1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

The Late Miocene source terrane tectonic history in the southern Gulf of Mexico Basin, as informed by detrital zircon geothermochronology data, supports a detailed regional palaeogeographic reconstruction from palaeoshoreline to the deepwater Zama minibasin of the Sureste salt basin. Seismic mapping points to a trio of pathways that converge upon two entry points into the Zama minibasin, illuminating how sediment gravity flows transit a complex seascape defined by shallow salt bodies. Consideration of empirical scaling relationships within and between segments of this sediment dispersal system allows for testable predictions of Upper Miocene submarine fan‐runout lengths over basin exploration areas. Distances from the reconstructed shelf‐margin to the Zama wells vary around 100 km, an increase of 20% over a straight‐line distance as flows likely navigated around extant salt stocks, walls and sheets. This 100‐km fan length is about 40% of the reconstructed minimum palaeo‐river length, within predicted ranges for smaller source‐to‐sink systems in tectonically active areas (25 to 50%). The estimated fan‐runout distance can be extended even further basinwards, considering the contemporaneous passage of the mobile Chortis block along the Tonala shear zone, expanding the Palaeo‐Rio Grijalva drainage network during the Tortonian. These Late Miocene deepwater systems linked to the Palaeo‐Rio Grijalva differ substantially from onshore Mexico‐sourced turbidity flows feeding into the axis of the north‐trending Veracruz Trough. Textural data from wells here suggests these systems were less effective at larger grain transport and sorting. Local (intrabasinal) variations are also evident within the Zama minibasin, as well data (image logs and cores) indicate that axially oriented sediment gravity flows involved fewer high‐density turbidities, depositing lower net‐to‐gross sandstones and thicker shales than those flowing transverse to the basin axis from a southeastern basin entry point. These interpretations will guide both local exploitation of these economic resources and could also support future exploration for analogous salt‐influenced deepwater reservoir systems in the Sureste basin and globally.

,

Three plausible pathways (white lines) to Zama Upper Miocene minibasin depocenter from interpreted shelf‐margin entry point. Upper Miocene well‐based net sandstone contours are superimposed on an Upper Miocene interval thickness map derived from seismic analysis. Reconstructed coeval shelf‐margin is shown by the red line. The blue line is the location inferred for Palaeo‐Rio Grijalva. Grey‐lined polygons denote present‐day locations of allochthonous salt bodies. Plausible pathways follow trends in interval and sandstone thicknesses.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12849
2024-02-05
2025-01-18
Loading full text...

Full text loading...

References

  1. Ainsworth, R. B. (2005). Sequence stratigraphic‐based analysis of reservoir connectivity: Influence of depositional architecture e a case study from a marginal marine depositional setting. Petroleum Geoscience, 11, 257–276.
    [Google Scholar]
  2. Aliyuda, K., Howell, J., & Hartley, A. (2019). Empirical analysis of the stratigraphic control on production in clastic reservoirs of the Norwegian Continental Shelf: Search & Discovery Article #30597. (posted February 4, 2019).
  3. Ambrose, W. A., Wawrzyniec, T. F., Fouad, K., Sakurai, S., Jennette, D. C., Jr., Brown, L. F., Jr., Guevara, E. H., Dunlap, D. B., Talukdar, S. C., Garcia, M. A., Romano, U. H., Vega, J. A., Zamora, E. M., Ruiz, H. R., & Hernandez, R. C. (2005). Neogene tectonic, stratigraphic, and play framework of the southern Laguna Madre‐Tuxpan continental shelf, Gulf of Mexico. American Association of Petroleum Geologists Bulletin, 89, 725–751. https://doi.org/10.1306/01140504081
    [Google Scholar]
  4. Ángeles‐Aquino, F., Reyes‐Núñez, Q.‐M., & Meneses Rocha, J. J. (1994). Tectonic evolution, structural styles and oil habitat in Campeche sound, Mexico. Gulf Coast Association of Geological Societies Transactions, 44, 53–62.
    [Google Scholar]
  5. Apango, F., Snedden, J. W., Daigle, H., & Yurchenko, I. A. (2021). Analysis of hydrocarbon under‐filled and water‐filled Miocene deepwater reservoirs, eastern Mexico offshore. Marine and Petroleum Geology, 131, 16. https://doi.org/10.1016/j.marpetgeo.2021.105158
    [Google Scholar]
  6. Arce, L. E. P. (2017). Neogene current‐modified submarine fans and associated bed forms in Mexican deep‐water areas (105). University of Texas at Austin. [Master's thesis].
    [Google Scholar]
  7. Armitage, D., Loma, R. N., l., Vieira, P., Machado, O., & Gonzalez‐Quijano, M. (2022). Reservoir characterization of Late Miocene deep‐water frontal splay deposits, Salinas Basin, Mexico. 83rd EAGE Annual Conference & Exhibition, pp. 1–5. https://doi.org/10.3997/2214‐4609.202210966
  8. Beltrán‐Triviño, A., Martens, U. C., & von Quadt, A. (2020). Siliciclastic provenance of the Cenozoic stratigraphic succession in the southern Gulf of Mexico: Insights from U‐Pb detrital zircon geochronology and heavy minerals analysis. In Southern and Central Mexico: Basement framework, tectonic evolution, and provenance of mesozoic–cenozoic basins. Geological Society of America. https://doi.org/10.1130/2021.2546(09)
    [Google Scholar]
  9. Bhattacharya, J. P., Copeland, P., Lawton, T. F., & Holbrook, J. (2016). Estimation of source area, river paleo‐discharge, paleoslope, and sediment budgets of linked deep‐time depositional systems and implications for hydrocarbon potential. Earth‐Science Reviews, 153, 77–110. https://doi.org/10.1016/j.earscirev.2015.10.013
    [Google Scholar]
  10. Bianco, T. A., & Tozzi, E. (2021). Mexico – Area 1‐Amoca, Mizton, and Tecoalli oil discoveries, Sureste Basin, Gulf of Mexico. In C. A.Sternbach, R. K.Merrill, & J. K.Dolson (Eds.), Giant fields of the decade 2010–2020 (pp. 339–360). AAPG Memoir 125.
    [Google Scholar]
  11. Blum, M. D., Milliken, K. T., Pecha, M. A., Snedden, J. W., Frederick, B. C., & Galloway, W. E. (2017). Detrital‐zircon records of Cenomanian, Paleocene, and Oligocene Gulf of Mexico drainage integration and sediment routing: Implications for scales of basin‐floor fans. Geosphere, 13(6), 1–37. https://doi.org/10.1130/GES01410.1
    [Google Scholar]
  12. Booth, J. R. (2021). Point‐derived, transverse fan elements in the deepwater Gulf of Mexico: Ideal settings for ‘best‐in‐class’ turbidite reservoirs (11). SEG‐AAPG IMAGE Denver.
    [Google Scholar]
  13. Booth, J. R., Dean, M. C., DuVernay, A. E., III, & Styzen, M. J. (2003). Paleo‐bathymetric controls on the stratigraphic architecture and reservoir development of confined fans in the Auger basin: Central Gulf of Mexico slope. Marine and Petroleum Geology, 20, 563–586.
    [Google Scholar]
  14. Brichau, S., Witt, C., Bermúdez, M. A., Fillon, C., Gautheron, C., & Carter, A. (2023). Exhumation and topographic evolution of the Chiapas Massif Complex (southern Mexico) constrained by thermochronologic data modeling along vertical profiles. Global and Planetary Change, 227, 104159. https://doi.org/10.1016/j.gloplacha.2023.104159
    [Google Scholar]
  15. Cantú‐Chapa, A., & Landeros‐Flores, R. (2001). The Cretaceous–Paleocene boundary in the subsurface Campeche shelf, southern Gulf of Mexico. AAPG Memoir, 75, 389–395.
    [Google Scholar]
  16. Cerca, M., Ferrari, L., Lopez‐Martinez, M., Martiny, B., & Iriondo, A. (2007). Late Cretaceous shortening and early Tertiary shearing in the Central Sierra Madre del sur, Southern Mexico: Insights into the evolution of the Caribbean—North American Plate Interaction. Tectonics, 26, 1–34. https://doi.org/10.1029/2006TC001981
    [Google Scholar]
  17. Clark, J., Ochoa, J., Stockli, D., Fildani, A., Gerber, T., Covault, J., Guzman, J., Vinnels, J., & Marshall, J. (2019). Provenance and morphology of extensive Oligocene‐Miocene deep‐water Fan Systems sourced from Chiapas‐Veracruz and Sierra Madre Oriental, Gulf of Mexico. AAPG Annual Convention and Exhibition Abstract Volume.
  18. Cossey, S. P. J., Pasley, J., & White, H. J. (2020). The sedimentology, depositional history, and reservoir modelling of Zama Field, offshore Mexico. GeoGulf Transactions, 70, 407–408. (abstract).
    [Google Scholar]
  19. Covault, J. A., & Graham, S. A. (2010). Submarine fans at all sea‐level stands: Tectono‐morphologic and climatic controls on terrigenous sediment delivery to the deep sea. Geology, 38, 939–942. https://doi.org/10.1130/G31081.1
    [Google Scholar]
  20. Davison, I. (2020). Salt tectonics in the Sureste Basin, SE Mexico: Some implications for hydrocarbon exploration. In I.Davison, J. N. F.Hull, & J.Pindell (Eds.), The basins, orogens and evolution of the southern Gulf of Mexico and Northern Caribbean (Vol. 504, pp. 147–165). Geological Society, London, Special Publications. https://doi.org/10.1144/SP504‐2019‐227
    [Google Scholar]
  21. Dutton, S. P., Loucks, R. G., & Day‐Stirrat, R. J. (2012). Impact of regional variation in detrital mineral composition on reservoir quality in deep to ultradeep lower Miocene sandstones, western Gulf of Mexico. Marine and Petroleum Geology, 35, 139–153. https://doi.org/10.1016/j.marpetgeo.2012.01.006
    [Google Scholar]
  22. Ferrari, L., Lόpez‐Martínez, M., & Rosas‐Elguera, J. (2002). Ignimbrite flare‐up and deformation in the southern Sierra Madre occidental, western Mexico: Implications for the late subduction history of the Farallon Plate. Tectonics, 21, 1–24. https://doi.org/10.1029/2001TC001302
    [Google Scholar]
  23. Ferrari, L., Tagami, T., Eguchi, M., Orozco‐Esquivel, M. T., Petrone, C. M., Jacobo‐Albarrán, J., & López‐Martínez, M. (2005). Geology, geochronology and tectonic setting of late Cenozoic volcanism along the southwestern Gulf of Mexico: The Eastern Alkaline Province revisited. Journal of Volcanology and Geothermal Research, 146, 284–306. https://doi.org/10.1016/j.jvolgeores.2005.02.004
    [Google Scholar]
  24. Fisher, W. L., Galloway, W. E., Steel, R. J., Olariu, C., Kerans, C., & Mohrig, D. (2021). Deep‐water depositional systems supplied by shelf‐incising submarine canyons: Recognition and significance in the geologic record. Earth‐Science Reviews, 214, 62. https://doi.org/10.1016/j.earscirev.2021.103531
    [Google Scholar]
  25. Fitz‐Diaz, E., Lawton, T. F., Juarez‐Arriaga, E., & Chavez‐Cabello, G. (2018). The Cretaceous‐Paleogene Mexican Orogen: Structure, basin development, magmatism and tectonics. Earth‐Science Reviews, 183, 56–84. https://doi.org/10.1016/j.earscirev.2017.03.002
    [Google Scholar]
  26. Fulthorpe, C. S., Galloway, W. E., Snedden, J. W., Ganey‐Curry, P. E., & Whiteaker, T. L. (2014). New insights into Cenozoic depositional systems of the Gulf of Mexico Basin. GCAGS Transactions, 64, 119–129.
    [Google Scholar]
  27. Galloway, W. E., Buffler, R. T., Li, X., & Ganey‐Curry, P. E. (1998). Gulf of Mexico Basin depositional synthesis: Neogene sequences, depositional systems, and paleogeographic evolution. Gulf Coast Association of Geological Societies Transactions, 48, 83–88.
    [Google Scholar]
  28. Galloway, W. E., Whiteaker, T. L., & Ganey‐Curry, P. (2011). History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico. Geosphere, 7, 938–973.
    [Google Scholar]
  29. Gan, Y., de Almeida, F. N., Rossi, V. M., Steel, R. J., & Olariu, C. (2022). Sediment transfer from shelf to deepwater slope: How does it happen?Journal of Sedimentary Research, 92, 570–590. https://doi.org/10.2110/jsr.2021.013
    [Google Scholar]
  30. Gonzalez‐Quijano, M., Baechle, G., Yanez, M., Obregon, F., Vito, C., & Vieira, P. J. (2021). A successful qualitative and quantitative integrated interpretation of lower Miocene wells and seismic data in Salina del Istmo Basin, Mexico. The Leading Edge, 40, 897–904. https://doi.org/10.1190/tle40120897.1
    [Google Scholar]
  31. Gonzalez‐Quijano, M., Yanez, M., Vieira, P. H., Armitage, D., & Machado, O. (2022). Polok deep‐water channel complex characterization and reservoir architecture, offshore Mexico. 83rd EAGE Annual Conference & Exhibition, 1–5. https://doi.org/10.3997/2214‐4609.202210897
  32. Gray, G. G., Villagómez, D., Pindell, J., Molina‐Garza, R., O'Sullivan, P., Stockli, D., Farrell, W., Blank, D., & Schuba, J. (2020). Late Mesozoic and Cenozoic thermotectonic history of eastern, central and south‐ern Mexico as determined through integrated thermochronology, with implications for sediment delivery to the Gulf of Mexico (SP504–2019). Geological Society, London, Special Publications. https://doi.org/10.1144/sp504‐2019‐243
    [Google Scholar]
  33. Gutiérrez, H. C. G., Catuneanu, O., & Romano, U. H. (2017). Sequence stratigraphy of the Miocene section, southern Gulf of Mexico. Marine and Petroleum Geology, 86, 711–732. https://doi.org/10.1016/j.marpetgeo.2017.06.022
    [Google Scholar]
  34. Gutiérrez Paredes, H. C., Martinez Medrano, M., & Sessarego, H. L. (2009). Chapter 18: Provenance for the Middle and Upper Miocene sandstones of the Veracruz Basin, Mexico. In C.Bartolini & R. J. R.Ramos (Eds.), Petroleum systems in the southern Gulf of Mexico (pp. 397–407). AAPG Memoir.
    [Google Scholar]
  35. Hart, B. (2008). Stratigraphically significant attributes. The Leading Edge, 27, 320–324.
    [Google Scholar]
  36. Hernandez, H. S. (2013). Stratigraphic characterization and evolution of a Mid‐Tertiary age deep water system, Holok area, SW Gulf of Mexico [Doctoral Dissertation]. University of Aberdeen, 358 pp.
  37. Hessler, A. M., Covault, J. A., Stockli, D. F., & Fildani, A. (2018). Late Cenozoic cooling favored glacial over tectonic controls on sediment supply to the western Gulf of Mexico. Geology, 46, 995–998. https://doi.org/10.1130/G45528.1
    [Google Scholar]
  38. Hovadik, J. M., & Larue, D. K. (2010). Stratigraphic and structural connectivity. In S. J.Jolley, Q. J.Fisher, R. B.Ainsworth, P. J.Vrolijk, & S.Delisle (Eds.), Reservoir compartmentalization (Vol. 347, pp. 219–242). Geological Society, London, Special Publications.
    [Google Scholar]
  39. Kneller, B., & McCaffery, B. (1995). Modelling the effects of salt‐induced topography on deposition from turbidity currents. In, GCSSEPM Foundation 16th Annual Research Conference, Salt, Sediment and Hydrocarbons, 137–145.
  40. Kosmitis, D., Parker, J., Albertson, M., Obvintsev, A., Tett, D., Pasley, J., & Carr, M. (2021). The Zama discovery in Salina del Istmo Basin, offshore Tabasco: “A new dawn” for offshore Mexico exploration. In C. A.Sternbach, R. K.Merrill, & J.Dolson (Eds.), Giant fields of the decade: 2010–2020 (Vol. 125). AAPG Memoir.
    [Google Scholar]
  41. Liu, L., Stocklu, D. F., Lawton, T. F., Xu, J., Stockli, L. D., Fan, M., & Nadon, G. C. (2022). Reconstructing source‐to‐sink systems from detrital zircon core and rim ages. Geology, 50, 691–696. https://doi.org/10.1130/G49904.1
    [Google Scholar]
  42. Mayall, M., Lonergan, L., Bowman, A., James, S., Mills, K., Primmer, T., Pope, D., Rogers, L., & Skeene, R. (2010). The response of turbidite slope channels to growth‐induced seabed topography. AAPG Bulletin, 94(7), 1011–1030. https://doi.org/10.1306/01051009117
    [Google Scholar]
  43. Meckel, L. D., III. (2002). Core, log, and seismic characteristics of a high rate amalgamated channel reservoir in a salt‐withdrawal minibasin: The upper Miocene “above magenta” sand, Ursa Field, Northern Gulf of Mexico, Deep‐Water Core Workshop Northern Gulf of Mexico Gulf Coast Section Society of Economic Palentologists and Mineralogists, 61–74.
  44. Meckel, L. D., III, Ugueto, G. A., Lynch, H. D., Cumming, E. W., Hewett, B. M., Bocage, E. J., Winker, C. D., & O'Neill, B. J. (2000). Genetic stratigraphy, stratigraphic architecture, and reservoir stacking patterns of the upper Miocene‐lower Pliocene greater Mars‐Ursa intraslope basin, Mississippi Canyon, Gulf of Mexico. In J.Armentrout (Ed.), Sequence stratigraphic models for exploration and production: Evolving methodology, emerging models, and application histories: 22th Annual GCSSEPM Foundation Bob F. Perkins Research Conference, CD‐ROM. GCS‐SEPM.
    [Google Scholar]
  45. Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., & Wright, J. D. (2020). Cenozoic sea‐level and cryospheric evolution from deep‐sea geochemical and continental margin records. Science Advances, 6, eaaz1346. https://doi.org/10.1126/sciadv
    [Google Scholar]
  46. Molina‐Garza, R. S., Geissman, J. W., Wawrzyniec, T. F., Pena Alonso, T. A., Iriondo, A., Weber, B., & Aranda‐Gómez, J. (2015). Geology of the coastal Chiapas (Mexico) Miocene plutons and the Tonalá shear zone: Syntectonic emplacement and rapid exhumation during sinistral transpression. Lithosphere, 7(3), 257–274.
    [Google Scholar]
  47. National Hydrocarbons Commission (CNH) . (2017). Geological Atlas Southeastern Basins‐ Chiapas Fold and Thrust Belt, 53. https://portal.cnih.cnh.gob.mx/downloads/en_US/info/Geological_Atlas_Southeastern_Basin_V3.pdf
  48. Padilla y Sánchez, R. J. (2007). Evolución geológica del Sureste Mexicano desde el Mesozoico al presente en el contexto regional del Golfo de México. Boletín de la Sociedad Geológica Mexicana, 59, 19–42.
    [Google Scholar]
  49. Padilla y Sánchez, R. J., Domínguez, T., López, A., Mota, N., Fuentes, M., Rosique, N. F., & Germán, C. (2013). Tectonic map of Mexico: AAPG datapages. http://www.datapages.com/AssociatedWebsites/GISOpenFiles/TectonicMapMexico.aspx
  50. Pemex . (2019). Reserves Evaluacion de Las Reserves de Hidrocarburos (128). Pemex Exploracion y Produccion. https://www.pemex.com/ri/Publicaciones/Paginas/evaluaciones‐reservas.aspx
    [Google Scholar]
  51. Pemex . (2022). Reserves Evaluacion de Las Reserves de Hidrocarburos (148). Pemex Exploracion y Produccion. https://www.pemex.com/ri/Publicaciones/Paginas/evaluaciones‐reservas.aspx
    [Google Scholar]
  52. Perez Drago, P. (2010). Analisis Sismo‐Estratigrafico Y Estructural Del Area Tamil‐Nab, Sureste Del Golfo De Mexico Profoundo: MS Thesis, (160). Universidad Nacional Autonoma de Mexico.
    [Google Scholar]
  53. Pindell, J., & Miranda, E. (2011). Linked kinematic histories of the Macuspana, Akal‐Reforma, Comalcalco, and deepwater Campeche Basin tectonic elements, southern Gulf of Mexico. Gulf Coast Association of Geological Societies Transactions, 61, 353–361.
    [Google Scholar]
  54. Pindell, J., Molina‐Garza, R., Villagómez, D., Martens, U., Graham, R., Stockli, D., Weber, B., & Sierra‐Rojas, M. I. (2020). Provenance of the Miocene Nanchital conglomerate, western Chiapas Foldbelt Mexico: Implications for reservoir sands in the Sureste Basin, Greater Campeche Province: From. In I.Davison, J. N. F.Hull, & J.Pindell (Eds.), The basins, orogens and evolution of the southern Gulf of Mexico and Northern Caribbean (Vol. 504, pp. 167–182). Geological Society, London, Special Publications. https://doi.org/10.1144/SP504‐2020‐12
    [Google Scholar]
  55. Pindell, J., Villagómez, D., Molina Garza, R., Beltrán, A., Stockli, D. F., & Wildman, M. (2023). Late Cretaceous–Miocene depositional evolution of Chiapas, Mexico: A foreland controlled by collision of Greater Antilles arc and the subsequent relative migration of the Chortís Block. Gondwana Research, 113, 116–143. https://doi.org/10.1016/j.gr.2022.10.016
    [Google Scholar]
  56. Porębski, S. J., & Steel, R. J. (2003). Shelf‐margin deltas: Their stratigraphic significance and relation to deepwater sands. Earth‐Science Reviews, 62, 283–326.
    [Google Scholar]
  57. Prather, B. E., Booth, J. R., Steffens, G. S., & Craig, P. A. (1998). Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep‐ water Gulf of Mexico. AAPG Bulletin, 82, 701–728.
    [Google Scholar]
  58. Rodriguez, C., Hernandez, J., Ysaccis, R., Villarroel, S., Lyons, K., Mikhaltsev, M., Galvan, E., Centanni, S., Snyder, F., & El‐Toukhy, M. (2019). Deepwater sedimentation in the salt influenced Salina del Istmo Basin, Gulf of Mexico, offshore Mexico. 81st EAGE Conference & Exhibition 3–6 June 2019, London, UK. 5 https://doi.org/10.3997/2214‐4609.201901290
  59. Rowan, M. G. (2019). Gravity‐driven and tectonic deformation in the southern Gulf of Mexico. Conference Proceedings, Second EAGE Workshop on Deepwater Exploration in Mexico, 2019, 1–5. https://doi.org/10.3997/2214‐4609.201900360
    [Google Scholar]
  60. Rowan, M. G., & Giles, K. A. (2021). Passive versus active diapirism. AAPG Bulletin, 105, 53–63. https://doi.org/10.1306/05212020001
    [Google Scholar]
  61. Rowan, M. G., Muñoz, J. A., Roca, E., Ferrer, O., Santolaria, P., Granado, P., & Snidero, M. (2020). Linked detachment folds, thrust faults, and salt diapirs: Observations and analog models. Journal of Structural Geology, 2022, 11. https://doi.org/10.1016/j.jsg.2022.104509
    [Google Scholar]
  62. Rowan, M. G., & Weimer, P. (1998). Salt–sediment interaction, northern Green Canyon and Ewing Bank (offshore Louisiana), northern Gulf of Mexico. AAPG Bulletin, 82, 1055–1082.
    [Google Scholar]
  63. Ruiz Osorio, S. A. (2008). Uso de la Evalucion Genetica de Cuenca en un Transecto de la sub Cuenca Petrolera del Sureste de Mexico (264). UNAM Master's Thesis.
    [Google Scholar]
  64. Sánchez Rivera, R., Cruz Mercado, R. M. A., Reyes Tovar, E., López Céspedes, H. G., Peterson Rodriguez, R. H., Flores Zamora, J. C., Ramirez, R. L., & Barrera González, D. (2011). Tectonic evolution of the South Gulf Salt Province in the Gulf of Mexico. Gulf Coast Association of Geological Societies Transactions, 61, 421–427.
    [Google Scholar]
  65. Scherer, M. (1987). Parameters influencing porosity in sandstones: A model for sandstone porosity prediction. AAPG Bulletin, 71, 485–491.
    [Google Scholar]
  66. Shann, M. V., Vazquez‐Reyes, K., Ali, H. M., & Horbury, A. D. (2020). The Sureste Super Basin of southern Mexico. AAPG Bulletin, 104(12), 2643–2700.
    [Google Scholar]
  67. Sharman, G. R., Hubbard, S. M., Covault, J. A., Hinsch, R., Linzer, H.‐G., & Graham, S. A. (2018). Sediment routing evolution in the North Alpine Foreland Basin,Austria: Interplay of transverse and longitudinal sediment dispersal. Basin Research, 30, 426–447. https://doi.org/10.1111/bre.12259
    [Google Scholar]
  68. Sharman, G. R., & Johnstone, S. A. (2017). Sediment unmixing using detrital geochronology. Earth and Planetary Science Letters, 477, 183–194. https://doi.org/10.1016/j.epsl.2017.07.044
    [Google Scholar]
  69. Sharman, G. R., Stockli, D. F., Flaig, P., Raynolds, R. G., Dechesne, M., & Covault, J. A. (2021). Tectonic influence on axial‐transverse sediment routing in the Denver Basin. In J. P.Craddock, D. H.Malone, B. Z.Foreman, & A.Konstantinou (Eds.), Tectonic evolution of the Sevier‐Laramide hinterland, Thrust Belt, and foreland, and Postorogenic slab rollback (180–20) Ma. Geological Society of America Special Paper 555. https://doi.org/10.1130/2021.2555(11)
    [Google Scholar]
  70. Sickmann, Z. T., & Snedden, J. W. (2020). Neogene to recent evolution of the southern Gulf of Mexico basin: Tectonic controls on deep‐water sediment dispersal systems. Basin Research, 33, 1240–1256. https://doi.org/10.1111/bre.12512
    [Google Scholar]
  71. Snedden, J. W., Bovay, A. C., & Xu, J. (2016). New models of early Cretaceous source‐to‐sink pathways in the Eastern Gulf of Mexico. In C. M.Lowery, J. W.Snedden, & M. D.Blum (Eds.), Mesozoic of the Gulf Rim and Beyond: New progress in science and exploration of the Gulf of Mexico Basin: Perkins Rosen Research Conference paper for GCS‐SEPM (pp. 380–415). Society for Sedimentary Geology (SEPM). https://doi.org/10.5724/gcs.15.35.0380
    [Google Scholar]
  72. Snedden, J. W., & Galloway, W. E. (2019). The Gulf of Mexico Sedimentary Basin: Depositional evolution and petroleum applications (344). Cambridge University Press. https://doi.org/10.1017/9781108292795
    [Google Scholar]
  73. Snedden, J. W., Galloway, W. E., Milliken, K. T., Xu, J., Whiteaker, T., & Blum, M. D. (2018). Validation of empirical source‐to‐sink scaling relationships in a continental‐scale system: The Gulf of Mexico basin Cenozoic record. Geosphere, 14(2), 1–17. https://doi.org/10.1130/GES01452.1
    [Google Scholar]
  74. Snedden, J. W., Hull, H. L., Whiteaker, T. L., Virdell, J. W., & Ross, C. H. (2022). Late Mesozoic sandstone volumes recorded in Gulf of Mexico subsurface depocentres: Deciphering long‐term sediment supply trends and contributions by paleo river systems. Basin Research, 34, 1269–1291. https://doi.org/10.1111/bre.12659
    [Google Scholar]
  75. Snedden, J. W., Stockli, D. F., & Norton, I. O. (2020). Palaeogeographical reconstruction and provenance of Oxfordian aeolian sandstone reservoirs in Mexico offshore areas: Comparison to the Norphlet aeolian system of the northern Gulf of Mexico. In I.Davison, J. N. F.Hull, & J.Pindell (Eds.), The basins, orogens and evolution of the southern Gulf of Mexico and northern Caribbean (Vol. 504, p. 21). Geological Society, London, Special Publications 2020. https://doi.org/10.1144/SP504‐2019‐219
    [Google Scholar]
  76. Snedden, J. W., Stockli, D. F., & Pasley, J. (2021). Reconstructing the Zama (Mexico) discovery source to sink story, part II. Implications for and predictions within the depositional sink. Transactions of the GeoGulf2021 conference, October 27–29, 2021. Austin, TX (Abstract).
  77. Snedden, J. W., Tinker, L. D., & Virdell, J. (2018). Southern Gulf of Mexico Wilcox source‐to‐sink: Investigating & predicting Paleogene Wilcox reservoirs in eastern Mexico deep‐water areas. AAPG Bulletin, 102, 2045–2074.
    [Google Scholar]
  78. Snyder, F., & Ysaccis, R. (2018). New offshore exploration opportunities within the Salina Del Istmo Basin, Mexico. AAPG Search and Discovery, 11143, 1. https://www.searchanddiscovery.com/abstracts/html/2018/ace2018/abstracts/2854328.html
    [Google Scholar]
  79. Sømme, T. O., Helland‐Hansen, W., Martinsen, O. J., & Thurmond, J. B. (2009). Relationships between morphological and sedimentological parameters in source‐to‐sink systems: A basis for predicting semi‐quantitative characteristics in subsurface systems. Basin Research, 21, 361–387. https://doi.org/10.1111/j.1365‐2117.2009.00397.x
    [Google Scholar]
  80. Stanbrook, D. S., Capuzzo, N., Durcanin, M., LeCompte, B., Perez, G., Farley, C., & Seitchik, A. (2020). Onshore structural movement revealed through the presence of volcaniclastic deposition offshore. Cholula‐1EXP, Miocene Salina del Istmo Basin, Mexico: AAPG Extended Abstract 3654).
  81. Stockli, D. F., & Najman, Y. M. R. (2020). Earth's dynamic past revealed by detrital thermochronometry. Elements, 16, 311–317. https://doi.org/10.2138/gselements.16.5.311
    [Google Scholar]
  82. Stockli, D. F., Snedden, J., & Pasley, J. (2021). Reconstructing the Zama (Mexico) discovery source to sink story, part I. Detrital zircon U‐Pb provenance analysis and implications for sediment source dynamics. Transactions of the GeoGulf2021 conference, October 27–29, 2021. Austin, TX (Abstract).
  83. Stockli, D. F., Snedden, J. W., Albertson, M., Pasley, J., & Tett, D. (this issue). Reconstructing the Zama (Mexico) discovery source to sink story, Part I; detrital zircon U‐Pb and (U‐Th)/He provenance analysis and implications for sediment source terranes.
  84. Thompson, L. B., & Snedden, J. W. (1996). Geology and reservoir description of 1Y1 reservoir, Oso field, Nigeria, using FMS and dipmeter. In J. A.Pacht & R. E.Sheriff (Eds.), Stratigraphic analysis utilizing advanced geophysical, wireline, and borehole technology for petroleum exploration and production: GCS‐SEPM 17th Annual Research Conference Proceedings (pp. 315–323). GCS‐SEPM.
    [Google Scholar]
  85. Torres‐Sastre, H., Weimer, P., Bouroullec, R., & Adson, J. (2014a). The Blasillo Field (Upper Miocene), Salina del Istmo Basin, southeastern Mexico, part 2: Sequence stratigraphy and reservoir architecture. Gulf Coast Association of Geological Societies Transactions, 65, 415–431.
    [Google Scholar]
  86. Torres‐Sastre, H., Weimer, P., Bouroullec, R., & Adson, J. (2014b). The Blasillo Field (Upper Miocene), Salina del Istmo Basin, southeastern Mexico, part 1: Regional setting and petroleum geology. Gulf Coast Association of Geological Societies Transactions, 65, 401–413.
    [Google Scholar]
  87. Villagómez, D., & Pindell, J. (2021). Cooling and uplift history of the Chiapas Massif and its influence on sedimentation and deformation in the adjacent Sierra de Chiapas Basin. In U.Martens & R. S.Molina‐Garza (Eds.), Southern and Central Mexico: Basement framework, tectonic evolution, and provenance of Mesozoic–Cenozoic basins (p. 546). Geological Society of America, Special Papers. https://doi.org/10.1130/2020.2546(17)
    [Google Scholar]
  88. Villagómez, D., Steffensen, C., Pindell, J., Molina‐Garza, R. S., Gray, G., Graham, R., O'Sullivan, P., Stockli, D., & Spikings, R. (2022). Tectono‐sedimentary evolution of southern Mexico. Implications for Cretaceous and younger source‐to‐sink systems in the Mexican foreland basins and the Gulf of Mexico. Earth Science Reviews, 231, 38. https://www.researchgate.net/publication/360861734
    [Google Scholar]
  89. Winker, C. D. (1982). Cenozoic shelf‐margins, northwestern Gulf of Mexico. In M. A.Morad, J. E.Kilgore, & D. K.Cameron, Jr. (Eds.), Gulf Coast Association of Geological Societies Transactions (pp. 427–448). Gulf Coast Ass. Geol. Societies.
    [Google Scholar]
  90. Winter, R. R. (2018). Course‐grained deep water, slope & basin‐floor systems: Influence of tectonic processes of internal and external architecture (pp. 1–149). University of Texas at Austin, PhD Thesis.
    [Google Scholar]
  91. Xu, C. (2022). Log evaluation, borehole image interpretation, and core calibration of deep‐water reservoir rocks: A case study in the Gulf of Mexico. AAPG Bulletin, 106, 1197–1212.
    [Google Scholar]
/content/journals/10.1111/bre.12849
Loading
/content/journals/10.1111/bre.12849
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): deepwater; Mexico; palaeogeography; scaling relationships; source‐to‐sink

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error