1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

The Neogene Evolution of the Pelotas Basin (South Atlantic) was marked by the interplay of anomalous sediment input, sea‐level changes, slope instability and the intensification of bottom currents which led to the establishment of submarine megaslides (e.g., Rio Grande Cone) and widespread contourite drifts.

, Abstract

Continental margins that exhibit high terrigenous input are generally located near deltas that are capable of transporting large quantities of sediments into the basin. However, in rare cases, high terrigenous sedimentation occurs in regions deprived of major riverine systems where the sedimentary pathway is enigmatic. One such case is the Neogene of the Pelotas Basin of Brazil and Uruguay, adjacent to the La Plata River mouth. Since the Miocene, anomalous sedimentation formed a giant progradational wedge, the Rio Grande Cone, one of the largest submarine fan‐like features on Earth. To understand the Neogene evolution of the margin and the origins of the Rio Grande Cone, here we present a seismic‐stratigraphic framework based on well‐logs and 2D seismic data. Three depositional environments are identified: (1) on the shelf, upper Miocene to Pliocene fluvial channels delivered sand deposits on the mud‐dominated shelf; (2) on the slope, sediment instability resulted in structural deformation and multiple phases of mass transport deposition and (3) on the lower slope and basin floor, large contourite drifts formed by sediment reworking. We classify the Rio Grande Cone as a megaslide complex, due to its depositional and structural setting. Local deltaic systems were active on the shelf in the Neogene, but the limited size of their paleo‐drainage systems in comparison to the volume of sedimentation in the margin suggests that an additional sedimentary pathway existed. In this sense, the demise of an epicontinental sea over the La Plata Basin during the Neogene likely enabled the input of large volumes of fine sediments into the margin, via the La Plata plume water. We suggest that the desiccation of this epicontinental sea and the intensification of ocean currents since the middle Miocene explains the anomalous Neogene terrigenous influx into the SW Atlantic margin.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12848
2024-02-01
2025-03-17
Loading full text...

Full text loading...

References

  1. Abreu, V. D. S. (1998). Geologic evolution of conjugate volcanic passive margins: Pelotas Basin (Brazil) and offshore Namibia (Africa). Implication for global sea level changes (Doctoral dissertation). Rice University.
  2. Alberoni, A. A. L., Jeck, I. K., Silva, C. G., & Torres, L. C. (2020). The new Digital Terrain Model (DTM) of the Brazilian Continental Margin: Detailed morphology and revised undersea feature names. Geo‐Marine Letters, 40, 949–964.
    [Google Scholar]
  3. Allin, J. R., Hunt, J. E., Clare, M. A., & Talling, P. J. (2018). Eustatic sea‐level controls on the flushing of a shelf‐incising submarine canyon. GSA Bulletin, 130, 222–237.
    [Google Scholar]
  4. Alves, D. B. (2000). Rochas Pelíticas Miocênicas do poço 2‐BPS‐6A: Mineralogia e Geoquímica Inorgânica. Technical Comunnication DIGER 71/2000, Petrobras.
  5. Anjos, G. S., & Carreño, A. L. (2004). Bioestratigrafia (Foraminiferida) da sondagem 1‐SCS‐3B, Plataforma de Florianópolis, Bacia de Pelotas. Revista Brasileira de Paleontologia, 7(2), 127–138.
    [Google Scholar]
  6. Aumond, G. N., Kochhann, K. G. D., Netto, R. G., de Souza, L. V., Sedorko, D., Horodyski, R. S., Almeida Júnior, F. N., & Verde, M. (2021). Paleoenvironmental conditions of the late Miocene “Entrerriense” epicontinental sea: A case study of the Camacho formation, SW Uruguay. Journal of South American Earth Sciences, 110, 103421.
    [Google Scholar]
  7. Ayup‐Zouain, R. N., Ferreira, H. P. L., Barboza, E. G., & Tomazelli, L. J. (2003). Evidência morfológica de um paleocanal holocênico da Laguna Mirim nas adjacências do Banhado Taim. In Congresso da Associação Brasileira de Estudos do Quaternário (Vol. 9, p. 86). Livro de Resumos.
    [Google Scholar]
  8. Barboza, E. G., Dillenburg, S. R., Lopes, R. P., Rosa, M. L. C. C., Caron, F., Abreu, V., Manzolli, R. P., Nunes, J. C. R., Weschenfelder, J., & Tomazelli, L. J. (2021). Geomorphological and stratigraphic evolution of a fluvial incision in the coastal plain and inner continental shelf in southern Brazil. Marine Geology, 437, 106514.
    [Google Scholar]
  9. Barboza, E. G., Rosa, M. L. C. C., & Ayup‐Zouain, R. N. (2008). Cronoestratigrafia da Bacia de Pelotas: uma revisão das seqüências deposicionais. Gravel, 6(1), 125–138.
    [Google Scholar]
  10. Beu, A. G., Griffin, M., & Maxwell, P. A. (1997). Opening of Drake Passage gateway and Late Miocene to Pleistocene cooling reflected in Southern Ocean molluscan dispersal: Evidence from New Zealand and Argentina. Tectonophysics, 281, 83–97.
    [Google Scholar]
  11. Blisniuk, P. M., Stern, L. A., Chamberlain, C. P., Idleman, B., & Zeitler, P. K. (2005). Climatic and ecologic changes during Miocene surface uplift in the Southern Patagonian Andes. Earth and Planetary Science Letters, 230, 125–142.
    [Google Scholar]
  12. Bueno, G. V., Zacharias, A. A., Oreiro, S. G., Cupertino, J. A., Falkenhein, F. U. H., & Neto, M. M. (2007). Bacia de Pelotas. Boletim de Geociências da Petrobras, 15(2), 551–559.
    [Google Scholar]
  13. Burone, L., Franco‐Fraguas, P., Carranza, A., Calliari, D., Mahiques, M. M., Gómez, M., Marin, Y., Gutiérrez, O., & Ortega, L. (2021). Physical drivers and dominant oceanographic processes on the Uruguayan Margin (Southwestern Atlantic): A review and a conceptual model. Journal of Marine Science and Engineering, 9, 304.
    [Google Scholar]
  14. Campos, P. C., Weigert, S. C., & Madureira, L. S. P. (2011). Ecobatimetria e características acústicas do leito oceânico na região do Canal do Albardão—Rio Grande do Sul—Brasil. Atlântica (Rio Grande), 31(1), 5–24. https://doi.org/10.5088/atlântica.v31i1.1518
    [Google Scholar]
  15. Carassai, J. J., Lavina, E. L. C., Junior, F. C., & Girelli, T. J. (2019). Provenance of heavy minerals for the quaternary coastal plain of Southernmost Brazil (Rio Grande do Sul state). Journal of Coastal Research, 35, 295.
    [Google Scholar]
  16. Cardoso, M., Jr., Silveira, A. S. D., Vargas, M. R. D., De Oliveira, J. M. M. T., Barbosa, D. V. E., De Oliveira, L. F. B., Fredere, A. C., & Lôndero, V. (2021). Geomorphic expression of shear zones in Southern Brazilian and Uruguayan Shields. Geomorphology, 382, 107678.
    [Google Scholar]
  17. Cassel, M. C., Chemale, F., Vargas, M. R., de Souza, M. K., Girelli, T. J., & de Oliveira, G. S. (2022). From the Andes and the Drake Passage to the Rio Grande submarine fan: Paleoclimatic and paleogeographic evidence in the Cenozoic era from the South Atlantic—Austral segment, Pelotas Basin. Global and Planetary Change, 213, 103838.
    [Google Scholar]
  18. Castillo, L. L. A., Kazmierczak, T. d. S., & Chemale, F., Jr. (2009). Rio grande cone tectono‐stratigraphic model‐Brazil: Seismic sequences. Earth Sciences Research Journal, 13(1), 40–53.
    [Google Scholar]
  19. Castillo López, L. A., & Chemale, F., Jr. (2014). Seismostratigraphy and geomorphology of the Rio Grande cone, Pelotas basin (Brazilian offshore). Geología Colombiana, 39, 55–72. https://revistas.unal.edu.co/index.php/geocol/article/view/37224
    [Google Scholar]
  20. Chemale Junior, F., Lavina, E. L. C., Carassai, J. J., Girelli, T. J., & Lana, C. (2021). Andean orogenic signature in the Quaternary sandy barriers of Southernmost Brazilian Passive Margin—Paradigm as a source area. Geoscience Frontiers, 12, 101119.
    [Google Scholar]
  21. Clift, P. D., & Jonell, T. N. (2021). Monsoon controls on sediment generation and transport: Mass budget and provenance constraints from the Indus River catchment, delta and submarine fan over tectonic and multimillennial timescales. Earth‐Science Reviews, 220, 103682.
    [Google Scholar]
  22. Coimbra, J. C., Carreño, A. L., & dos Anjos‐Zerfass, G. D. (2009). Biostratigraphy and paleoceanographical significance of the Neogene planktonic foraminifera from the Pelotas Basin, southernmost Brazil. Revue de Micropaleontologie, 52, 1–14.
    [Google Scholar]
  23. Contreras, J., Zühlke, R., Bowman, S., & Bechstädt, T. (2010). Seismic stratigraphy and subsidence analysis of the southern Brazilian margin (Campos, Santos and Pelotas basins). Marine and Petroleum Geology, 27, 1952–1980.
    [Google Scholar]
  24. Corrêa, I. C. S., Medeanic, S., Weschenfelder, J., Júnior, E. E. T., Nunes, J. C., & Baitelli, R. (2014). The palaeo‐drainage of the la plata river in southern Brazil continental shelf. Revista Brasileira de Geofisica, 32, 259.
    [Google Scholar]
  25. Covault, J. A., & Graham, S. A. (2010). Submarine fans at all sea‐level stands: Tectono‐morphologic and climatic controls on terrigenous sediment delivery to the deep sea. Geology, 38, 939–942.
    [Google Scholar]
  26. Covault, J. A., Kostic, S., Paull, C. K., Ryan, H. F., & Fildani, A. (2014). Submarine channel initiation, filling and maintenance from sea‐floor geomorphology and morphodynamic modelling of cyclic steps. Sedimentology, 61, 1031–1054.
    [Google Scholar]
  27. Cuitiño, J. I., Pimentel, M. M., Ventura Santos, R., & Scasso, R. A. (2012). High resolution isotopic ages for the early Miocene “Patagoniense” transgression in Southwest Patagonia: Stratigraphic implications. Journal of South American Earth Sciences, 38, 110–122.
    [Google Scholar]
  28. Dalrymple, R. W., Leckie, D. A., & Tillman, R. W. (Eds.). (2006). Incised valleys in time and space. SEPM (Society for Sedimentary Geology).
    [Google Scholar]
  29. Damuth, J. E., & Kumar, N. (1975). Amazon cone: Morphology, sediments, age, and growth pattern. Geological Society of America Bulletin, 86, 863.
    [Google Scholar]
  30. De Oliveira, G. S., Paim, P. S. G., Vargas, M. R., Teixeira, C. D., Serrat, H., De Souza, M. K., Cassel, M. C., De Ramos, S. M., Lisboa, L. D. P., & Chemale, F., Jr. (2023). Tectono‐sedimentary evolution of the mixed Rio Grande Submarine Fan. SSRN.
  31. Del Río, C. J., Martínez, S. A., McArthur, J. M., Thirlwall, M. F., & Pérez, L. M. (2018). Dating late Miocene marine incursions across Argentina and Uruguay with Sr‐isotope stratigraphy. Journal of South American Earth Sciences, 85, 312–324.
    [Google Scholar]
  32. dos Reis, A. T., Silva, C. G., Gorini, M. A., Leão, R., Pinto, N., Perovano, R., Santos, M. V. M., Guerra, J. V., Jeck, I. K., & Tavares, A. A. A. (2016). The Chuí Megaslide complex: Regional‐scale submarine landslides on the southern Brazilian margin. In G.Lamarche, J.Mountjoy, S.Bull, T.Hubble, S.Krastel, E.Lane, A.Micallef, L.Moscardelli, C.Mueller, I.Pecher, & S.Woelz (Eds.), Submarine mass movements and their consequences: 7th International Symposium (pp. 115–123). Springer International Publishing.
    [Google Scholar]
  33. Farías, M., Charrier, R., Carretier, S., Martinod, J., Fock, A., Campbell, D., Cáceres, J., & Comte, D. (2008). Late Miocene high and rapid surface uplift and its erosional response in the Andes of central Chile (33°‐35° S). Tectonics. https://doi.org/10.1029/2006tc002046
    [Google Scholar]
  34. Faugères, J. C., Stow, D. A. V., Imbert, P., & Viana, A. (1999). Seismic features diagnostic of contourite drifts. Marine Geology, 162, 1–38.
    [Google Scholar]
  35. Fontana, R. L. (1996). Geotectônica e sismoestratigrafia da Bacia de Pelotas e Plataforma de Florianópolis (Tese de Doutorado em Geociências), Universidade Federal do Rio Grande do Sul.
  36. Fulthorpe, C. S., Austin, J. A., & Mountain, G. S. (1999). Buried fluvial channels off New Jersey: Did sea‐level lowstands expose the entire shelf during the Miocene?Geology, 27, 203.
    [Google Scholar]
  37. Gordon, A. L. (1989). Brazil‐Malvinas confluence–1984. Deep Sea Research Part A. Oceanographic Research Papers, 36, 359–384.
    [Google Scholar]
  38. Gruetzner, J., Uenzelmann‐Neben, G., & Franke, D. (2016). Evolution of the northern Argentine margin during the Cenozoic controlled by bottom current dynamics and gravitational processes: Northern Argentine margin evolution. Geochemistry, Geophysics, Geosystems, 17, 3131–3149.
    [Google Scholar]
  39. Helland‐Hansen, W., & Hampson, G. J. (2009). Trajectory analysis: Concepts and applications. Basin Research, 21, 454–483.
    [Google Scholar]
  40. Hernández‐Molina, F. J., Paterlini, M., Violante, R., Marshall, P., De Isasi, M., Somoza, L., & Rebesco, M. (2009). Contourite depositional system on the Argentine Slope: An exceptional record of the influence of Antarctic water masses. Geology, 37, 507–510.
    [Google Scholar]
  41. Hernández‐Molina, F. J., Soto, M., Piola, A. R., Tomasini, J., Preu, B., Thompson, P., Badalini, G., Creaser, A., Violante, R. A., Morales, E., Paterlini, M., & De Santa Ana, H. (2016). A contourite depositional system along the Uruguayan continental margin: Sedimentary, oceanographic and paleoceanographic implications. Marine Geology, 378, 333–349.
    [Google Scholar]
  42. Hulka, C., Gräfe, K. U., Sames, B., Uba, C. E., & Heubeck, C. (2006). Depositional setting of the Middle to Late Miocene Yecua Formation of the Chaco Foreland Basin, southern Bolivia. Journal of South American Earth Sciences, 21, 135–150.
    [Google Scholar]
  43. Jeck, I. K., Alberoni, A. A. L., Torres, L. C., & Zalán, P. V. (2019). The Santa Catarina Plateau and the nature of its basement. Geo‐Marine Letters, 40, 853–864.
    [Google Scholar]
  44. Keller, G., & Barron, J. A. (1983). Paleoceanographic implications of Miocene deep‐sea hiatuses. Geological Society of America Bulletin, 94, 590.
    [Google Scholar]
  45. Ketzer, M., Praeg, D., Augustin, A. H., Rodrigues, L. F., Steiger, A. K., Rahmati‐Abkenar, M., Viana, A. R., Miller, D. J., Malinverno, A., Dickens, G. R., & Cupertino, J. A. (2023). Gravity complexes as a focus of seafloor fluid seepage: The Rio Grande Cone, SE Brazil. Scientific Reports, 13, 4590.
    [Google Scholar]
  46. Ketzer, M., Praeg, D., Rodrigues, L. F., Augustin, A., Pivel, M. A. G., Rahmati‐Abkenar, M., Miller, D. J., Viana, A. R., & Cupertino, J. A. (2020). Gas hydrate dissociation linked to contemporary ocean warming in the southern hemisphere. Nature Communications, 11, 3788.
    [Google Scholar]
  47. Kim, B., & Zhang, Y. G. (2022). Methane hydrate dissociation across the Oligocene–Miocene boundary. Nature Geoscience, 15, 203–209.
    [Google Scholar]
  48. Kirby, A., Hernández‐Molina, F. J., Rodriguez, P., & Conti, B. (2021). Sedimentary stacking pattern of plastered drifts: An example from the Cenozoic on the Uruguayan continental slope. Marine Geology, 440, 106567. https://doi.org/10.1016/j.margeo.2021.106567
    [Google Scholar]
  49. Kolla, V., & Coumes, F. (1987). Morphology, internal structure, seismic stratigraphy, and sedimentation of Indus Fan. AAPG Bulletin, 71, 650–677. https://doi.org/10.1306/94887889‐1704‐11D7‐8645000102C1865D
    [Google Scholar]
  50. Krastel, S., Li, W., Urlaub, M., Georgiopoulou, A., Wynn, R. B., Schwenk, T., Stevenson, C., & Feldens, P. (2019). Mass wasting along the NW African continental margin (Vol. 477, pp. 151–167). Geological Society, Special Publications.
    [Google Scholar]
  51. Lantzsch, H., Hanebuth, T. J. J., Chiessi, C. M., Schwenk, T., & Violante, R. A. (2014). The high‐supply, current‐dominated continental margin of Southeastern South America during the late Quaternary. Quaternary Research, 81, 339–354.
    [Google Scholar]
  52. Leandro, L. M., Linhares, A. P., De Lira Mota, M. A., Fauth, G., Santos, A., Villegas‐Martín, J., Vieira, C. E. L., Bruno, M. D. R., Lee, B., Baecker‐Fauth, S., Lopes, F. M., & Ramos, M. I. F. (2022). Multi‐proxy evidence of Caribbean‐sourced marine incursions in the Neogene of Western Amazonia, Brazil. Geology, 50(4), 465–469. https://doi.org/10.1130/G49544.1
    [Google Scholar]
  53. Liu, J. P., Xue, Z., Ross, K., Wang, H. J., Yang, Z. S., Li, A. C., & Gao, S. (2009). Fate of sediments delivered to the sea by Asian large rivers: Long‐distance transport and formation of remote alongshore clinothems. The Sedimentary Record, 7, 4–9.
    [Google Scholar]
  54. Mahiques, M. M. D., Sousa, S. H. D. M. E., Furtado, V. V., Tessler, M. G., Toledo, F. A. D. L., Burone, L., Figueira, R. C. L., Klein, D. A., Martins, C. C., & Alves, D. P. V. (2010). The southern Brazilian shelf: General characteristics, quaternary evolution and sediment distribution. Brazilian Journal of Oceanography, 58, 25–34.
    [Google Scholar]
  55. Maldonado, A., Barnolas, A., Bohoyo, F., Escutia, C., Galindo‐Zaldívar, J., Hernández‐Molina, J., Jabaloy, A., Lobo, F. J., Nelson, C. H., Rodríguez‐Fernández, J., Somoza, L., & Vázquez, J. T. (2005). Miocene to Recent contourite drifts development in the northern Weddell Sea (Antarctica). Global and Planetary Change, 45, 99–129.
    [Google Scholar]
  56. Mantovanelli, S. S., Tassinari, C. C. G., Mahiques, M. M. D., Jovane, L., & Bongiolo, E. (2018). Characterization of Nd radiogenic isotope signatures in sediments from the Southwestern Atlantic Margin. Frontiers in Earth Science, 6, 74.
    [Google Scholar]
  57. Marengo, H. (2015). Neogene micropaleontology and stratigraphy of Argentina: The Chaco‐Paranense Basin and the Península de Valdés. Springer International Publishing.
    [Google Scholar]
  58. Martins, I. D. R. (1984). Modelo Sedimentar do Cone de Rio Grande. Pesquisas em Geociências, 16, 91.
    [Google Scholar]
  59. McHugh, C. M. G., Damuth, J. E., & Mountain, G. S. (2002). Cenozoic mass‐transport facies and their correlation with relative sea‐level change, New Jersey continental margin. Marine Geology, 184, 295–334.
    [Google Scholar]
  60. Mienert, J., Vanneste, M., Bünz, S., Andreassen, K., Haflidason, H., & Sejrup, H. P. (2005). Ocean warming and gas hydrate stability on the mid‐Norwegian margin at the Storegga slide. Marine and Petroleum Geology, 22, 233–244.
    [Google Scholar]
  61. Miller, D. J., Ketzer, J. M., Viana, A. R., Kowsmann, R. O., Freire, A. F. M., Oreiro, S. G., Augustin, A. H., Lourega, R. V., Rodrigues, L. F., Heemann, R., Preissler, A. G., Machado, C. X., & Sbrissa, G. F. (2015). Natural gas hydrates in the Rio Grande Cone (Brazil): A new province in the western South Atlantic. Marine and Petroleum Geology, 67, 187–196.
    [Google Scholar]
  62. Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., & Wright, J. D. (2020). Cenozoic sea‐level and cryospheric evolution from deep‐sea geochemical and continental margin records. Science Advances, 6, eaaz1346.
    [Google Scholar]
  63. Miller, K. G., Mountain, G. S., Browning, J. V., Kominz, M., Sugarman, P. J., Christie‐Blick, N., Katz, M. E., & Wright, J. D. (1998). Cenozoic global sea level, sequences, and the New Jersey transect: Results from coastal plain and continental slope drilling. Reviews of Geophysics, 36, 569–601.
    [Google Scholar]
  64. Moscardelli, L., Wood, L., & Mann, P. (2006). Mass‐transport complexes and associated processes in the offshore area of Trinidad and Venezuela. Bulletin, 90, 1059–1088.
    [Google Scholar]
  65. Muto, T., & Steel, R. J. (2002). In defense of shelf‐edge delta development during falling and lowstand of relative sea level. The Journal of Geology, 110, 421–436.
    [Google Scholar]
  66. Nyberg, B., Helland‐Hansen, W., Gawthorpe, R. L., Sandbakken, P., Eide, C. H., Sømme, T., Hadler‐Jacobsen, F., & Leiknes, S. (2018). Revisiting morphological relationships of modern source‐to‐sink segments as a first‐order approach to scale ancient sedimentary systems. Sedimentary Geology, 373, 111–133.
    [Google Scholar]
  67. Omosanya, K. O., Harishidayat, D., Marheni, L., Johansen, S. E., Felix, M., & Abrahamson, P. (2016). Recurrent mass‐wasting in the Sørvestsnaget Basin southwestern Barents Sea: A test of multiple hypotheses. Marine Geology, 376, 175–193.
    [Google Scholar]
  68. Parras, A., & Cuitiño, J. I. (2021). Revised chrono and lithostratigraphy for the Oligocene‐Miocene Patagoniense marine deposits in Patagonia: Implications for stratigraphic cycles, paleogeography, and major drivers. Journal of South American Earth Sciences, 110, 103327.
    [Google Scholar]
  69. Patruno, S., & Helland‐Hansen, W. (2018). Clinoforms and clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth‐Science Reviews, 185, 202–233.
    [Google Scholar]
  70. Perea, D., Verde, M., Toriño, P., Montenegro, F., Ubilla, M., & Manzuetti, A. (2020). A complex association of invertebrates, vertebrates and trace fossils in the marine Camacho formation (late Miocene of Uruguay): Biostratigraphy and Paleoenvironments. Ameghiniana, 57, 266.
    [Google Scholar]
  71. Perez, L., García‐Rodríguez, F., & Hanebuth, T. J. J. (2016). Variability in terrigenous sediment supply offshore of the Río de la Plata (Uruguay) recording the continental climatic history over the past 1200 years. Climate of the Past, 12, 623–634.
    [Google Scholar]
  72. Piola, A. R., Campos, E. J. D., Möller, O. O., Charo, M., & Martinez, C. (2000). Subtropical Shelf Front off eastern South America. Journal of Geophysical Research, 105, 6565–6578.
    [Google Scholar]
  73. Piola, A. R., Romero, S. I., & Zajaczkovski, U. (2008). Space–time variability of the Plata plume inferred from ocean color. Continental Shelf Research, 28, 1556–1567.
    [Google Scholar]
  74. Posamentier, H. W. (2001). Lowstand alluvial bypass systems: Incised vs. unincised. AAPG Bulletin, 85(10), 1771–1793. https://doi.org/10.1306/8626D06D‐173B‐11D7‐8645000102C1865D
    [Google Scholar]
  75. Posamentier, H. W., Jervey, M. T., & Vail, P. R. (1988). Eustatic Controls on Clastic Deposition I—Conceptual Framework. In C. K.Wilgus, B. S.Hastings, H.Posamentier, J. V.Wagoner, C. A.Ross, & C. G. St. C.Kendall (Eds.), Sea‐level changes: An integrated approach (pp. 109–124). SEPM Society for Sedimentary Geology.
    [Google Scholar]
  76. Posamentier, H. W., & Martinsen, O. J. (2011). The character and genesis of submarine mass‐transport deposits: Insights from outcrop and 3D seismic data. https://doi.org/10.2110/sepmsp.096.007
  77. Raymo, M. E., & Ruddiman, W. F. (1992). Tectonic forcing of late Cenozoic climate. Nature, 359, 117–122.
    [Google Scholar]
  78. Rebesco, M., Hernández‐Molina, F. J., Van Rooij, D., & Wåhlin, A. (2014). Contourites and associated sediments controlled by deep‐water circulation processes: State‐of‐the‐art and future considerations. Marine Geology, 352, 111–154.
    [Google Scholar]
  79. Rizzi, M. A. M., Dillenburg, S. R., Takehara, L., Girelli, T. J., Wust, C. F., Lana, C. D. C., & Chemale Junior, F. (2022). Andean fingerprint on placer sands from the southern Brazilian coast. Sedimentary Geology, 428, 106061.
    [Google Scholar]
  80. Rohais, S., Lovecchio, J. P., Abreu, V., Miguez, M., & Paulin, S. (2021). High‐resolution sedimentary budget quantification—Example from the Cenozoic deposits in the Pelotas Basin, South Atlantic. Basin Research, 33, 2252–2280.
    [Google Scholar]
  81. Rosa, M. L. C. C., Barboza, E. G., Abreu, V. S., Tomazelli, L. J., & Dillenburg, S. R. (2017). High‐frequency sequences in the quaternary of Pelotas Basin (coastal plain): A record of degradational stacking as a function of longer‐term base‐level fall. Brazilian Journal of Geology, 47, 183–207.
    [Google Scholar]
  82. Ruskin, B. G., Dávila, F. M., Hoke, G. D., Jordan, T. E., Astini, R. A., & Alonso, R. (2011). Stable isotope composition of middle Miocene carbonates of the Frontal Cordillera and Sierras Pampeanas: Did the Paranaense seaway flood western and central Argentina?Palaeogeography, Palaeoclimatology, Palaeoecology, 308, 293–303.
    [Google Scholar]
  83. Schattner, U., José Lobo, F., López‐Quirós, A., Passos Nascimento, J. L., & Mahiques, M. M. (2020). What feeds shelf‐edge clinoforms over margins deprived of adjacent land sources? An example from southeastern Brazil. Basin Research, 32, 293–301.
    [Google Scholar]
  84. Schattner, U., & Lazar, M. (2016). Hierarchy of source‐to‐sink systems—Example from the Nile distribution across the eastern Mediterranean. Sedimentary Geology, 343, 119–131.
    [Google Scholar]
  85. Schattner, U., Rocha, C. B., Ramos, R. B., Shtober‐Zisu, N., Lobo, F. J., & De Mahiques, M. M. (2024). Lateral shift from turbidite‐ to contourite‐dominated continental slope, a case study from southeast Brazil slope. Geomorphology, 447, 109009.
    [Google Scholar]
  86. Schlitzer, R. (2000). Electronic atlas of WOCE hydrographic and tracer data now available. Eos, Transactions American Geophysical Union, 81, 45.
    [Google Scholar]
  87. Serratt, H., Domingues Teixeira, C., Girelli, T. J., De Souza, M. K., Rodrigues Vargas, M., Moreira Silva, A., & Chemale, F. (2022). Seaward‐dipping reflector influence on seafloor magnetostratigraphy—A Pelotas Basin view. Geophysical Research Letters, 49, e2022GL100382. https://doi.org/10.1029/2022GL100382
    [Google Scholar]
  88. Shanmugam, G., & Moiola, R. J. (1988). Submarine fans: Characteristics, models, classification, and reservoir potential. Earth‐Science Reviews, 24, 383–428.
    [Google Scholar]
  89. Silva, C. C., dos Reis, A. T., Perovano, R. J., Gorini, M. A., dos Santos, M. V. M., Jeck, I. K., Tavares, A. A. A., & Gorini, C. (2016). Multiple megaslide complexes and their significance for the Miocene stratigraphic evolution of the offshore Amazon Basin. In G.Lamarche, J.Mountjoy, S.Bull, T.Hubble, S.Krastel, E.Lane, A.Micallef, L.Moscardelli, C.Mueller, I.Pecher, & S.Woelz (Eds.), Submarine mass movements and their consequences (Vol. 41, pp. 49–60). Springer International Publishing.
    [Google Scholar]
  90. Silva, J. L. B. D. (2009). Identificação do sistema de paleodrenagem na margem continental sul brasileira adjacente à Lagoa Mirim no terciário superior por sísmica de reflexão.
  91. Splendor, F.Geoquímica das granadas e assembléias de minerais pesados no estudo de proveniência dos sedimentos quaternários da porção sul da Bacia de Pelotas, RS (Master dissertation), Universidade Federal do Rio Grande do Sul.
  92. Tagliaro, G., Fulthorpe, C., Watkins, D., Brumsack, H., & Jovane, L. (2021). Southern Ocean carbonate dissolution paced by Antarctic Ice‐Sheet expansion in the early Miocene. Global and Planetary Change, 202, 103510.
    [Google Scholar]
  93. Tagliaro, G., Fulthorpe, C. S., Gallagher, S. J., McHugh, C. M., Kominz, M., & Lavier, L. L. (2018). Neogene siliciclastic deposition and climate variability on a carbonate margin: Australian Northwest Shelf. Marine Geology, 403, 285–300.
    [Google Scholar]
  94. Tagliaro, G., Fulthorpe, C. S., Watkins, D. K., De Vleeschouwer, D., Brumsack, H., Bogus, K., & Lavier, L. L. (2022). Late Miocene‐Pliocene vigorous deep‐sea circulation in the Southeast Indian Ocean: Paleoceanographic and tectonic implications. Paleoceanography and Paleoclimatology, 37, e2021PA004303. https://doi.org/10.1029/2021PA004303
    [Google Scholar]
  95. Tagliaro, G., Wainman, C. C., & Fulthorpe, C. S. (2021). Inherited morphobathymetric controls over contourite drift deposition: A case study from the late Cenozoic Mentelle Basin, Australia. Interpretation, 9, T637–T652.
    [Google Scholar]
  96. Weschenfelder, J., Baitelli, R., Corrêa, I. C. S., Bortolin, E. C., & Dos Santos, C. B. (2014). Quaternary incised valleys in southern Brazil coastal zone. Journal of South American Earth Sciences, 55, 83–93.
    [Google Scholar]
  97. Weschenfelder, J., Corrêa, I. C. S., Aliotta, S., & Baitelli, R. (2010). Paleochannels related to late quaternary sea‐level changes in southern Brazil. Brazilian Journal of Oceanography, 58, 35–44.
    [Google Scholar]
  98. Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., … Zachos, J. C. (2020). An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science, 369, 1383–1387.
    [Google Scholar]
  99. Zerfass, G. D. S. D. A., Chemale, F., Jr., Moura, C. A. V., Costa, K. B., & Kawashita, K. (2014). Strontium isotope stratigraphy of the Pelotas Basin. Brazilian Journal of Geology, 44, 23–38.
    [Google Scholar]
/content/journals/10.1111/bre.12848
Loading
/content/journals/10.1111/bre.12848
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): La Plata Basin; MTDs; Pelotas Basin; Seismic stratigraphy; Submarine megaslide

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error