic processes of sediment storage and release in the fluvial system. Journal of Geophysical Research—Earth Surface, 111, F04013. https://doi.org/10.1029/2006JF000470
    [Google Scholar]
  94. Kirby, E., & Whipple, K. X. (2012). Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44, 54–75. https://doi.org/10.1016/j.jsg.2012.07.009
    [Google Scholar]
  95. Kohl, C., & Nishiizumi, K. (1992). Chemical isolation of quartz for measurement of in‐situ‐produced cosmogenic nuclides. Geochimica et Cosmochimica Acta, 56, 3583–3587.
    [Google Scholar]
  96. Koons, P. O. (1989). The topographic evolution of collisional mountain belts: A numerical look at the southern Alps, New Zealand. American Journal of Science, 289, 1041–1069.
    [Google Scholar]
  97. Lague, D. (2013). The stream power river incision model: Evidence, theory and beyond. Earth Surface Processes and Landforms, 39, 38–61.
    [Google Scholar]
  98. Lamothe, M., Auclair, M., Hamzaoi, C., & Huot, S. (2003). Towards a prediction of long‐term anomalous fading of feldspar IRSL. Radiation Measurements, 37(4–5), 493–498. https://doi.org/10.1016/S1350‐4487(03)00016‐7
    [Google Scholar]
  99. Lang, J., & Winsemann, J. (2013). Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: From cyclic steps to humpback dunes. Sedimentary Geology, 296, 36–54.
    [Google Scholar]
  100. Leeder, M. R., & Jackson, J. A. (1993). The interaction between normal faulting and drainage in active extensional basins, with examples from the western United States and Central Greece. Basin Research, 5, 79–102.
    [Google Scholar]
  101. Lentini, F., Carbone, S., Catalano, S., & Grasso, M. (1995). Principali lineamenti strutturali della Sicilia nord‐orientale. Studi Geologici Camerti, 2, 319–329.
    [Google Scholar]
  102. Lentini, F., Catalano, S., & Carbone, S. (2000). Note illustrative della Carta geologica della Provincia di Messina, scala 1:50.000. Con il contributo di Di Sefano, A., Messina, A., Romeo, M. and Vinci G. (p. 70). S.EL.CA.
    [Google Scholar]
  103. Lentini, F., & Vezzani, L. (1975). Le unità meso‐cenozoiche della copertura sedimentaria del basamento cristallino peloritano (Sicilia nord‐orientale). Bollettino della Societa Geologica Italiana, 94(3), 537–554.
    [Google Scholar]
  104. Li, Q., Gasparini, N. M., & Straub, K. M. (2018). Some signal are not the same as they appear: How do erosional landscape transform tectonic history into sediment flux records?Geology, 46(5), 407–410.
    [Google Scholar]
  105. Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography, 20, PA1003. https://doi.org/10.1029/2004PA001071
    [Google Scholar]
  106. Longhitano, S. G. (2018). Between Scylla and Charybdis (part 1): The sedimentary dynamics of the modern Messina Strait (Central Mediterranean) as analogue to interpret the past. Earth‐Science Reviews, 185, 259–287.
    [Google Scholar]
  107. Malinverno, A. (2012). Evolution of the Tyrrhenian Sea‐Calabrian arc system: The past and the present. Rendiconti Online della Società Geologica Italiana, 21, 11–15.
    [Google Scholar]
  108. Malinverno, A., & Ryan, W. B. F. (1986). Extension in the Tyrrhenian Sea and shortening in the Apennines as a result of arc migration driven by sinking of the lithosphere. Tectonics, 5, 227–245. https://doi.org/10.1029/TC005i002p00227
    [Google Scholar]
  109. Mastrolembo Ventura, B., Serpelloni, E., Argnani, A., Bonforte, A., Bürgmann, R., Anzidei, M., Baldi, P., & Puglisi, G. (2014). Fast geodetic strain‐rates in eastern Sicily (southern Italy): New insights into block tectonics and seismic potential in the area of the great 1693 earthquake. Earth and Planetary Science Letters, 404, 77–88. https://doi.org/10.1016/j.epsl.2014.07.025
    [Google Scholar]
  110. Matenco, L. C., & Haq, B. U. (2020). Multi‐scale depositional successions in tectonic settings. Earth‐Science Reviews, 200, 102991. https://doi.org/10.1016/j.earscirev.2019.102991
    [Google Scholar]
  111. Mejdahl, V. (1979). Thermoluminescence dating: Beta‐dose attenuation in quartz grains. Archaeometry, 21, 61–72.
    [Google Scholar]
  112. Meschis, M., Roberts, G. P., Mildon, Z. K., Robertson, J., Michetti, A. M., & Faure Walker, J. P. (2019). Slip on a mapped normal fault for the 28th December 1908 Messina earthquake (mw 7.1) in Italy. Scientific Reports, 9(1), 6481. https://doi.org/10.1038/s41598‐019‐42915‐2
    [Google Scholar]
  113. Meschis, M., Roberts, G. P., Robertson, J., & Briant, R. M. (2018). The relationships between regional quaternary uplift, deformation across active normal faults, and historical seismicity in the upper plate of subduction zones: The capo D'Orlando fault, NE Sicily. Tectonics, 37, 1231–1255. https://doi.org/10.1029/2017TC004705
    [Google Scholar]
  114. Miall, A. D. (1997). The geology of stratigraphic sequences (p. 433). Springer.
    [Google Scholar]
  115. Monaco, C., & Tortorici, L. (2000). Active faulting in the Calabrian arc and eastern Sicily. Journal of Geodynamics, 29, 407–424.
    [Google Scholar]
  116. Montgomery, D. R., & Foufoula‐Georgiou, E. (1993). Channel network source representation using digital elevation models. Water Resources Research, 29, 3925–3934. https://doi.org/10.1029/93WR02463
    [Google Scholar]
  117. Mutti, E., Allen, G. P., & Rossel, J. (1984). Sigmoidal‐cross stratification and sigmoidal bars: Depositional features diagnostic of tidal sandstones. 5th IAS European Regional Meeting, Marsiglia, Abstract volume, 312–313.
    [Google Scholar]
  118. Mutti, E., Rossel, J., Allen, G. P., Fonnesu, F., & Sgavetti, M. (1985). The Eocene Baronia tide dominated delta‐shelf system in the Ager Basin. In M.Mila & J.Rosell (Eds.), 6th IAS European Regional Meeting, Field Trip Guide Book (pp. 579–600).
    [Google Scholar]
  119. Mutti, E., Tinterri, R., Di Biase, D., Fava, L., Mavilla, N., Angella, S., & Calabrese, L. (2000). Delta‐front facies associations of ancient flood‐dominated fluvio‐deltaic systems. Revista de la Sociedad Geológica de España, 13, 165–190.
    [Google Scholar]
  120. Nelson, M., Rittenour, T., & Cornachione, H. (2019). Sampling methods for luminescence dating of subsurface deposits from cores. Methods and Protocols, 2(4), 88. https://doi.org/10.3390/mps2040088
    [Google Scholar]
  121. Nelson, M. S., Gray, H. J., Johnson, J. A., Rittenour, T. M., Feathers, J. K., & Mahan, S. A. (2015). User guide for luminescence sampling in archaeological and geological contexts. Advances in Archaeological Practice, 3(2), 166–177.
    [Google Scholar]
  122. Neri, G., Oliva, G., Orecchio, B., & Presti, D. (2006). A possible seismic gap within a highly seismogenic belt crossing Calabria and Eastern Sicily, Italy. Bulletin of the Seismological Society of America, 96, 1321–1331.
    [Google Scholar]
  123. Nicholas, A. P., & Quine, T. A. (2007). Modeling alluvial landform change in the absence of external environmental forcing. Geology, 35, 527–530.
    [Google Scholar]
  124. Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C., & McAninch, J. (2007). Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 258, 403–413.
    [Google Scholar]
  125. Olsen, P. E., WithjackM., SchlischeR. W., & PazzagliaF. J. (2018). Temporal, tectonic, climatic and environmental context of the Triassic‐Jurassic rift system of eastern North America: Emerging concepts from the Newark rift basin. Field Trip Guidebook. Field Conference of Pennsylvania Geologists Center Valley, PA October 5–6, 2018.
    [Google Scholar]
  126. Ott, R. F., Scherler, D., Wegmann, K. W., D'Arcy, M. K., Pope, R. J., Ivy‐Ochs, S., Christi, M., Vockenhuber, C., & Rittenour, T. M. (2022). Paleo‐denudation rates suggest variations in runoff drove aggradation during last glacial cycle, Crete, Greece. Earth Surface Processes and Landforms, 48, 386–405.
    [Google Scholar]
  127. Paola, C. (2000). Quantitative models of sedimentary basin filling. Sedimentology, 47(Suppl. 1), 121–178.
    [Google Scholar]
  128. Paola, C., Ganti, V., Mohrig, D., Runkel, A. C., & Straub, K. M. (2018). Time not our time: Physical controls on the preservation and measurement of geologic time. Annual Review of Earth and Planetary Sciences, 46, 409–438.
    [Google Scholar]
  129. Paola, C., Heller, P. L., & Angevine, C. L. (1992). The large‐scale dynamics of grain size variation in alluvial basins. 1, theory. Basin Research, 4, 73–90.
    [Google Scholar]
  130. Paola, C., Mullin, J., Ellis, C., Mohrig, D. C., Swenson, J. B., Parker, G., Hickson, T., Heller, P. L., Pratson, L., Syvitski, J., Sheets, B., & Strong, N. (2001). Experimental stratigraphy. GSA Today, 11(7), 4–9. https://doi.org/10.1130/1052‐5173(2001)011<0004:ES>2.0.CO;2
    [Google Scholar]
  131. Pavano, F., Catalano, S., Romagnoli, G., & Tortorici, G. (2018). Hypsometry and relief analysis of the southern termination of the Calabrian arc, NE‐Sicily (southern Italy). Geomorphology, 304, 74–88.
    [Google Scholar]
  132. Pavano, F., & Gallen, S. F. (2021). A geomorphic examination of the Calabrian Forearc translation. Tectonics, 40, e2020TC006692. https://doi.org/10.1029/2020TC006692
    [Google Scholar]
  133. Pavano, F., Pazzaglia, F. J., & Catalano, S. (2016). Knickpoints as geomorphic markers of active tectonics: A case study from northeastern Sicily (southern Italy). Lithosphere, 8(6), 633–648. https://doi.org/10.1130/L577.1
    [Google Scholar]
  134. Pavano, F., Romagnoli, G., Tortorici, G., & Catalano, S. (2015). Active tectonics along the Nebrodi–Peloritani boundary in northeastern Sicily (southern Italy). Tectonophysics, 659, 1–11. https://doi.org/10.1016/j.tecto.2015.07.024
    [Google Scholar]
  135. Pazzaglia, F. J., & Fisher, J. (2022). A reconstruction of Apennine uplift history and the development of transverse drainages from longitudinal profile inversion. In C.Koeberl, P.Claeys, & S.Montanari (Eds.), From the Guajira desert to the Apennines, and from Mediterranean microplates to the Mexican killer asteroid. Geological Society of America Special Papers, 557.
    [Google Scholar]
  136. Pezzino, A., Angi, G., Cirrincione, R., De Vuono, E., Fazio, E., Fiannacca, P., Lo, G. A., Ortolano, G., & Punturo, R. (2008). Alpine metamorphism in the Aspromonte Massif: Implications for a new framework for the southern sector of the Calabria‐Peloritani Orogen (Italy). International Geology Review, 50, 423–441.
    [Google Scholar]
  137. Pizzuto, J., Keeler, J., Skalak, K., & Karwan, D. (2017). Storage filters upland suspended sediment signals delivered from watersheds. Geology, 4(2), 151–154.
    [Google Scholar]
  138. Playfair, J. (1802). Illustrations of the Huttonian theory of the Earth. Cadell and Davies.
    [Google Scholar]
  139. Postma, G., Hoyal, D. C., Demko, T., Fedele, J. J., Lang, J., Abreu, V., & Pederson, K. H. (2020). Reconstruction of bedform dynamics controlled by supercritical flow in the channel–lobe transition zone of adeep‐water delta (Sant Llorencßdel Munt, north‐east Spain, Eocene). Sedimentology, 68, 1674–1697. https://doi.org/10.1111/sed.12735
    [Google Scholar]
  140. Postpischl, D. (1985). Catalogo dei terremoti italiani dall'anno 1000 al 1980 (p. 239). CNR, P.F. Geodinamica, Graficoop Bologna.
    [Google Scholar]
  141. Prescott, J. R., & Hutton, J. T. (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating. Radiation Measurements, 23, 497–500.
    [Google Scholar]
  142. Rittenour, T. M. (2018). Dates and rates of Earth‐surface processes revealed using luminescence dating. Elements, 14, 21–26.
    [Google Scholar]
  143. Riuscetti, M., & Shick, R. (1975). Earthquakes and tectonics in Southern Italy. Bollettino di Geofisica Teorica ed Applicata, 17, 58–78.
    [Google Scholar]
  144. Rohais, S., Bonnet, S., & Eschard, R. (2012). Sedimentary record of tectonic and climatic erosional perturbations in an experimental coupled catchment‐fan system. Basin Research, 24, 198–212.
    [Google Scholar]
  145. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2015). Environmental signal propagation in sedimentary systems across timescales. Earth Science Reviews, 153, 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012
    [Google Scholar]
  146. Rosenbaum, G., & Lister, G. S. (2004). Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides. Tectonics, 23, TC1013. https://doi.org/10.1029/2003TC001518
    [Google Scholar]
  147. Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini, P., & Antonucci, A. (2022). Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/CPTI/CPTI15.4
    [Google Scholar]
  148. Rust, D., & Kershaw, S. (2000). Holocene tectonic uplift patterns in northeastern Sicily evidence from marine notches in coastal outcrops. Marine Geology, 167, 105–126.
    [Google Scholar]
  149. Scarfì, L., Barberi, G., Musumeci, C., & Patanè, D. (2016). Seismotectonics of northeastern Sicily and southern Calabria (Italy): New constraints on the tectonic structures featuring in a crucial sector for the central Mediterranean geodynamics. Tectonics, 35, 812–832. https://doi.org/10.1002/2015TC004022
    [Google Scholar]
  150. Schumer, R., Jerolmack, D. J., & McElroy, B. (2011). The stratigraphic filter and bias in measurement of geologic rates. Geophysical Research Letters, 38(11), L11405. https://doi.org/10.1029/2011GL047118
    [Google Scholar]
  151. Schumm, S. A., Mosley, P. M., & Weaver, P. H. (1987). Experimental fluvial geomorphology (p. 413). John Wiley & Sons.
    [Google Scholar]
  152. Schumm, S. A., & Rea, D. K. (1995). Sediment yield from disturbed earth systems. Geology, 23, 391–394.
    [Google Scholar]
  153. Schwanghart, W., & Scherler, D. (2014). Short Communication: TopoToolbox 2—MATLAB‐based software for topographic analysis and modelling in Earth surface sciences. Earth Surface Dynamics, 2, 1–7. https://doi.org/10.5194/esurf‐2‐1‐2014
    [Google Scholar]
  154. Schwanghart, W., & Scherler, D. (2017). Bumps in river profiles: Uncertainty assessment and smoothing using quantile regression techniques. Earth Surface Dynamics, 5, 821–839. https://doi.org/10.5194/esurf‐5‐821‐2017
    [Google Scholar]
  155. Selli, R. (1978). Geologia e sismotettonica dello Stretto di Messina. Convegno: “L'attraversamento dello Stretto di Messina e la sua fattibilità”, 4–6 Luglio 1978. Atti della Accademia Nazionale dei Lincei, 43, 119–154.
    [Google Scholar]
  156. Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G., Anzidei, M., Baldi, P., & Gasperini, I. (2007). Kinematics of the western Africa–Eurasia plate boundary from focal mechanisms and GPS data. Geophysical Journal International, 169, 1180–1200. https://doi.org/10.1111/j.1365‐246X.2007.03367.x
    [Google Scholar]
  157. Seybold, H., Andrade, J. S., Jr., & Herrmann, H. J. (2007). Modeling river delta formation. Proceedings of the National Academy of Sciences of the United States of America, 104(43), 16804–16809.
    [Google Scholar]
  158. Sharman, G. R., Sylvester, Z., & Covault, J. A. (2019). Conversion of tectonic and climatic forcings into records of sediment supply and provenance. Scientific Reports, 9, 4115. https://doi.org/10.1038/s41598‐019‐39754‐6
    [Google Scholar]
  159. Simpson, G., & Castelltort, S. (2012). Model shows that rivers transmit high‐frequency climate cycles to the sedimentary record. Geology, 40, 1131–1134. https://doi.org/10.1130/G33451.1
    [Google Scholar]
  160. Slingerland, R. (1990). Predictability and chaos in quantitative dynamic stratigraphy. In T. A.Cross (Ed.), Quantitative dynamic stratigraphy (pp. 45–53). Prentice‐Hall.
    [Google Scholar]
  161. Smith, G. A. (1994). Climatic influences on continental deposition during late‐stage filling of an extensional basin, southeastern Arizona. Geological Society of America Bulletin, 106, 1212–1228. https://doi.org/10.1130/0016–7606(1994)106<1212:CIOCDD>2.3.CO;2
    [Google Scholar]
  162. Snyder, N. P., Whipple, K. X., Tucker, G. E., & Merritts, D. J. (2000). Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geological Society of America Bulletin, 112, 1250–1263. https://doi.org/10.1130/0016‐7606(2000)112<1250:LRTTFD>2.0
    [Google Scholar]
  163. Snyder, N. P., Whipple, K. X., Tucker, G. E., & Merritts, D. J. (2002). Interactions between onshore bedrock‐channel incision and nearshore wave‐base erosion forced by eustasy and tectonics. Basin Research, 14(2), 105–127.
    [Google Scholar]
  164. Straub, K. M., Paola, C., Mohrig, D., Wolinsky, M. A., & George, T. (2009). Compensational stacking of channelized sedimentary deposits. Journal of Sedimentary Research, 79(9), 673–688. https://doi.org/10.2110/jsr.2009.070
    [Google Scholar]
  165. Tinterri, R. (2011). Combined flow sedimentary structures and the genetic link between sigmoidal‐ and hummocky‐cross stratification. GeoActa, 10, 43–85.
    [Google Scholar]
  166. Tinti, S., Maramai, A., & Graziani, L. (2004). The new catalogue of Italian tsunamis. Natural Hazards, 33, 439–465.
    [Google Scholar]
  167. Trampush, S. M., Hajek, E. A., Straub, K. M., & Chamberlin, E. P. (2017). Identifying autogenic sedimentation in fluvial‐deltaic stratigraphy: Evaluating the effect of outcrop‐quality data on the compensation statistic. Journal of Geophysical Research—Earth Surface, 122, 91–113. https://doi.org/10.1002/2016JF004067
    [Google Scholar]
  168. Tucker, G., & Slingerland, R. (1997). Drainage basin responses to climate change. Water Resources Research, 33, 2031–2047. https://doi.org/10.1029/97WR00409
    [Google Scholar]
  169. Vail, P. R., Todd, R. G., & Sangree, J. B. (1977). Seismic stratigraphy and global changes of sea level: Part 5. Chronostratigraphic significance of seismic reflections, in application of seismic reflection configuration to stratigraphic interpretation. AAPG Memorial, 26, 99–116.
    [Google Scholar]
  170. Valensise, G., & Pantosti, D. (1992). A 125 Kyr‐long geological record of seismic source repeatability: The Messina Straits (southern Italy) and the 1908 earthquake (Ms 71/2). Terra Nova, 4, 472–483.
    [Google Scholar]
  171. Van Dijk, M., Postma, G., & Kleinhans, M. G. (2009). Autocyclic behavior of fan deltas: An analogue experimental study. Sedimentology, 56(5), 1569–1589. https://doi.org/10.1111/j.1365‐3091.2008.01047.x
    [Google Scholar]
  172. Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F., Lambeck, K., Balbon, E., & Labracherie, M. (2002). Sea‐level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews, 21, 295–305.
    [Google Scholar]
  173. Wallinga, J., Murray, A., & Wintle, A. G. (2000). The single‐aliquot regenerative‐dose (SAR) protocol applied to coarse‐grain feldspar. Radiation Measurements, 32, 529–533.
    [Google Scholar]
  174. Whipple, K. X., Parker, G., Paola, C., & Mohrig, D. (1998). Channel dynamics, sediment transport, and the slope of alluvial fans: Experimental study. Journal of Geology, 106, 677–693.
    [Google Scholar]
  175. Whipple, K. X., & Tucker, G. E. (1999). Dynamics of the stream power river incision model: Implications for height limits of mountain ranges, landscape response timescales and research needs. Journal of Geophysical Research, 104(17), 661–717. https://doi.org/10.1029/1999JB900120
    [Google Scholar]
  176. Wobus, C., Whipple, X. K., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., & Sheehan, D. (2006). Tectonics from topography: Procedures, promise, and pitfalls. In S. D.Willett, N.Hovius, M. T.Brandon, & D. M.Fisher (Eds.), Tectonics, climate, and landscape evolution (pp. 55–74. Penrose Conference Series). Geologica Society of America Special Paper 398. https://doi.org/10.1130/2006.2398(04)
    [Google Scholar]
  177. Zeitler, P. K., Meltzer, A. S., Koons, P. O., Craw, D., Hallet, B., Chamberlain, C. P., Kidd, W. S. F., Park, S. K., Seeber, L., Bishop, M., & Shroder, J. (2001). Erosion, Himalayan geodynamics, and the geomorphology of metamorphism. GSA Today, 11(1), 4–9.
    [Google Scholar]
/content/journals/10.1111/bre.12845
Loading
/content/journals/10.1111/bre.12845
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error