1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

Key steps in the development of the Organyà and Montsec minibasins.

, Abstract

This paper presents a sequentially restored cross‐section of the Organyà and Montsec minibasins based on geological mapping, new field observations and available borehole data. The main objective was to describe the geometry and evolution of both basins in terms of salt tectonics and minibasin mobility. To this end, a comprehensive palaeomagnetic database has been used to constrain vertical‐axis rotations potentially related to minibasin translation and pivoting. The Organyà minibasin constitutes an asymmetric depocentre formed during the Upper Jurassic‐Lower Cretaceous by translation above a southerly inclined salt layer. Salt evacuation and minibasin touchdown induced salt accumulation on the northern side of the basin that culminated in the development of the major Santa Fe unconformity during the late Albian—early Cenomanian. Indicative of salt quiescence is the following isopachous Cenomanian to lower Santonian sequence Salt tectonics resumed during the late Santonian—Palaeocene, with the Montsec minibasin downbuilding coinciding with the onset of Pyrenean convergence. Changes of the base‐salt topography reflects regional‐scale geodynamic processes. The acceleration of crustal thinning in the North Pyrenean zone during the late Albian‐early Cenomanian favoured uplift in the Axial Zone, increasing slope and triggering salt mobilization in the Southern Pyrenees. Likewise, the onset of contraction renewed the downslope gliding of the Organyà and Montsec minbasins, and supports the idea that the early stages of basin inversion were governed by gravity tectonics. The kinematic reconstruction suggests that the more that 30° counterclockwise vertical axis rotation records pivoting during the suprasalt translation of the Organyà minibasin rather than solely the Iberian microplate rotation.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12846
2024-01-31
2025-03-19
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12846.html?itemId=/content/journals/10.1111/bre.12846&mimeType=html&fmt=ahah

References

  1. Arbués, P., Pi, E., & Berástegui, X. (1996). Relaciones entre la evolución sedimentaria del Grupo de Arén y el cabalgamiento de Bóixols (Campaniense terminal‐Maastrichtiense del Pirineo meridional central). Geogaceta, 20(2), 446–449.
    [Google Scholar]
  2. Ayala, C., Bohoyo, F., Maestro, A., Reguera, M. I., Torne, M., Rubio, F., Fernàndez, M., & García‐Lobón, J. L. (2016). Updated Bouguer anomalies of the Iberian Peninsula: A new perspective to interpret the regional geology. Journal of Maps, 12, 1–4, 1092. https://doi.org/10.1080/17445647.2015.1126538
    [Google Scholar]
  3. Bachmann, M., & Willems, H. (1996). High‐frequency cycles in the upper Aptian carbonates of the Organyà basin, NE Spain. Geologische Rundschau, 85, 586–605.
    [Google Scholar]
  4. Beaumont, C., Muñoz, J. A., Hamilton, J., & Fullsack, P. (2000). Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. Journal of Geophysical Research, 105, 8121–8145. https://doi.org/10.1029/1999JB900390
    [Google Scholar]
  5. Becker, E. (1999). Orbitoliniden‐Biostratigraphie der Unterkreide (Hauterive‐Barremême) in den spanischen Pyrenäen (Profil Organyà, Prov. Lérida). Revue de Paléobiologie Genève, 18(2), 359–489.
    [Google Scholar]
  6. Bentham, P. A. (1992). The tectono‐stratigraphic development of the western oblique ramp of the south‐central Pyrenean thrust system, Northern Spain. PhD, University of Southern California, 253 pp.
  7. Berástegui, X., García‐Senz, J. M., & Losantos, M. (1990). Structure and sedimentary evolution of the Organyà basin (Central South Pyrenean Unit, Spain) during the Lower Cretaceous. Bulletin de la Société Géologique de France, 8, 251–264.
    [Google Scholar]
  8. Bernaus, J. M., Arnaud‐Vanneau, A., & Caus, E. (1999). La sedimentación “Urgoniense” en la cuenca de Organyà (NE España) (pp. 71–80). Libro homenaje a José Ramírez del Pozo. Asoc Geol y Geofis Españoles del Petróleo, AGGEP.
    [Google Scholar]
  9. Bernaus, J. M., Arnaud‐Vanneau, A., & Caus, E. (2003). Carbonate platform sequence stratigraphy in a rapidly subsiding area: The Late Barremian–Early Aptian of the Organya' basin, Spanish Pyrenees. Sedimentary Geology, 159(3–4), 177–201. https://doi.org/10.1016/S0037‐0738(02)00316‐0
    [Google Scholar]
  10. Boillot, G. (1986). Comparison between the Galicia and Aquitaine margins. Tectonophysics, 129, 243–255. https://doi.org/10.1016/0040‐1951(86)90254‐4
    [Google Scholar]
  11. Boix‐Martínez, C. (2007). Los foraminíferos rotálidos del Cretácico superior de la Cuenca Pirenaica. PhD dissertation, Univ. Autònoma Barcelona, 139 p.
  12. Bond, R. M. G. Y., & McClay, K. R. (1995). Inversion of a lower cretaceous extensional basin, south central Pyrenees, Spain. In J. G. Y.Buchanan & P. G.Buchanan (Eds.), Basin inversion (Special Publication No. 88, pp. 415–431). Geological Society. https://doi.org/10.1144/GSL.SP.1995.088.01.22
    [Google Scholar]
  13. Booler, J. P. (1994). Carbonate facies, sequences and associated diagenesis, Upper Cretaceous, Tremp basin, Spanish pyrenees. Durham theses, Durham University. Available at Durham E‐Theses Online http://etheses.dur.ac.uk/5527/
  14. Burrel, L., Teixell, A., Gómez‐Gras, D., & Coll, X. (2021). Basement‐involved thrusting, salt migration and intramontane conglomerates: A case from the Southern Pyrenees. Bulletin de la Société Géologique de France, 192(1), 24. https://doi.org/10.1051/bsgf/2021013
    [Google Scholar]
  15. Cadenas, P., & Fernández‐Viejo, G. (2017). The Asturian Basin within the North Iberian margin (Bay of Biscay): Seismic characterization of its geometry and its Mesozoic and Cenozoic cover. Basin Research, 29, 521–541. https://doi.org/10.1111/bre.1287
    [Google Scholar]
  16. Calvet, F., & Lucas, C. (Coords). (2018). Chapitre 12, Trias. In Synthèse Géologique et Géophysique des Pyrénées. Vol. 2 Cycle Alpin: Stratigraphy. Co‐edition BRGM and AGSO.
    [Google Scholar]
  17. Calvín, P., Villalaín, J. J., Casas‐Sainz, A. M., Tauxe, L., & Torres‐López, S. (2017). pySCu: A new python code for analyzing remagnetizations directions by means of small circle utilities. Computers and Geosciences, 109, 32–42.
    [Google Scholar]
  18. Cámara, P., & Flinch, J. F. (2017). Chapter 18—The Southern Pyrenees: A salt‐based fold‐and‐Thrust Belt. In J. I.Soto, J. F.Flinch, & G.Tari (Eds.), Permo‐triassic salt Provinces of Europe, North Africa and the Atlantic Margins (Vol. 2017, pp. 395–415). Elsevier. https://doi.org/10.1016/B978‐0‐12‐809417‐4.00019‐7. isbn:9780128094174.
    [Google Scholar]
  19. Cámara, P., & Klimowitz, J. (1985). Interpretación geodinámica de la vertiente centro‐occidental surpirenaica (cuencas de Jaca – Tremp). Estudios Geológicos, 41, 391–404.
    [Google Scholar]
  20. Casas, A., Kearey, P., Rivero, L., & Adam, C. R. (1997). Gravity anomaly map of the Pyrenean region and a comparison of the deep geological structure of the western and eastern Pyrenees. Earth and Planetary Science Letters, 150(1–2), 65–78. https://doi.org/10.1016/S0012‐821X(97)00087‐3
    [Google Scholar]
  21. Casini, G., Vergés, J., Drzewiecki, P., Ford, M., Cruset, D., Wright, W., & Hunt, D. (2023). Reconstructing the Iberian salt‐bearing rifted margin of the Southern Pyrenees: Insights from the Organyà Basin. Tectonics, 42, e2022TC007715. doi:10.1029/2022TC007715Caus
    [Google Scholar]
  22. Caus, E., García‐Senz, J., Rodes, D., & Simó, A. (1990). Stratigraphy of the Lower Cretaceous (Berriasian‐Barremian) sediments in the Organyà basin, Pyrenees, Spain. Cretaceous Research, 11, 313–320.
    [Google Scholar]
  23. Caus, E., & Gómez‐Garrido, A. (1989). Upper Cretaceous biostratigraphy of the south‐central Pyrenees (Leida, Spain). Geodinamica Acta, 3, 221–228.
    [Google Scholar]
  24. Caus, E., Gómez‐Garrido, A., Simó, A., & Soriano, K. (1993). Cenomanian‐Turonian platform to basin integrated stratigraphy in the South Pyrenees (Spain). Cretaceous Research, 14, 531–555.
    [Google Scholar]
  25. Chevrot, S., Sylvander, M., Diaz, J., Martin, R., Mouthereau, F., Manatschal, G., Masini, E., Calassou, S., Grimaud, F., Pauchet, H., & Ruiz, M. (2018). The non‐cylindrical crustal architecture of the Pyrenees. Scientific Reports, 8, 9591. https://doi.org/10.1038/s41598‐018‐27889‐x
    [Google Scholar]
  26. Clerc, C., & Lagabrielle, Y. (2014). Thermal control on the modes of crustal thinning leading to mantle exhumation, insights from the Cretaceous Pyrenean hot paleomargins. Tectonics, 33(7), 1340–1359, 2013TC003471. https://doi.org/10.1002/2013TC003471
    [Google Scholar]
  27. Clerc, C., Lahfid, A., Monié, P., Lagabrielle, Y., Chopin, C., Poujol, M., Boulvais, P., Ringenbach, J. C., Masini, E., & de St Blanquat, M. (2015). High‐temperature metamorphism during extreme thinning of the continental crust: A reappraisal of the North Pyrenean passive paleomargin. Solid Earth, European Geosciences Union, 6(2), 643–668. doi:10.5194/se-6-643-2015.insu-01161826
    [Google Scholar]
  28. Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J.‐X. (2013). The ICS International Chronostratigraphic Chart. Episodes, 36, 199–204.
    [Google Scholar]
  29. Cuevas, J. L. (1992). Estratigrafía del “Garumniense” de la Conca de Tremp. Prepirineo de Lérida. Acta Geologica Hispánica, 27(1–2), 95–108.
    [Google Scholar]
  30. Dinarès‐Turell, J. (1992). Paleomagnetisme a les unitats sudpirinenques superiors: Implicacions estructurals. PhD thesis, 461 pp., Univ. de Barcelona.
  31. Dinarès‐Turell, J., & García‐Senz, J. (2000). Remagnetization of Lower Cretaceous lime‐ stones from the southern Pyrenees and relation to the Iberian plate geodynamic evolution. Journal of Geophysical Research, 105(B8), 19405–19418.
    [Google Scholar]
  32. Dinarès‐Turell, J., McClelland, E., & Santanach, P. (1992). Contrasting rotations within thrust sheets and kinematics of thrust‐tectonics as derived from paleomagnetic data: An example from the southern Pyrenees. In K. R.McClay (Ed.), Thrust tectonics (pp. 255–265). Chapman and Hall. https://doi.org/10.1007/978‐94‐011‐3066‐0
    [Google Scholar]
  33. Duffy, O. B., Dooley, T. P., Hudec, M. R., Fernandez, N., Jackson, C. A.‐L., & Soto, J. I. (2021). Principles of shortening in salt basins containing isolated minibasins. Basin Research, 33, 2089–2117. https://doi.org/10.1111/bre.12550
    [Google Scholar]
  34. Duffy, O. B., Fernandez, N., Peel, F. J., Hudec, M. R., Dooley, T. P., & Jackson, C. A.‐L. (2019). Obstructed minibasins on a salt‐detached slope: An example from above the Sigsbee canopy, northern Gulf of Mexico. Basin Research, 32(3), 505–524.
    [Google Scholar]
  35. Espurt, N., Angrand, P., Teixell, A., Labaume, P., Ford, M., de Saint Blanquat, M., & Chevrot, S. (2019). Crustal‐scale balanced cross‐section and restorations of the Central Pyrenean belt (Nestes‐Cinca transect): Highlighting the structural control of Variscan belt and Permian‐Mesozoic rift systems on mountain building. Tectonophysics, 764, 25–45.
    [Google Scholar]
  36. Faure, P. (1984). Le Lias de la partie centro‐orientale des Pyrénées espagnoles (provinces de Huesca, Lérida et Barcelona). Bulletin de la Société d'histoire naturelle de Toulouse, 121, 23–37.
    [Google Scholar]
  37. Fernandez, N., Duffy, O. B., Peel, F. J., & Hudec, M. R. (2021). Influence of minibasin obstruction on canopy dynamics in the northern Gulf of Mexico. Basin Research, 33(1), 427–446. https://doi.org/10.1111/bre.12480
    [Google Scholar]
  38. Ferrer, O., Roca, E., Benjumea, B., Muñoz, J. A., Ellouz, N., & Marconi Team . (2008). The deep seismic reflection MARCONI‐3 profile: Role of extensional Mesozoic structure during the Pyrenean contractional deformation at the eastern part of the Bay of Biscay. Marine and Petroleum Geology, 25, 714–730.
    [Google Scholar]
  39. Fiduk, J. C., Clippard, M., Power, S., Robertson, V., Rodriguez, L., Ajose, O., Fernandez, D., & Smith, D. (2014). Origin, transportation, and deformation of mesozoic carbonate rafts in the Northern Gulf of Mexico. GCAGS Journal, 3, 20–32.
    [Google Scholar]
  40. Fondecave‐Wallez, M. J., Souquet, P. Y., & Gourinard, Y. (1989). Enregistrement sédimentaire de l'eustatisme et de la tectonique dans la série turbiditique du Crétacé des Pyrénées centro‐méridionales (Groupe de Vallcarga, n.gr., Espagne). Comptes Rendus. Académie des Sciences, t308, Série II, 1011–1016.
    [Google Scholar]
  41. Fort, X., & Brun, J.‐P. (2012). Kinematics of regional salt flow in the northern Gulf of Mexico. In G. I.Alsop, S. G.Archer, A. J.Hartley, N. T.Grant, & R.Hodgkinson (Eds.), Salt tectonics, sediments and Prospectivity (pp. 265–287). Geological Society of London, Special Publication no. 363.
    [Google Scholar]
  42. Fort, X., Brun, J. P., & Chauvel, F. (2004). Contraction induced by block rotation above salt (Angolan margin). Marine and Petroleum Geology, 21, 1281–1294.
    [Google Scholar]
  43. Gallemí, J., Martínez, R., & Pons, J. M. (1982). Unidades del Cretácico Superior en los alrededores de Sant Corneli (prov. de Lleida). Cuadernos de geología ibérica, 8, 935–948.
    [Google Scholar]
  44. Gannaway Dalton, C., Evelyn, G., Katherine, G., Muñoz, J. A., & Rowan, M. (2022). Interpreting the nature of the Aulet and Adons diapirs from sedimentologic and stratigraphic analysis of flanking minibasin strata, Spanish Pyrenees, Catalunya, Spain. Journal of Sedimentary Research, 92, 167–209. https://doi.org/10.2110/jsr.2021.179
    [Google Scholar]
  45. Garcés, M., García‐Senz, J., Muñoz, J. A., López‐Mir, B., & Beamud, E. (2016). Timing of magnetization and vertical‐axis rotations of the Cotiella massif (Late Cretaceous, South Central Pyrenees). In E. L.Pueyo, F.Cifelli, A. J.Sussman, & B.Oliva‐Urcia (Eds.), Palaeomagnetism in fold and thrust belts: New perspectives (Vol. 425, pp. 213–232). Geological Society London Special Publications. https://doi.org/10.1144/SP425.11
    [Google Scholar]
  46. García‐Sansegundo, J., Poblet, J., Alonso, J. L., & Clariana, P. (2011). Hinterland‐foreland zonation of the Variscan orogen in the Central Pyrenees: Comparison with the northern part of the Iberian Variscan Massif. In J.Poblet & R. J.Lisle (Eds.), Kinematic Evolution and Structural Styles of Fold‐and‐Thrust Belts. Geological Society, London, Special Publications, 349, 169–184. https://doi.org/10.1144/SP349.90305‐8719/11/
    [Google Scholar]
  47. García‐Senz, J. (2002). Cuenca extensivas del Cretácico Inferior en los Pirineos Centrales, formación y subsecuente inversión. PhD Thesis, Universidad de Barcelona, 310 pp.
  48. García‐Senz, J., & Muñoz, J. A. (2005). Correlation of organic‐rich deposits, sea level changes, platform drowning and fault activity in the Organyà rift basin (Southern Pyrenees, Spain). In A.Arnaud‐Vanneau, N.Arndt, & L.Zghal (Eds.), Géologie Alpine – Série spéciale “Colloques et Excursions” N° 6. Global events during the quiet Aptian‐Turonian superchron, Grenoble.
    [Google Scholar]
  49. García‐Senz, J., & Muñoz, J. A. (2019a). South Central Pyrenees: The late jurassic–early Cretaceous rifting. In C.Quesada & J.Oliveira (Eds.), The geology of Iberia: A geodynamic approach. Regional Geology Reviews. Springer, Cham. https://doi.org/10.1007/978‐3‐030‐11295‐0_5w
    [Google Scholar]
  50. García‐Senz, J., & Muñoz, J. A. (2019b). South Central Pyrenees: The Late Cretaceous post‐rift to convergence transition. In C.Quesada & J.Oliveira (Eds.), The geology of Iberia: A geodynamic approach. Regional Geology Reviews. Springer. https://doi.org/10.1007/978‐3‐030‐11295‐0_5
    [Google Scholar]
  51. García‐Senz, J., Pedrera, A., Ayala, C., Ruiz‐Constán, A., Robador, A., & Rodríguez‐Fernández, L. (2020). Inversion of the North‐Iberian hyperextended margin: The role of exhumed mantle indentation during continental collision. In J. A.Hammerstein, R.Di Cuia, M. A.Cottam, G.Zamora, & R. W. H.Butler (Eds.), Fold and thrust belts: Structural style, evolution and exploration (Vol. 490). Geological Society, London Special Publications SP490‐2019‐2112.
    [Google Scholar]
  52. Garrido‐Megías, A., & Ríos‐Aragües, L. M. (1972). Síntesis geológica del Secundario y Terciario entre los ríos Cinca y Segre (Pirineo central de la vertiente Surpirenaica, provincias de Huesca y Lérida). Boletín Geológico y Minero, 83, 1–47.
    [Google Scholar]
  53. Ge, H., Jackson, M. P., & Vendeville, B. C. (1997). Kinematics and dynamics of salt tectonics driven by progradation. AAPG Bulletin, 81(3), 398–423.
    [Google Scholar]
  54. Gemmer, L., Ings, S. J., Medvedev, S., & Beaumont, C. (2004). Salt tectonics driven by differential sediment loading: Stability analysis and finite‐element experiments. Basin Research, 16(2), 199–218. https://doi.org/10.1111/j.1365‐2117.2004.00229.x
    [Google Scholar]
  55. Giles, K. A., & Rowan, M. G. (2012). Concepts in halokinetic‐sequence deformation and stratigraphy. In G. I.Alsop, S. G.Archer, A. J.Hartley, N. T.Grant, & R.Hodgkinson (Eds.), Salt tectonics, sediments and Prospectivity (Vol. 363, pp. 7–31). The Geological Society doi:10.1144/SP363.2
    [Google Scholar]
  56. Gong, Z., Dekkers, M. J., Dinarès‐Turell, J., & Mullender, T. A. T. (2008). Remagnetization mechanism of Lower Cretaceous rocks from the Organyà Basin (Pyrenees, Spain). Studia Geophysica et Geodaetica, 52, 187–210.
    [Google Scholar]
  57. Gong, Z., van Hinsbergen, D. J. J., & Dekkers, M. J. (2009). Diachronous pervasive remagnetization in northern Iberian basins during Cretaceous rotation and extension. Earth and Planetary Science Letters, 284(3–4), 292–301. https://doi.org/10.1016/j.epsl.2009.04.039
    [Google Scholar]
  58. Gong, Z. C., Langereis, G., & Mullender, T. A. T. (2008). The rotation of Iberia during the Aptian and the opening of the Bay of Biscay. Earth and Planetary Science Letters, 273(1–2), 80–93. https://doi.org/10.1016/j.epsl.2008.06.016
    [Google Scholar]
  59. Gong, Z. C., van Hinsbergen, D. J. J., Vissers, R. L. M., & Dekkers, M. J. (2009). Early Cretaceous syn‐rotational extension in the Organyà basin—New constraints on the palinspastic position of Iberia during its rotation. Tectonophysics, 473, 312–323.
    [Google Scholar]
  60. Gretter, N., Ronchi, A., López‐Gómez, J., Arche, A., De la Horra, R., Barrenechea, J., & Lago, M. (2015). The late Palaeozoic‐early Mesozoic from the Catalan Pyrenees (Spain): 60Myr of environmental evolution in the frame of the western peri‐Tethyan palaeogeography. Earth‐Science Reviews, 150, 679–708.
    [Google Scholar]
  61. Grool, A. R., Ford, M., Vergés, J., Huismans, R. S., Christophoul, F., & Dielforder, A. (2018). Insights into the crustal‐scale dynamics of a doubly vergent orogen from a quantitative analysis of its forelands: A case study of the eastern Pyrenees. Tectonics, 37, 450–476. https://doi.org/10.1002/2017TC004731
    [Google Scholar]
  62. Haq, B. U. (2014). Cretaceous eustasy revisited. Global and Planetary Change, 113(2014), 44–58. https://doi.org/10.1016/j.gloplacha.2013.12.007
    [Google Scholar]
  63. Haq, B. U. (2017). Jurassic Sea‐level variations: A reappraisal. GSA Today, 28(1), 4–10. https://doi.org/10.1130/GSATG359A.1
    [Google Scholar]
  64. Hudec, M. R., Dooley, T. P., Burrel, L., Teixell, A., & Fernandez, N. (2021). An alternative model for the role of salt depositional configuration and preexisting salt structures in the evolution of the Southern Pyrenees, Spain. Journal of Structural Geology, 146, 104325. https://doi.org/10.1016/j.jsg.2021.104325
    [Google Scholar]
  65. Hudec, M. R., & Jackson, M. P. A. (2007). Terra Infirma: Understanding salt tectonics. Earth‐Science Reviews, 82(1–2), 1–28. https://doi.org/10.1016/j.earscierev.2007.01.001
    [Google Scholar]
  66. Hudec, M. R., Jackson, M. P. A., & Schultz‐Ela, D. D. (2009). The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins. Geological Society of America Bulletin, 121, 201–221.
    [Google Scholar]
  67. Jackson, M. P. A., & Hudec, M. R. (2017). Salt tectonics: Principles and practice. Cambridge University Press. https://doi.org/10.1017/9781139003988
    [Google Scholar]
  68. Jackson, M. P. A., & Vendeville, B. C. (1994). Regional extension as a geologic trigger for diapirism. GSA Bulletin, 106, 57–73. https://doi.org/10.1130/0016‐7606(1994)106<0057:REAAGT>2.3.CO;2
    [Google Scholar]
  69. Jammes, S., Huismans, R. S., & Muñoz, J. A. (2014). Lateral variation in structural style of mountain building: Controls of rheological and rift inheritance. Terra Nova, 26, 201–207. https://doi.org/10.1111/ter.12087
    [Google Scholar]
  70. Jammes, S., Manatschal, G., Lavier, L., & Masini, E. (2009). Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics, 28, TC4012. https://doi.org/10.1029/2008TC002406
    [Google Scholar]
  71. Jolivet, L., Romagny, A., Gorini, C., Maillard, A., Thinon, I., Couëffé, R., Ducoux, M., & Séranne, M. (2020). Fast dismantling of a mountain belt by mantle flow: Late‐orogenic evolution of pyrenees and liguro‐provencal rifting. Tectonophysics, 776, 228312.
    [Google Scholar]
  72. Kergaravat, C., Ribes, C., Callot, J.‐P., & Ringenbach, J.‐C. (2017). Tectonostratigraphic evolution of salt‐controlled minibasins in a fold and thrust belt, the Oligo‐Miocene central Sivas Basin. Journal of Structural Geology. 102, 75–97. https://doi.org/10.1016/j.jsg.2017.07.007
    [Google Scholar]
  73. Lagabrielle, Y., Labaume, P., & De Saint Blanquat, M. (2010). Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics, 29, TC4012.
    [Google Scholar]
  74. Lanaja, J. M. (1987). Contribución de la exploración petrolífera al conocimiento de la geología de España. Instituto Tecnológico GeoMinero de España.
    [Google Scholar]
  75. Lee, E. Y., Novotny, J., & Wagreich, M. (2016). BasinVis 1.0: A MatlabR –based program for sedimentary basin subsidence analysis and visualization. Computational Geosciences, 91, 119–127.
    [Google Scholar]
  76. Lloret, J., López‐Gómez, J., Heredia, N., Martín‐González, F., de la Horra, R., Borruel‐Abadía, V., Ronchi, A., Barrenechea, J. F., García‐Sansegundo, J., Galé, C., Ubide, T., Gretter, N., Diez, J. B., Juncal, M., & Lago, M. (2021). Transition between Variscan and Alpine cycles in the Pyrenean‐Cantabrian Mountains (N Spain): Geodynamic evolution of near‐equator European Permian basins. Global and Planetary Change, 207, 103677. https://doi.org/10.1016/j.gloplacha.2021.103677
    [Google Scholar]
  77. Lopez‐Martinez, N., Arribas, M. E., Robador, A., Vicens, E., & Ardèvol, L. (2006). Los carbonatos Danienses (unidad 3) de la Fm Tremp (Pirineos sur‐centrales): Paleogeografía y relación con el límite Cretácico‐Terciario. Revista de la Sociedad Geológica de España, 19(3–4), 233–255.
    [Google Scholar]
  78. López‐Mir, B., Muñoz, J. A., & García‐Senz, J. (2014). Restoration of basins driven by extension and salt tectonics: Example from the Cotiella Basin in the central Pyrenees. Journal of Structural Geology, 69, 147–162.
    [Google Scholar]
  79. López‐Mir, B., Muñoz, J. A., & García‐Senz, J. (2016). 3D geometric reconstruction of Upper Cretaceous passive diapirs and salt withdrawal basins in the Cotiella Basin (southern Pyrenees). Journal of the Geological Society, 173(4), 616–627. https://doi.org/10.1144/jgs2016‐002
    [Google Scholar]
  80. Margalef, A., Clariana, P., García‐Sansegundo, J., & Casas, J. M. (2017). Estructura de los materiales prevariscos de la Zona Axial pirenaica en la transversal de Andorra. XXIX Reunión de la Comisión de Tectónica de la Sociedad Geológica de España, 59 p.
  81. Martínez, R. (1979). Cefalópodos de la Formación <<Margas de Lluçà>> (Apt.‐Alb.) al norte de Pobla de Segur (Prov. de Lérida). Cuadernos de Geología Ibérica, 5, 339–351.
    [Google Scholar]
  82. Martínez, R. (1982). Distribución de los ammonites del Cretácico Sudpirenaico. Cuadernos de Geología Ibérica, 8, 1035–1047.
    [Google Scholar]
  83. Martinez‐Peña, M., & Casas‐Sainz, A. (2003). Cretaceous–tertiary tectonic inversion of the Cotiella Basin (southern Pyrenees, Spain). International Journal of Earth Sciences, 92(1), 99–113.
    [Google Scholar]
  84. McClay, K., Muñoz, J. A., & García‐Senz, J. (2004). Extensional salt tectonics in a contractional orogen: A newly identified tectonic event in the Spanish Pyrenees. Geology, 32, 737–740. https://doi.org/10.1130/G20565.1
    [Google Scholar]
  85. Meléndez, G., & Aurell, M. (2004). El Jurásico de la vertiente sur de los Pirineos. In J. A.Vera (Ed.), Geología de España (pp. 277–279). SGE‐IGME.
    [Google Scholar]
  86. Mencos, J., Carrera, N., & Muñoz, J. A. (2015). Influence of rift basin geometry on the subsequent postrift sedimentation and basin inversion: The Organyà Basin and the Bóixols thrust sheet (south central Pyrenees). Tectonics, 34, 1452–1474. https://doi.org/10.1002/2014tc003692
    [Google Scholar]
  87. Mey, P. H. W., Nagtegaal, P. J. C., Roberti, K. J. Y., & Hartevelt, J. J. A. (1968). Lithostratigraphic subdivision of post‐Hercinian deposits in the south‐central Pyrenees, Spain. Leidse Geologische Mededelingen, 41, 221–228.
    [Google Scholar]
  88. Mochales, T., Casas, A. M., Pueyo, E. L., & Barnolas, A. (2012). Rotational velocity for oblique structures (Boltaña anticline, southern Pyrenees). Journal of Structural Geology, 35, 2–16.
    [Google Scholar]
  89. Muñoz, J. A. (1992). Evolution of continental collision belt: ECORS Pyrenees crustal balanced cross‐section. In K. R.McClay (Ed.), Thrust tectonics (pp. 235–246). Chapman and Hall. https://doi.org/10.1007/978‐94‐011‐3066‐0
    [Google Scholar]
  90. Muñoz, J. A. (2019). Alpine orogeny: Deformation and structure in the northern Iberian margin (Pyrenees sl). In The geology of Iberia: A geodynamic approach (pp. 433–451). Springer.
    [Google Scholar]
  91. Muñoz, J. A., & García‐Senz, J. (2010). L'estructura geológica. Talls geològics a través de Catalunya. 1. La Noguera Ribagorçana. In Atlas Geològic de Catalunya (pp. 130–131), Institut Cartogràfic de Catalunya, ICC.
    [Google Scholar]
  92. Nagtegaal, P. J. C. (1972). Depositional history and clay minerals of the upper cretaceous basin in the south‐central Pyrenees, Spain. Leidse Geologische Mededelingen, 47, 251–275.
    [Google Scholar]
  93. Nagtegaal, P. J. C. (1969). Sedimentology, paleoclimatology and diagenesis of post‐Hercynian continental deposits in the south‐Central Pyrenees. Leidse Geologische Mededelingen, 42, 143–238.
    [Google Scholar]
  94. Neres, M., Font, E., Miranda, J. M., Camps, P., Terrinha, P., & Mirao, J. (2012). Reconciling Cretaceous paleomagnetic and marine magnetic data for Iberia: New Iberian paleomagnetic poles. Journal of Geophysical Research, 117, B06102. https://doi.org/10.1029/2011JB009067
    [Google Scholar]
  95. Neres, M., Miranda, J. M., & Font, E. (2013). Testing Iberian kinematics at Jurassic‐cretaceous times. Tectonics, 32, 1312–1319. https://doi.org/10.1002/tect.20074
    [Google Scholar]
  96. Oliva‐Urcia, B., Casas, A. M., Soto, R., Villalaín, J. J., & Kodama, K. (2010). A transtensional basin model for the Organyà basin (central southern Pyrenees) based on magnetic fabric and brittle structures. Geophysical Journal International, 184, 111–130. https://doi.org/10.1111/j.1365‐246X.2010.04865.x
    [Google Scholar]
  97. Pedrera, A., García‐Senz, J., Ayala, C., Ruiz‐Constán, A., Rodríguez‐Fernández, L. R., Robador, A., & Gonzalez‐Menendez, L. (2017). Reconstruction of the exhumed mantle across the north‐Iberian margin by crustal‐scale 3D gravity inversion and geological cross section. Tectonics, 36, 3155–3177. https://doi.org/10.1002/2017TC004716
    [Google Scholar]
  98. Pedrera, A., García‐Senz, J., Peropadre, C., Robador, A., López‐Mir, B., Díaz‐Alvarado, J., & Rodríguez‐Fernández, L. R. (2021). The Getxo crustal‐scale cross‐section: Testing tectonic models in the Bay of Biscay‐Pyrenean rift system. Earth‐Science Reviews, 212, 103429. https://doi.org/10.1016/j.earscirev.2020.103429
    [Google Scholar]
  99. Pedrera, A., García‐Senz, J., Pueyo, E. L., López‐Mir, B., Silva‐Casal, R., & Díaz‐Alvarado, J. (2023). Inhomogeneous rift inversion and the evolution of the Pyrenees. Earth‐Science Reviews, 245(2023), 104555. https://doi.org/10.1016/j.earscirev.2023.104555
    [Google Scholar]
  100. Peel, F. J. (2014). How do salt withdrawal minibasins form? Insights from forward modelling, and implications for hydrocarbon migration. Tectonophysics, 630, 222–235. https://doi.org/10.1016/j.tecto.2014.05.027
    [Google Scholar]
  101. Peybernès, B. (1976). Le Jurassique et le Crétacé inférieur des Pyrénées franco‐espagnoles entre la Garonne et la Méditerranée. Thèse Doct Sc. Nat. Toulouse, Imp. C.R.D.P. Toulouse, 459 p.
  102. Pi, E., Colomer Casas, M., Solà i Subiranas, J., Montaner i Roviras, J., Florensa Solsona, R. M., Saula i Briansó, E., Cuevas, J. L., Mercadé, L. L., Arbués, P., Simó, A., García Senz, J., Caus, E., Bernaus, J. M., & Berástegui, X. (2001). Mapa Geològic de Catalunya 1:25 000—Full 290‐2‐1 (66‐23) Isona [Dataset].
  103. Pi, E., Colomer Casas, M., Solà i Subiranas, J., Montaner i Roviras, J., Florensa Solsona, R. M., Saula i Briansó, E., Cuevas, J. L., Mercadé, L. L., Arbués, P., Simó, A., García Senz, J., Caus, E., Bernaus, J. M., & Berástegui, X. (2019). Map Geològic de Catalunya 1:25.000. Isona, 290‐2‐1 (66‐23). Generalitat de Catalunya, Institut Cartogràfic de Catalunya.
  104. Pi, E., Samsó, J. M., Martínez, A., Vilella, L., Arbués, P., Escuer, J., & Casanovas, J. (2001). Mapa Geológico y Memoria de la Hoja 291 (Oliana). Mapa Geológico de España E. 1:50.000. Segunda Serie (MAGNA). IGME.
  105. Pichel, L. M., Jackson, C.‐L., Peel, F., & Dooley, T. P. (2020). Base‐salt relief controls salt‐tectonic structural style, São Paulo Plateau, Santos Basin, Brazil. Basin Research, 22(3), 453–484. https://doi.org/10.1111/bre.12375
    [Google Scholar]
  106. Pons, J. M. (1977). Estudio estratigráfico y paleontológico de los yacimientos de rudistas del Cretácico Superior del Prepirineo de la provincia de Lérida (Vol. 3, p. 105). Publicaciones de Geología, Universidad Autónoma de Barcelona.
    [Google Scholar]
  107. Puigdefàbregas, C., Muñoz, J. A., & Vergés, J. (1992). Thrusting and foreland basin evolution in the southern Pyrenees. In K. R.McClay (Ed.), Thrust tectonics (pp. 247–254). Chapman and Hall. https://doi.org/10.1007/978‐94‐011‐3066‐0_23
    [Google Scholar]
  108. Pujalte, V., & Schmitz, B. (2005). Revisión de la estratigrafía del Grupo Tremp (“Garumniense”, Cuenca de Tremp‐Graus, Pirineos meridionales). Geogaceta, 38, 79–82.
    [Google Scholar]
  109. Ramón, X., Aurell, M., & Meléndez, G. (1992). Stratigraphy and associated unconformities in the Middle to Upper Jurassic of the south central Pyrenees, Spain. II Congreso Geológico de España Simposios, 2, 161–167.
    [Google Scholar]
  110. Ríos, J. M. (1951). Análisis estratigráfico y tectónico de una parte del valle del Segre, en la provincia de Lérida (la zona de Coll de Nargó). Bol Inst Geol Min. De España, T LXIII, 63, 561–656.
    [Google Scholar]
  111. Robador, A., Saura, E., Teixell, A., Barnolas, A., Mediato, J. F., Ramajo, J., & García Senz, J. M. (in press). Mapa Geológico de la Hoja 253 (Organyà). Mapa Geológico de España E. 1:50.000. Segunda Serie (MAGNA). IGME.
  112. Rodríguez Fernández, L. R., Pedrera, A., Pous, J., Ayala, C., González Menéndez, L., Ibarra, P., Martín‐González, F., González Cuadra, P., & Seillé, H. (2015). Crustal structure of the south‐western termination of the Alpine Pyrenean–Cantabrian Orogen (NW Iberian Peninsula). Tectonophysics, 663, 322–338. https://doi.org/10.1016/j.tecto.2015.06.010
    [Google Scholar]
  113. Röller, K., & Trepmann, C. A. (2003‐2008). Software for geoscientists: Stereo32 and StereoNett. http://www.ruhr‐uni‐bochum.de/hardrock/downloads.html
  114. Rosell, J. (1963). Sobre la existencia de la discordancia precenomaniense en el Prepirineo de la provincia de Lérida. Notas y Comun. Instituto Geológico y Minero de España, 72, 71–80.
    [Google Scholar]
  115. Rosell, J. (1967). Estudio geológico del sector del Prepirineo comprendido entre los ríos Segre y Noguera Ribagorzana (prov. de Lérida). Pirineos, 21, 9–214.
    [Google Scholar]
  116. Roure, F., Choukroune, P., Berástegui, X., Muñoz, J. A., Villien, P., Matheron, P., Bareyt, M., Séguret, M., Cámara, P., & Déramond, J. (1989). ECORS deep seismic data and balanced cross sections: Geometric constraints on the evolution of the Pyrenees. Tectonics, 8, 41–50.
    [Google Scholar]
  117. Rowan, M. G., & Weimer, P. (1998). Salt‐sediment interaction, northern Green Canyon and Ewing bank (offshore Louisiana), northern Gulf of Mexico. AAPG Bulletin, 82(5), 1055–1082.
    [Google Scholar]
  118. Salvany, J. M., & Bastida, J. (2004). Análisis litostratigráfico del keuper surpirenaico central. Revista de la Sociedad Geológica de España, 17, 3–26.
    [Google Scholar]
  119. Sanchez‐Hernandez, Y., & Maurrasse, F. J.‐M. R. (2015). The influence of regional factors in the expression of oceanic anoxic event 1a (OAE1a) in the semi‐restricted Organyà Basin, south central Pyrenees, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 582–598. https://doi.org/10.1016/j.palaeo.2015.06.031
    [Google Scholar]
  120. Sanchez‐Hernandez, Y., Maurrasse, F. J.‐M. R., Melinte‐Dobrinescu, M. C., He, D., & Butler, S. K. (2014). Assessing the factors controlling high sedimentation rates from the latest Barremian‐earliest Aptian in a restricted marginal basin. Cretaceous Research, 51, 1–21. https://doi.org/10.1016/j.cretres.2014.05.010
    [Google Scholar]
  121. Saura, E., Ardèvol i Oró, L., Teixell, A., & Vergés, J. (2016). Rising and falling diapirs, shifting depocenters, and flap overturning in the Cretaceous Sopeira and Sant Gervàs subbasins (Ribagorça Basin, southern Pyrenees). Tectonics, 35(3), 638–662. https://doi.org/10.1002/2015TC004001
    [Google Scholar]
  122. Schroeder, R. (1973). El corte de Aulet (prov. de Huesca) evolución de las orbitolinas en el límite del Cretaceo inferior superior. XIII Col. Europ. de micropaleontología, España, 141–149.
  123. Séguret, M. (1972). Étude tectonique des nappes et séries décollées de la partie centrale du versant sud des Pyrénées. Publications de l'Université des Sciences et Techniques du Languedoc (USTELA), Série Géologie Structurale, 2.
  124. Simó, A. (1986). Carbonate platform depositional sequences, Upper Cretaceous, south‐central Pyrenees (Spain). Tectonophysics, 129, 205–231.
    [Google Scholar]
  125. Simó, A. (1989). Upper Cretaceous platform‐to‐Basin depositional–sequence development, Tremp Basin, South‐Central Pyrenees, Spain. In P. D.Crevello, J. L.Wilson, J.Frederick Sarg, & J.Fred Read (Eds.), Controls on carbonate platforms and basin development (Vol. 44, pp. 365–378). Society of Economic Paleontologists and Minerologists, Special Publications. https://doi.org/10.2110/pec.89.44.0365
    [Google Scholar]
  126. Souquet, P. (1967). Le Crétacé supérieur sud‐pyrénéen en Catalogne, Aragón et Navarre [Doctoral dissertation]. Fac. Sci. Toulouse, 529.
    [Google Scholar]
  127. Sussman, A. J., Butler, R. F., Dinarés‐Turell, J., & Vergés, J. (2004). Vertical‐axis rotation of a foreland fold and implications for orogenic curvature: An example from the southern Pyrenees, Spain. Earth and Planetary Science Letters, 218(2004), 435–449. https://doi.org/10.1016/S0012‐821X(03)00644‐7
    [Google Scholar]
  128. Tavani, S., Granado, P., Arbués, P., Corradetti, A., & Muñoz, J. A. (2017). Syn‐thrusting, near‐surface flexural‐slipping and stress deflection along folded sedimentary layers of the Sant Corneli‐Bóixols anticline (Pyrenees, Spain). Solid Earth Discussion. https://doi.org/10.5194/se‐2017‐2
    [Google Scholar]
  129. Tavani, S., Mencos, J., Bausà, J., & Muñoz, J. A. (2011). The fracture pattern of the Sant Corneli Bóixols oblique inversion anticline (Spanish Pyrenees). Journal of Structural Geology, 33, 1662–1680. https://doi.org/10.1016/j.jsg.2011.08.007
    [Google Scholar]
  130. Teixell, A. (1996). The Ansó transect of the southern Pyrenees: Basement and cover thrust geometries. Journal of the Geological Society, London, 153, 301–310. https://doi.org/10.1144/gsjgs.153.2.0301
    [Google Scholar]
  131. Teixell, A., Labaume, P., Ayarza, P., Espurt, N., De Saint Blanquat, M., & Lagabrielle, Y. (2018). Crustal structure and evolution of the Pyrenean–Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics, 724–725, 146–170. https://doi.org/10.1016/j.tecto.2018.01.009
    [Google Scholar]
  132. Teixell, A., Labaume, P., & Lagabrielle, Y. (2016). The crustal evolution of the west‐central Pyrenees revisited: Inferences from a new kinematic scenario. C. R. Geoscience. https://doi.org/10.1016/j.crte.2015.10.010
    [Google Scholar]
  133. Trusheim, F. (1960). Mechanism of salt migration in northern Germany. American Association of Petroleum Geologists Bulletin, 44, 1519–1540.
    [Google Scholar]
  134. Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., & Thinon, I. (2014). Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay‐Pyrenees. Tectonics, 33, 1239–1276. https://doi.org/10.1002/2014TC003529
    [Google Scholar]
  135. Ullastre, J., & Masriera, A. (2006). El anticlinal de Bóixols‐Muntanya de Nargó: Consideraciones estratigráficas y estructurales basadas en una nueva cartografía geológica (Pirineo catalán, España). Treballs del Museu de Geologia de Barcelona, 14, 5–35.
    [Google Scholar]
  136. Ullastre, J., Schroeder, R., & Masriera, A. (2002). Sobre la estratigrafía del singular corte de la Roca de Narieda (parte S de la serie del Cretácico inferior de Organyà). Pirineo catalán, España. Treballs del Museu de Geologia de Barcelona, 11, 67–95.
    [Google Scholar]
  137. Valero‐Garcés, B., & Gisbert‐Aguilar, J. (2004). La extensión post‐varisca en la Cordillera Pirenaica. In J. A.Vera (Ed.), Geología de España (pp. 231–343). SGE‐IGME.
    [Google Scholar]
  138. van der Voo, R. (1969). Paleomagnetic evidence for the rotation of the Iberian Peninsula. Tectonophysics, 7, 5–56.
    [Google Scholar]
  139. Vendeville, B. C., & Jackson, M. P. A. (1992). The rise of diapirs during thin‐skinned extension. Marine and Petroleum Geology, 9, 331–354. https://doi.org/10.1016/0264‐8172(92)90047‐I
    [Google Scholar]
  140. Vergés, J. (1993). Estudi geològic del vessant sud del Pirineu oriental i central. Evolució cinemàtica en 3D. PhD Thesis, p. 192, University de Barcelona.
  141. Vergés, J., & García‐Senz, J. (2001). Mesozoic evolution and Cenozoic inversion of the Pyrenean Rift. In P. A.Ziegler, W.Cavazza, & A. H. F.Robertson (Eds.), Peri‐Tethys memoir 6: Peri‐Tethyan rift/wrench basins and passive margins (Vol. 186, pp. 187–212). Mémoires du Museum national d'histoire naturelle.
    [Google Scholar]
  142. Vergés, J., Millán, H., Roca, E., Muñoz, J. A., Marzo, M., Cirés, J., Den Bezemer, T., Zoetemeijer, R., & Cloetingh, S. (1995). Eastern Pyrenees and related foreland basins: Pre‐, syn‐ and post‐collisional crustal‐scale cross‐sections. Marine and Petroleum Geology, 12(8), 893–915.
    [Google Scholar]
  143. Vergés, J., & Muñoz, J. A. (1990). Thrust sequences in the southern central Pyrenees. Bulletin de la Société Géologique de France, 8, 265–271.
    [Google Scholar]
  144. Zwart, H. J. (1954). La géologie du massif du St‐Barthélemy, Pyrénées, France. Leidse Geol. Meded. dl, XVIII, 1–228.
    [Google Scholar]
/content/journals/10.1111/bre.12846
Loading
/content/journals/10.1111/bre.12846
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error