1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

We produced a 10 Myr synthetic stratigraphic section using a forward stratigraphic model that generates marine deltaic stratigraphy over geological timescales. We recursively fit the model using a Bayesian inversion algorithm to test: (1) if it could be accurately reconstructed; (2) if the parameters used to create it could be recovered; and (3) the sensitivity of the model output to given model parameters and the attendant physical processes. The original synthetic stratigraphic section was produced with cyclical sea‐level variations of 40 and 30 m with 2.4 and 10 Myr periods respectively. Sediment was also supplied cyclically, in 2.4 and 10 Myr cycles with amplitudes of 30 and 80 tons/100 kyr, respectively, varying from a mean of 232 tons/100 kyr. Parameter values were sampled to fit the model using a Markov chain Monte Carlo algorithm, resulting in a ±5 m (1σ) variation between the experimental output and the original. Sea level varied by ±7 m (1σ) within the posterior distribution of parameters. As a result, both the 10 Myr and 2.4 Myr sea‐level cycles could be extracted from the original output. The variation in sediment supply was approximately ±38 tons/100 kyr (1σ) and, as a result, only the larger long‐term supply variations could be accurately recovered in refitting the model. The variation in thermal, flexural and total subsidence across those parameter sets is less than ±10 m (1σ). The original section experienced 150 m of total subsidence at the depocentre. Our results demonstrate the distinct and interpretable imprint of sea level and subsidence on continental margin stratigraphy can be quantified. Moreover, we conclude that sea‐level change produces a defined effect on the geometries of stratigraphic architecture, and that techniques applied for the purpose of delineating sea‐level variation from continental margin strata have a well‐founded conceptual basis.

,

Modelledstratigraphy reconstructed using Bayesian inversion. The top panels show the reconstructedstratigraphy (panel a) and a wheeler diagram of this model output (panel b). Thethree other panels show the original and reconstructed values of: 1) flexure,thermal subsidence, and total subsidence (panel c); 2) sea‐level change (paneld); and 3) sediment supply variations (panel e). The greater variability in theposterior distribution of sediment supply values relative to those for sealevel suggests that the development of passive continental margin stratigraphic architecture is particularlysensitive to sea‐level variation.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12854
2024-02-19
2025-05-13
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12854.html?itemId=/content/journals/10.1111/bre.12854&mimeType=html&fmt=ahah

References

  1. Aali, M. (2020). Analysis of the cyclic character of siliciclastic sediments at the New Jersey continental shelf using ultra‐high resolution 3D seismic and well data [PhD thesis]. Dalhousie University.
    [Google Scholar]
  2. Bahr, D. B., Hutton, E. W. H., Syvitski, J. P. M., & Pratson, L. F. (2001). Exponential approximations to compacted sediment porosity profiles. Computers & Geosciences, 27(6), 691–700. https://doi.org/10.1016/S0098‐3004(00)00140‐0
    [Google Scholar]
  3. Belknap, D. F., & Kraft, J. C. (1985). Influence of antecedent geology on stratigraphic preservation potential and evolution of Delaware's barrier systems. Marine Geology, 63(1), 235–262. https://doi.org/10.1016/0025‐3227(85)90085‐4
    [Google Scholar]
  4. Blum, M. D., & Törnqvist, T. E. (2000). Fluvial responses to climate and sea‐level change: A review and look forward. Sedimentology, 47(s1), 2–48. https://doi.org/10.1046/j.1365‐3091.2000.00008.x
    [Google Scholar]
  5. Bond, G. C., Kominz, M. A., Steckler, M. S., Grotzinger, J. P., & Crevello, P. (1989). Role of thermal subsidence, flexure, and eustasy in the evolution of early Paleozoic passive‐margin carbonate platforms. Controls on Carbonate Platform and Basin Development: SEPM, Special Publication, 44, 39–61.
    [Google Scholar]
  6. Bornholdt, S., Nordlund, U., Westphal, H., Harbaugh, J. W., Watney, W. L., Rankey, E. C., Slingerland, R., Goldstein, R. H., & Franseen, E. K. (1999). Inverse stratigraphic modeling using genetic algorithms. In Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations (Vol. 62). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.99.62.0085
    [Google Scholar]
  7. Bornholdt, S., & Westphal, H. (1998). Automation of stratigraphic simulations: Quasi‐backward modelling using genetic algorithms. Geological Society, London, Special Publications, 134(1), 371–379. https://doi.org/10.1144/GSL.SP.1998.134.01.17
    [Google Scholar]
  8. Browning, J. V., Miller, K. G., McLaughlin, P. P., Kominz, M. A., Sugarman, P. J., Monteverde, D., Feigenson, M. D., & Hernández, J. C. (2006). Quantification of the effects of eustasy, subsidence, and sediment supply on Miocene sequences, mid‐Atlantic margin of the United States. GSA Bulletin, 118(5–6), 567–588.
    [Google Scholar]
  9. Bruun, P. (1962). Sea‐level rise as a cause of shore erosion. Journal of the Waterways and Harbors Division, 88(1), 117–130. https://doi.org/10.1061/JWHEAU.0000252
    [Google Scholar]
  10. Burgess, P. M., Lammers, H., van Oosterhout, C., & Granjeon, D. (2006). Multivariate sequence stratigraphy: Tackling complexity and uncertainty with stratigraphic forward modeling, multiple scenarios, and conditional frequency maps. AAPG Bulletin, 90(12), 1883–1901. https://doi.org/10.1306/06260605081
    [Google Scholar]
  11. Burgess, P. M., & Prince, G. D. (2015). Non‐unique stratal geometries: Implications for sequence stratigraphic interpretations. Basin Research, 27(3), 351–365. https://doi.org/10.1111/bre.12082
    [Google Scholar]
  12. Cao, S., & Lerche, I. (1994). A quantitative model of dynamical sediment deposition and erosion in three dimensions. Computers & Geosciences, 20(4), 635–663. https://doi.org/10.1016/0098‐3004(94)90085‐X
    [Google Scholar]
  13. Carey, J. S., Swift, D. J. P., Steckler, M., Reed, C. W., Niedoroda, A., Harbaugh, J. W., Watney, W. L., Rankey, E. C., Slingerland, R., Goldstein, R. H., & Franseen, E. K. (1999). High‐resolution sequence stratigraphic modeling 2: Effects of sedimentation processes. In Numerical experiments in stratigraphy: Recent advances in stratigraphic and Sedimentologic computer simulations (Vol. 62). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.99.62.0151
    [Google Scholar]
  14. Cattaneo, A., & Steel, R. J. (2003). Transgressive deposits: A review of their variability. Earth‐Science Reviews, 62(3), 187–228. https://doi.org/10.1016/S0012‐8252(02)00134‐4
    [Google Scholar]
  15. Charvin, K., Gallagher, K., Hampson, G. L., & Labourdette, R. (2009). A Bayesian approach to inverse modelling of stratigraphy, part 1: Method. Basin Research, 21(1), 5–25. https://doi.org/10.1111/j.1365‐2117.2008.00369.x
    [Google Scholar]
  16. Charvin, K., Hampson, G. J., Gallagher, K., & Labourdette, R. (2009). A Bayesian approach to inverse modelling of stratigraphy, part 2: Validation tests. Basin Research, 21(1), 27–45. https://doi.org/10.1111/j.1365‐2117.2008.00370.x
    [Google Scholar]
  17. Christie‐Blick, N. (1991). Onlap, offlap, and the origin of unconformity‐bounded depositional sequences. Marine Geology, 97(1–2), 35–56.
    [Google Scholar]
  18. Christie‐Blick, N., Mountain, G., & Miller, K. (1990). Seismic stratigraphic record of sea‐level change. In Studies in geophysics: Sea‐level change (pp. 116–140). Academy Press.
    [Google Scholar]
  19. Cooper, J. A. G., & Pilkey, O. H. (2004). Sea‐level rise and shoreline retreat: Time to abandon the Bruun rule. Global and Planetary Change, 43(3), 157–171. https://doi.org/10.1016/j.gloplacha.2004.07.001
    [Google Scholar]
  20. Crombez, V., Hauser, J., Peeters, L., & Chopping, R. (2020). Understanding the gravity response variability of sedimentary basins using forward stratigraphic modelling. Marine and Petroleum Geology, 122, 104698. https://doi.org/10.1016/j.marpetgeo.2020.104698
    [Google Scholar]
  21. Crombez, V., Rohais, S., Baudin, F., Chauveau, B., Euzen, T., & Granjeon, D. (2017). Controlling factors on source rock development: Implications from 3D stratigraphic modeling of Triassic deposits in the Western Canada Sedimentary Basin. Bulletin de la Société géologique de France, 188(5), 30. https://doi.org/10.1051/bsgf/2017188
    [Google Scholar]
  22. Cross, T. A., Lessenger, M. A., Harbaugh, J. W., Watney, W. L., Rankey, E. C., Slingerland, R., Goldstein, R. H., & Franseen, E. K. (1999). Construction and application of a stratigraphic inverse model. In Numerical experiments in stratigraphy: Recent advances in stratigraphic and Sedimentologic computer simulations (Vol. 62). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.99.62.0069
    [Google Scholar]
  23. Doligez, B., Granjeon, D., Joseph, P., Eschard, R., & Beucher, H. (1999). How can stratigraphic modeling help constrain geostatistical reservoir simulations? In J. W.Harbaugh, W. L.Watney, E. C.Rankey, R.Slingerland, R. H.Goldstein, & E. K.Franseen (Eds.), Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations (Vol. 62). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.99.62.0239
    [Google Scholar]
  24. Ducros, M., Steffens, L. M., de Souza Brugognolle, J., Lottin Boing, J. V., Soares, A. P., & Bettú, D. F. (2023). A new objective function designed for the calibration of stratigraphic forward models. Marine and Petroleum Geology, 154, 106306. https://doi.org/10.1016/j.marpetgeo.2023.106306
    [Google Scholar]
  25. Fagherazzi, S., & Overeem, I. (2007). Models of deltaic and inner continental shelf landform evolution. Annual Review of Earth and Planetary Sciences, 35(1), 685–715. https://doi.org/10.1146/annurev.earth.35.031306.140128
    [Google Scholar]
  26. Fairbanks, R. G. (1989). A 17,000‐year glacio‐eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep‐ocean circulation. Nature, 342(6250), 637–642. https://doi.org/10.1038/342637a0
    [Google Scholar]
  27. Fairbanks, R. G., & Matthews, R. K. (1978). The marine oxygen isotope record in Pleistocene coral, Barbados, West Indies. Quaternary Research, 10(2), 181–196. https://doi.org/10.1016/0033‐5894(78)90100‐X
    [Google Scholar]
  28. Falivene, O., Frascati, A., Gesbert, S., Pickens, J., Hsu, Y., & Rovira, A. (2014). Automatic calibration of stratigraphic forward models for predicting reservoir presence in exploration. AAPG Bulletin, 98(9), 1811–1835. https://doi.org/10.1306/02271413028
    [Google Scholar]
  29. Flament, N., Gurnis, M., & Müller, R. D. (2013). A review of observations and models of dynamic topography. Lithosphere, 5(2), 189–210. https://doi.org/10.1130/L245.1
    [Google Scholar]
  30. Granjeon, D. (2014). 3D forward modelling of the impact of sediment transport and base level cycles on continental margins and incised valleys. In From depositional systems to sedimentary successions on the Norwegian Continental Margin (pp. 453–472). International Association of Sedimentologists. https://doi.org/10.1002/9781118920435.ch16
    [Google Scholar]
  31. Granjeon, D., & Joseph, P. (1999). Concepts and applications of a 3‐D multiple lithology, diffusive model in stratigraphic modeling. In J. W.Harbaugh, W. L.Watney, E. C.Rankey, R.Slingerland, R. H.Goldstein, & E. K.Franseen (Eds.), Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations (Vol. 62). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.99.62.0197
    [Google Scholar]
  32. Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A., Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Cozannet, G. L., Ponte, R. M., Stammer, D., Tamisiea, M. E., & van de Wal, R. S. W. (2019). Concepts and terminology for sea level: Mean, variability and change, both local and global. Surveys in Geophysics, 40(6), 1251–1289. https://doi.org/10.1007/s10712‐019‐09525‐z
    [Google Scholar]
  33. Gurnis, M. (1992). Rapid continental subsidence following the initiation and evolution of subduction. Science, 255(5051), 1556–1558. https://doi.org/10.1126/science.255.5051.1556
    [Google Scholar]
  34. Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156–1167.
    [Google Scholar]
  35. Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, T., De Graciansky, P.‐C., & Vail, P. R. (1998). Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. Society of Economic Paleontologists and Mineralogists.
    [Google Scholar]
  36. Harris, A. D., Covault, J. A., Madof, A. S., Sun, T., Sylvester, Z., & Granjeon, D. (2016). Three‐dimensional numerical modeling of eustatic control on continental‐margin sand distribution. Journal of Sedimentary Research, 86(12), 1434–1443. https://doi.org/10.2110/jsr.2016.85
    [Google Scholar]
  37. Harris, C. K., & Wiberg, P. (2002). Across‐shelf sediment transport: Interactions between suspended sediment and bed sediment. Journal of Geophysical Research: Oceans, 107(C1), 8‐1–8‐12.
    [Google Scholar]
  38. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97–109. https://doi.org/10.2307/2334940
    [Google Scholar]
  39. Helland‐Hansen, W., & Hampson, G. (2009). Trajectory analysis: Concepts and applications. Basin Research, 21(5), 454–483.
    [Google Scholar]
  40. Heller, P. L., Burns, B. A., & Marzo, M. (1993). Stratigraphic solution sets for determining the roles of sediment supply, subsidence, and sea level on transgressions and regressions. Geology, 21(8), 747–750. https://doi.org/10.1130/0091‐7613(1993)021<0747:SSSFDT>2.3.CO;2
    [Google Scholar]
  41. Holbrook, J., Scott, R. W., & Oboh‐Ikuenobe, F. E. (2006). Base‐level buffers and buttresses: A model for upstream versus downstream control on fluvial geometry and architecture within sequences. Journal of Sedimentary Research, 76(1), 162–174. https://doi.org/10.2110/jsr.2005.10
    [Google Scholar]
  42. Imhof, M. G., & Sharma, A. K. (2006a). Quantitative seismostratigraphic inversion of a prograding delta from seismic data. Marine and Petroleum Geology, 23(7), 735–744. https://doi.org/10.1016/j.marpetgeo.2006.04.004
    [Google Scholar]
  43. Imhof, M. G., & Sharma, A. K. (2006b). Seismostratigraphic inversion: Appraisal, ambiguity, and uncertainty. In SEG technical program expanded abstracts 2006 (pp. 2017–2021). Society of Exploration Geophysicists. https://doi.org/10.1190/1.236993210.1190/1.2369932
    [Google Scholar]
  44. Jervey, M. (1988). Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. Society of Economic Paleontologists and Mineralogists.
    [Google Scholar]
  45. Karamitopoulos, P., Weltje, G. J., & Dalman, R. A. F. (2021). Large‐scale connectivity of fluvio‐deltaic stratigraphy: Inferences from simulated accommodation‐to‐supply cycles and automated extraction of chronosomes. Basin Research, 33(1), 382–402. https://doi.org/10.1111/bre.12471
    [Google Scholar]
  46. Karner, G. D., & Watts, A. B. (1982). On isostasy at Atlantic‐type continental margins. Journal of Geophysical Research: Solid Earth, 87(B4), 2923–2948. https://doi.org/10.1029/JB087iB04p02923
    [Google Scholar]
  47. Karssenberg, D., de Jong, K., & van der Kwast, J. (2007). Modelling landscape dynamics with Python. International Journal of Geographical Information Science, 21(5), 483–495. https://doi.org/10.1080/13658810601063936
    [Google Scholar]
  48. Karssenberg, D., Törnqvist, T. R. E., & Bridge, J. S. (2001). Conditioning a process‐based model of sedimentary architecture to well data. Journal of Sedimentary Research, 71(6), 868–879. https://doi.org/10.1306/051501710868
    [Google Scholar]
  49. Katz, M. E., Browning, J. V., Miller, K. G., Monteverde, D. H., Mountain, G. S., & Williams, R. H. (2013). Paleobathymetry and sequence stratigraphic interpretations from benthic foraminifera: Insights on New Jersey shelf architecture, IODP Expedition 313. Geosphere, 9(6), 1488–1513.
    [Google Scholar]
  50. Kendall, C., & Lerche, I. (1988). The rise and fall of eustasy. Society of Economic Paleontologists and Mineralogists.
    [Google Scholar]
  51. Kominz, M., Miller, K., Browning, J., Katz, M., & Mountain, G. (2016). Miocene relative sea level on the New Jersey shallow continental shelf and coastal plain derived from one‐dimensional backstripping: A case for both eustasy and epeirogeny. Geosphere, 12(5), 1437–1456.
    [Google Scholar]
  52. Kominz, M. A. (1984). Oceanic ridge volumes and sea‐level change—An error analysis. In J. S.Schlee (Ed.), Interregional unconformities and hydrocarbon accumulation (Vol. 36). American Association of Petroleum Geologists. https://doi.org/10.1306/M36440C9
    [Google Scholar]
  53. Kominz, M. A., Browning, J., Miller, K., Sugarman, P., Mizintseva, S., & Scotese, C. (2008). Late Cretaceous to Miocene sea‐level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis. Basin Research, 20(2), 211–226. https://doi.org/10.1111/j.1365‐2117.2008.00354.x
    [Google Scholar]
  54. Kominz, M. A., Patterson, K., & Odette, D. (2011). Lithology dependence of porosity in slope and deep marine sediments. Journal of Sedimentary Research, 81(10), 730–742. https://doi.org/10.2110/jsr.2011.60
    [Google Scholar]
  55. Kominz, M. A., & Pekar, S. F. (2001). Oligocene eustasy from two‐dimensional sequence stratigraphic backstripping. GSA Bulletin, 113(3), 291–304.
    [Google Scholar]
  56. Lang, G., ten Brink, U. S., Hutchinson, D. R., Mountain, G. S., & Schattner, U. (2020). The role of Premagmatic rifting in shaping a volcanic continental margin: An example from the Eastern North American margin. Journal of Geophysical Research: Solid Earth, 125(11), e2020JB019576. https://doi.org/10.1029/2020JB019576
    [Google Scholar]
  57. Lawrence, D. T., Doyle, M., & Aigner, T. (1990). Stratigraphic simulation of sedimentary basins: Concepts and calibration. AAPG Bulletin, 74(3), 273–295. https://doi.org/10.1306/0C9B22C7‐1710‐11D7‐8645000102C1865D
    [Google Scholar]
  58. Leatherman, S. P., Zhang, K., & Douglas, B. C. (2000). Sea level rise shown to drive coastal erosion. Eos, Transactions American Geophysical Union, 81(6), 55–57. https://doi.org/10.1029/00EO00034
    [Google Scholar]
  59. Lessenger, M., & Lerche, I. (1999). Inverse modeling. In J. W.Harbaugh, W. L.Watney, E. C.Rankey, R.Slingerland, R. H.Goldstein, & E. K.Franseen (Eds.), Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations (Vol. 62). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.99.62.0029
    [Google Scholar]
  60. Lessenger, M. A., & Cross, T. A. (1996). An inverse stratigraphic simulation model—Is stratigraphic inversion possible?Energy Exploration & Exploitation, 14(6), 627–637. https://doi.org/10.1177/014459879601400606
    [Google Scholar]
  61. Liu, L. (2015). The ups and downs of North America: Evaluating the role of mantle dynamic topography since the Mesozoic. Reviews of Geophysics, 53(3), 1022–1049. https://doi.org/10.1002/2015rg000489
    [Google Scholar]
  62. Mahmudova, A., Civa, A., Caronni, V., Patani, S. E., Bozzoni, P., Bazzana, L., & Porta, G. M. (2023). Modelling parametric uncertainty in large‐scale stratigraphic simulations. Scientific Reports, 13(1), 817. https://doi.org/10.1038/s41598‐022‐27360‐y
    [Google Scholar]
  63. McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40(1), 25–32.
    [Google Scholar]
  64. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092. https://doi.org/10.1063/1.1699114
    [Google Scholar]
  65. Miller, K. G., Browning, J. V., Schmelz, W. J., Mountain, G. S., Kopp, R. E., & Wright, J. D. (2020). Cenozoic sea‐level and cryospheric evolution from deep‐sea geochemical and continental margin records. Science Advances, 6, 1–15.
    [Google Scholar]
  66. Miller, K. G., Fairbanks, R. G., & Mountain, G. S. (1987). Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, 2(1), 1–19.
    [Google Scholar]
  67. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie‐Blick, N., & Pekar, S. F. (2005). The Phanerozoic record of global sea‐level change. Science, 310(5752), 1293–1298. https://doi.org/10.1126/science.1116412
    [Google Scholar]
  68. Miller, K. G., Lombardi, C. J., Browning, J. V., Schmelz, W. J., Gallegos, G., Mountain, G. S., & Baldwin, K. E. (2018). Back to basics of sequence stratigraphy: Early Miocene and Mid‐cretaceous examples from the New Jersey Paleoshelf. Journal of Sedimentary Research, 88(1), 148–176. https://doi.org/10.2110/jsr.2017.73
    [Google Scholar]
  69. Miller, K. G., Mountain, G. S., Browning, J. V., Kominz, M., Sugarman, P. J., Christie‐Blick, N., Katz, M. E., & Wright, J. D. (1998). Cenozoic global sea level, sequences, and the New Jersey transect: Results from coastal plain and continental slope drilling. Reviews of Geophysics, 36(4), 569–601. https://doi.org/10.1029/98RG01624
    [Google Scholar]
  70. Miller, K. G., Schmelz, W. J., Browning, J. V., Kopp, R. E., Mountain, G. S., & Wright, J. D. (2020). Ancient sea level as key to the future. Oceanography, 33(2), 32–41. https://doi.org/10.2307/26937737
    [Google Scholar]
  71. Mitchum, R., Vail, P., & Thompson, S., III. (1977). Seismic stratigraphy and global changes of sea level: Part 2. The depositional sequence as a basic unit for stratigraphic analysis: Section 2. Application of seismic reflection configuration to stratigraphic interpretation. In C. E.Payton (Ed.), Seismic stratigraphy—Applications to hydrocarbon exploration (Vol. 26, 1st ed., pp. 47–386). American Association of Petroleum Geologists.
    [Google Scholar]
  72. Mitrovica, J., Beaumont, C., & Jarvis, G. (1989). Tilting of continental interiors by the dynamical effects of subduction. Tectonics, 8(5), 1079–1094. https://doi.org/10.1029/TC008i005p01079
    [Google Scholar]
  73. Moucha, R., Forte, A. M., Mitrovica, J. X., Rowley, D. B., Quéré, S., Simmons, N. A., & Grand, S. P. (2008). Dynamic topography and long‐term sea‐level variations: There is no such thing as a stable continental platform. Earth and Planetary Science Letters, 271(1–4), 101–108. https://doi.org/10.1016/j.epsl.2008.03.056
    [Google Scholar]
  74. Moucha, R., & Ruetenik, G. A. (2017). Interplay between dynamic topography and flexure along the U.S. Atlantic passive margin: Insights from landscape evolution modeling. Global and Planetary Change, 149, 72–78. https://doi.org/10.1016/j.gloplacha.2017.01.004
    [Google Scholar]
  75. Mountain, G. S., Proust, J.‐N., & McInroy, D.. (2010). Cotterill and the expedition 313 scientists. In Proceedings of the integrated ocean drilling program (Vol. 313). Integrated Ocean Drilling Program Management International, Inc. https://doi.org/10.2204/iodp.proc.313.2010
    [Google Scholar]
  76. Muller, R. D., Sdrolias, M., Gaina, C., Steinberger, B., & Heine, C. (2008). Long‐term sea‐level fluctuations driven by ocean basin dynamics. Science, 319(5868), 1357–1362. https://doi.org/10.1126/science.1151540
    [Google Scholar]
  77. Neal, J., & Abreu, V. (2009). Sequence stratigraphy hierarchy and the accommodation succession method. Geology, 37(9), 779–782. https://doi.org/10.1130/G25722A.1
    [Google Scholar]
  78. Nittrouer, C. A., Austin, J. A., Field, M. E., Kravitz, J. H., Syvitski, J. P., & Wiberg, P. L. (2007a). Continental margin sedimentation: From sediment transport to sequence stratigraphy. John Wiley & Sons.
    [Google Scholar]
  79. Nittrouer, C. A., Austin, J. A., Field, M. E., Kravitz, J. H., Syvitski, J. P. M., & Wiberg, P. L. (2007b). Writing a Rosetta stone: Insights into continental‐margin sedimentary processes and strata. In Continental margin sedimentation (pp. 1–48). International Association of Sedimentologists. https://doi.org/10.1002/9781444304398.ch1
    [Google Scholar]
  80. O'Grady, D. B., Syvitski, J. P. M., Pratson, L. F., & Sarg, J. F. (2000). Categorizing the morphologic variability of siliciclastic passive continental margins. Geology, 28(3), 207–210. https://doi.org/10.1130/0091‐7613(2000)28<207:Ctmvos>2.0.Co;2
    [Google Scholar]
  81. Paola, C. (2000). Quantitative models of sedimentary basin filling. Sedimentology, 47(s1), 121–178. https://doi.org/10.1046/j.1365‐3091.2000.00006.x
    [Google Scholar]
  82. Parsons, B., & Sclater, J. G. (1977). An analysis of the variation of ocean floor bathymetry and heat flow with age. Journal of Geophysical Research, 82(5), 803–827.
    [Google Scholar]
  83. Patani, S. E., Porta, G. M., Caronni, V., Ruffo, P., & Guadagnini, A. (2021). Stochastic inverse modeling and parametric uncertainty of sediment deposition processes across geologic time scales. Mathematical Geosciences, 53(6), 1101–1124. https://doi.org/10.1007/s11004‐020‐09911‐z
    [Google Scholar]
  84. Patruno, S., Hampson, G. J., Jackson, C. A.‐L., & Dreyer, T. (2015). Clinoform geometry, geomorphology, facies character and stratigraphic architecture of a sand‐rich subaqueous delta: Jurassic Sognefjord Formation, offshore Norway. Sedimentology, 62(1), 350–388. https://doi.org/10.1111/sed.12153
    [Google Scholar]
  85. Peltier, W. (1999). Global sea level rise and glacial isostatic adjustment. Global and Planetary Change, 20(2–3), 93–123.
    [Google Scholar]
  86. Peltier, W. R. (2004). Global glacial isostasy and the surface of the ice‐age Earth: The ICE‐5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences, 32(1), 111–149. https://doi.org/10.1146/annurev.earth.32.082503.144359
    [Google Scholar]
  87. Pirmez, C., Pratson, L. F., & Steckler, M. S. (1998). Clinoform development by advection‐diffusion of suspended sediment: Modeling and comparison to natural systems. Journal of Geophysical Research: Solid Earth, 103(B10), 24141–24157. https://doi.org/10.1029/98JB01516
    [Google Scholar]
  88. Pitman, W. C. (1978). Relationship between eustacy and stratigraphic sequences of passive margins. Geological Society of America Bulletin, 89(9), 1389–1403.
    [Google Scholar]
  89. Posamentier, H., Jervey, M., & Vail, P. (1988). Eustatic controls on clastic deposition I—Conceptual framework. In C. K. Wilgus, B. S. Hastings, C. G. S. C. Kendall, H. W. Posamentier, C. A. Ross, & J. C. V. Wagoner (Eds.), Sea level changes: An integrated approach (Vol. 42, pp. 109–124). SEPM (Society for Sedimentary Geology). https://doi.org/10.2110/pec.88.01.0109
    [Google Scholar]
  90. Posamentier, H., & Vail, P. (1988). Eustatic controls on clastic deposition II—Sequence and systems tract models. Society of Economic Paleontologists and Mineralogists.
    [Google Scholar]
  91. Posamentier, H. W., & Allen, G. P. (1999). Siliciclastic sequence stratigraphy: Concepts and applications (Vol. 7). SEPM Society for Sedimentary.
    [Google Scholar]
  92. Prather, B. E. (2000). Calibration and visualization of depositional process models for above‐grade slopes: A case study from the Gulf of Mexico. Marine and Petroleum Geology, 17(5), 619–638. https://doi.org/10.1016/S0264‐8172(00)00015‐5
    [Google Scholar]
  93. Quirk, D. G. (1996). ‘Base profile’: A unifying concept in alluvial sequence stratigraphy. Geological Society, London, Special Publications, 104(1), 37–49.
    [Google Scholar]
  94. Reynolds, D. J., Steckler, M. S., & Coakley, B. J. (1991). The role of the sediment load in sequence stratigraphy: The influence of flexural isostasy and compaction. Journal of Geophysical Research: Solid Earth, 96(B4), 6931–6949. https://doi.org/10.1029/90JB01914
    [Google Scholar]
  95. Rich, J. L. (1951). Three critical environments of deposition, and criteria for recognition of rocks deposited in each of them. GSA Bulletin, 62(1), 1–20. https://doi.org/10.1130/0016‐7606(1951)62[1:Tceoda]2.0.Co;2
    [Google Scholar]
  96. Rowley, D. B., Forte, A. M., Moucha, R., Mitrovica, J. X., Simmons, N. A., & Grand, S. P. (2013). Dynamic topography change of the eastern United States since 3 million years ago. Science, 340(6140), 1560–1563. https://doi.org/10.1126/science.1229180
    [Google Scholar]
  97. Sacchi, Q., Weltje, G. J., & Verga, F. (2015). Towards process‐based geological reservoir modelling: Obtaining basin‐scale constraints from seismic and well data. Marine and Petroleum Geology, 61, 56–68. https://doi.org/10.1016/j.marpetgeo.2014.11.002
    [Google Scholar]
  98. Schmelz, W. J. (2021). New insights on the evolution of the US Mid‐Atlantic continental margin from sequence stratigraphy, statistics, and forward modeling: Implications for carbon sequestration and sea‐level studies. Rutgers The State University of New Jersey, School of Graduate Studies.
    [Google Scholar]
  99. Schmelz, W. J., Miller, K. G., Kopp, R. E., Mountain, G. S., & Browning, J. V. (2021). Influence of mantle dynamic topographical variations on US Mid‐Atlantic continental margin estimates of sea‐level change. Geophysical Research Letters, 48(4), e2020GL090521. https://doi.org/10.1029/2020GL090521
    [Google Scholar]
  100. Shobe, C. M., Braun, J., Yuan, X., Campforts, B., Gailleton, B., Baby, G., Guillocheau, F., & Robin, C. (2022). Inverting passive margin stratigraphy for marine sediment transport dynamics over geologic time. Basin Research, 34(6), 2111–2134. https://doi.org/10.1111/bre.12698
    [Google Scholar]
  101. Sleep, N. H., & Snell, N. S. (1976). Thermal contraction and flexure of mid‐continent and Atlantic marginal basins. Geophysical Journal International, 45(1), 125–154.
    [Google Scholar]
  102. Spasojevic, S., & Gurnis, M. (2012). Sea level and vertical motion of continents from dynamic earth models since the Late Cretaceous. AAPG Bulletin, 96(11), 2037–2064. https://doi.org/10.1306/03261211121
    [Google Scholar]
  103. Spasojević, S., Liu, L., Gurnis, M., & Müller, R. D. (2008). The case for dynamic subsidence of the U.S. east coast since the Eocene. Geophysical Research Letters, 35(8), 1–6. https://doi.org/10.1029/2008gl033511
    [Google Scholar]
  104. Spohn, T., & Schubert, G. (1982). Convective thinning of the lithosphere: A mechanism for the initiation of continental rifting. Journal of Geophysical Research: Solid Earth, 87(B6), 4669–4681. https://doi.org/10.1029/JB087iB06p04669
    [Google Scholar]
  105. Steckler, M. S. (1999). High‐resolution sequence stratigraphic modeling 1: The interplay of sedimentation, erosion, and subsidence. In J. W.Harbaugh, W. L.Watney, E. C.Rankey, R.Slingerland, R. H.Goldstein, & E. K.Franseen (Eds.), Numerical experiments in stratigraphy: Recent advances in stratigraphic and Sedimentologic computer simulations (Vol. 62). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.99.62.0139
    [Google Scholar]
  106. Steckler, M. S., Mountain, G. S., Miller, K. G., & Christie‐Blick, N. (1999). Reconstruction of Tertiary progradation and clinoform development on the New Jersey passive margin by 2‐D backstripping. Marine Geology, 154(1–4), 399–420.
    [Google Scholar]
  107. Steckler, M. S., Reynolds, D., Coakley, B., Swift, B., & Jarrard, R. (1993). Modelling passive margin sequence stratigraphy. In H. W.Posamentier, C. P.Summerhayes, B. U.Haq, & G. P.Allen (Eds.), Sequence stratigraphy and facies associations (pp.19–41). Blackwell Scientific Publications.
    [Google Scholar]
  108. Steckler, M. S., Ridente, D., & Trincardi, F. (2007). Modeling of sequence geometry north of Gargano Peninsula by changing sediment pathways in the Adriatic Sea. Continental Shelf Research, 27(3), 526–541. https://doi.org/10.1016/j.csr.2006.11.007
    [Google Scholar]
  109. Steckler, M. S., & Watts, A. (1978). Subsidence of the Atlantic‐type continental margin off New York. Earth and Planetary Science Letters, 41(1), 1–13. https://doi.org/10.1016/0012‐821X(78)90036‐5
    [Google Scholar]
  110. Steckler, M. S., Watts, A. B., Thorne, J. A., Sheridan, R. E., & Grow, J. A. (1988). Subsidence and basin modeling at the U.S. Atlantic passive margin. In The Atlantic continental margin (Vol. I‐2). Geological Society of America. https://doi.org/10.1130/dnag‐gna‐i2.399
    [Google Scholar]
  111. Storn, R., & Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359. https://doi.org/10.1023/A:1008202821328
    [Google Scholar]
  112. Strobel, J., Cannon, R., Christopher, G. S., Kendall, C. S., Biswas, G., & Bezdek, J. (1989). Interactive (SEDPAK) simulation of clastic and carbonate sediments in shelf to basin settings. Computers & Geosciences, 15(8), 1279–1290. https://doi.org/10.1016/0098‐3004(89)90092‐7
    [Google Scholar]
  113. Swift, D., & Thorne, J. (1991). Sedimentation on continental margins, I: A general model for shelf sedimentation. Shelf Sands and Sandstone Bodies: Geometry, Facies and Sequence Stratigraphy, 14, 3–31.
    [Google Scholar]
  114. Syvitski, J. P. M., & Hutton, E. W. H. (2001). 2D SEDFLUX 1.0C:: An advanced process‐response numerical model for the fill of marine sedimentary basins. Computers & Geosciences, 27(6), 731–753. https://doi.org/10.1016/S0098‐3004(00)00139‐4
    [Google Scholar]
  115. Thorne, J. A., & Swift, D. J. P. (1992). Sedimentation on continental margins, VI: A regime model for depositional sequences, their component systems tracts, and bounding surfaces. In Shelf sand and sandstone bodies (pp. 189–255). International Association of Sedimentologists. https://doi.org/10.1002/9781444303933.ch6
    [Google Scholar]
  116. Vail, P. R., MitchumJr, R., & ThompsonIII, S. (1977). Seismic stratigraphy and global changes of sea level: Part 4. Global cycles of relative changes of sea level: Section 2. Application of seismic reflection configuration to stratigraphic interpretation. American Association of Petroleum Geologists.
    [Google Scholar]
  117. Van Sickel, W. A., Kominz, M. A., Miller, K. G., & Browning, J. V. (2004). Late cretaceous and Cenozoic sea‐level estimates: Backstripping analysis of borehole data, onshore New Jersey. Basin Research, 16(4), 451–465. https://doi.org/10.1111/j.1365‐2117.2004.00242.x
    [Google Scholar]
  118. Van Wagoner, J. C., Mitchum, R., Campion, K., & Rahmanian, V. (1990). Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: Concepts for high‐resolution correlation of time and facies. American Association of Petroleum Geologists.
    [Google Scholar]
  119. Walcott, R. I. (1972). Gravity, flexure, and the growth of sedimentary basins at a continental edge. GSA Bulletin, 83(6), 1845–1848. https://doi.org/10.1130/0016‐7606(1972)83[1845:Gfatgo]2.0.Co;2
    [Google Scholar]
  120. Watts, A., Karner, G., & Steckler, M. S. (1982). Lithospheric flexure and the evolution of sedimentary basins. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 305(1489), 249–281. https://doi.org/10.1098/rsta.1982.0036
    [Google Scholar]
  121. Watts, A., & Ryan, W. (1976). Flexure of the lithosphere and continental margin basins. In M. H. P.Bott (Ed.), Developments in geotectonics (Vol. 12, pp. 25–44). Elsevier.
    [Google Scholar]
  122. Watts, A., & Steckler, M. (1979). Subsidence and eustasy at the continental margin of eastern North America. In M.Talwani, & W. B. F.Ryan (Eds.), Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment (Vol. 3, pp. 218–234). American Geophysical Union as part of the Maurice Ewing Series.
    [Google Scholar]
  123. Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., Vleeschouwer, D. D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., … Zachos, J. C. (2020). An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science, 369(6509), 1383–1387. https://doi.org/10.1126/science.aba6853
    [Google Scholar]
  124. Wijns, C., Poulet, T., Boschetti, F., Dyt, C., & Griffiths, C. M. (2004). Interactive inverse methodology applied to stratigraphic forward modelling. Geological Society, London, Special Publications, 239(1), 147–156. https://doi.org/10.1144/GSL.SP.2004.239.01.10
    [Google Scholar]
  125. Withjack, M., Malinconico, M., & Durcanin, M. (2020). The “Passive” margin of eastern North America: Rifting and the influence of prerift orogenic activity on postrift development. Lithosphere, 2020(1), 1–29. https://doi.org/10.2113/2020/8876280
    [Google Scholar]
  126. Yuan, X. P., Braun, J., Guerit, L., Simon, B., Bovy, B., Rouby, D., Robin, C., & Jiao, R. (2019). Linking continental erosion to marine sediment transport and deposition: A new implicit and O(N) method for inverse analysis. Earth and Planetary Science Letters, 524, 115728. https://doi.org/10.1016/j.epsl.2019.115728
    [Google Scholar]
  127. Zhang, J., Flaig, P., Wartes, M., Aschoff, J., & Shuster, M. (2021). Integrating stratigraphic modelling, inversion analysis, and shelf‐margin records to guide provenance analysis: An example from the Cretaceous Colville Basin, Arctic Alaska. Basin Research, 33(3), 1954–1966. https://doi.org/10.1111/bre.12543
    [Google Scholar]
/content/journals/10.1111/bre.12854
Loading
/content/journals/10.1111/bre.12854
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error