1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

Inferred palaeogeography of the central Po Plain, deduced from compositional variations of core sands, during: (a) MIS 12 and MIS 10 (petrofacies 1). (b) MIS 5–4 (petrofacies 2). (c) MIS 2 (petrofacies 2). (d) The early Holocene (petrofacies 2). (e) The late Holocene (petrofacies 3).

, Abstract

Integrated stratigraphic‐compositional studies on alluvial successions provide a valuable tool to investigate the provenance of detritus in multi‐source systems. The Po Plain is an intermediate sink of the Po‐Adriatic source‐to‐sink system, fed by rivers draining two orogens. The Alps are characterized by extensive outcrops of plutonic‐metamorphic and ultramafic rocks to the north‐west and of Mesozoic carbonates to the east (Southern Alps). The Northern Apennines, to the south, are dominated by sedimentary successions. The Po River flows from the Western Alps to the Adriatic Sea, interacting with a dense network of transverse tributaries that drain the two orogens. Stratigraphic, sedimentological and compositional analyses of two 101 and 77.5 m‐long cores, recovered from the Central Po Plain, reveal the stacking of three petrofacies, which reflects distinct provenance and configurations of the fluvial network. A South‐Alpine sedimentary input between MIS 12 and MIS 10 is testified by petrofacies 1, characterized by carbonate‐ and volcanic‐rich detritus from rocks exposed in the Southern Alps. A northward shift of the Po River of more than 30 km is marked by a quartz‐feldspar and metamorphic‐rich detritus (petrofacies 2), similar to modern Po River sands. This dramatic reorganization of the fluvial network likely occurred around MIS 9–MIS 8 and is possibly structurally controlled. A further northward shift of the Po River and the onset of Apennine sedimentation in the Late Holocene is revealed by petrofacies 3, rich in sedimentary lithics from the Apennine successions. The results of this study document how compositional analysis, if framed in a robust stratigraphic picture, may provide clues on the evolution of multi‐source alluvial systems.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12858
2024-02-20
2025-04-19
Loading full text...

Full text loading...

References

  1. Allen, J. R. L. (1963). The classification of cross‐stratified units with notes on their origin. Sedimentology, 2, 93–114.
    [Google Scholar]
  2. Amorosi, A., Barbieri, G., Bruno, L., Campo, B., Drexler, T. M., Hong, W., Rossi, V., Sammartino, I., Scarponi, D., Vaiani, S. C., & Bohacs, K. M. (2019). Three‐fold nature of coastal progradation during the Holocene eustatic highstand, Po Plain, Italy–close correspondence of stratal character with distribution patterns. Sedimentology, 66(7), 3029–3052.
    [Google Scholar]
  3. Amorosi, A., Pavesi, M., Ricci Lucchi, M., Sarti, G., & Piccin, A. (2008). Climatic signature of cyclic fluvial architecture from the Quaternary of the central Po Plain, Italy. Sedimentary Geology, 209, 58–68.
    [Google Scholar]
  4. Amorosi, A., & Sammartino, I. (2018). Shifts in sediment provenance across a hierarchy of bounding surfaces: A sequence‐stratigraphic perspective from bulk‐sediment geochemistry. Sedimentary Geology, 375, 145–156.
    [Google Scholar]
  5. Amorosi, A., Sammartino, I., Dinelli, E., Campo, B., Guercia, T., Trincardi, F., & Pellegrini, C. (2022). Provenance and sediment dispersal in the Po‐Adriatic source‐to‐sink system unraveled by bulk‐sediment geochemistry and its linkage to catchment geology. Earth‐Science Reviews, 234, 104202. https://doi.org/10.1016/j.earscirev.2022.104202
    [Google Scholar]
  6. Baroni, C., Guidobaldi, G., Salvatore, M. C., Christl, M., & Ivy‐Ochs, S. (2018). Last glacial maximum glaciers in the northern Apennines reflect primarily the influence of southerly storm‐tracks in the western Mediterranean. Quaternary Science Reviews, 197, 352–367.
    [Google Scholar]
  7. Bonini, L., Toscani, G., & Seno, S. (2014). Three‐dimensional segmentation and different rupture behavior during the 2012 Emilia seismic sequence (northern Italy). Tectonophysics, 630, 33–42.
    [Google Scholar]
  8. Bronk Ramsey, C., & Lee, S. (2013). Recent and planned developments of the program OxCal. Radiocarbon, 55, 720–730.
    [Google Scholar]
  9. Bruno, L., Amorosi, A., Lugli, S., Sammartino, I., & Fontana, D. (2021). Trunk river and tributary interactions recorded in the Pleistocene‐Holocene stratigraphy of the Po Plain (northern Italy). Sedimentology, 68, 2918–2943.
    [Google Scholar]
  10. Bruno, L., Amorosi, A., Severi, P., & Bartolomei, P. (2015). High‐frequency depositional cycles within the late Quaternary alluvial succession of Reno River (northern Italy). Italian Journal of Geosciences, 134(2), 339–354.
    [Google Scholar]
  11. Bruno, L., Bohacs, K. M., Campo, B., Drexler, T. M., Rossi, V., Sammartino, I., Scarponi, D., Hong, W., & Amorosi, A. (2017). Early Holocene transgressive palaeogeography in the Po coastal plain (northern Italy). Sedimentology, 64(7), 1792–1816.
    [Google Scholar]
  12. Bruno, L., Campo, B., Costagli, B., Stouthamer, E., Teatini, P., Zoccarato, C., & Amorosi, A. (2020). Factors controlling natural subsidence in the Po Plain. Proceedings of the International Association of Hydrological Sciences, 382, 285–290.
    [Google Scholar]
  13. Bruno, L., Piccin, A., Sammartino, I., & Amorosi, A. (2018). Decoupled geomorphic and sedimentary response of Po River and its Alpine tributaries during the last glacial/post‐glacial episode. Geomorphology, 317, 184–198.
    [Google Scholar]
  14. Campo, B., Amorosi, A., & Bruno, L. (2016). Contrasting alluvial architecture of late Pleistocene and Holocene deposits along a 120‐km transect from the central Po Plain (northern Italy). Sedimentary Geology, 341, 265–275.
    [Google Scholar]
  15. Campo, B., Bruno, L., & Amorosi, A. (2020). Basin‐scale stratigraphic correlation of late Pleistocene‐Holocene (MIS 5e‐MIS 1) strata across the rapidly subsiding Po Basin (northern Italy). Quaternary Science Reviews, 237, 106300.
    [Google Scholar]
  16. Caracciolo, L. (2020). Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development. Earth‐Science Reviews, 209, 103226. https://doi.org/10.1016/j.earscirev.2020.103226
    [Google Scholar]
  17. Carminati, E., & Doglioni, C. (2012). Alps vs. Apennines: The paradigm of a tectonically asymmetric Earth. Earth‐Science Reviews, 112, 67–96.
    [Google Scholar]
  18. Castaldini, D., Marchetti, M., & Cardarelli, A. (2009). Geomorphological and archaeological aspects in the central Po plain (northern Italy). In “Ol'man river”. Geo‐archaeological aspects of rivers and river plains (pp. 21–22). Universiteit Gent.
    [Google Scholar]
  19. Collinson, J. D. (1978). Alluvial sediments. In H. G.Reading (Ed.), Sedimentary environments and facies. Blackwell.
    [Google Scholar]
  20. Critelli, S., Arribas, J., Le Pera, E., Tortosa, A., Marsaglia, K. M., & Latter, K. K. (2003). The recycled orogenic sand provenance from an uplifted thrust belt, Betic Cordillera, southern Spain. Journal of Sedimentary Research, 73(1), 72–81.
    [Google Scholar]
  21. Demurtas, L., Bruno, L., Lugli, S., & Fontana, D. (2022). Evolution of the Po Alpine River system during the last 45 Ky inferred from stratigraphic and compositional evidence (Ostiglia, northern Italy). Geosciences, 12, 342.
    [Google Scholar]
  22. Dickinson, W. R., & Rich, E. I. (1972). Petrologic intervals and petrofacies in the Great Valley sequence, Sacramento Valley, California. Geological Society of America Bulletin, 83(10), 3007–3024.
    [Google Scholar]
  23. Diessel, C. F. K. (1992). Coal facies and depositional environment. In Coal‐bearing depositional systems (pp. 161–264). Springer.
    [Google Scholar]
  24. Ehlers, J., & Gibbard, P. (2011). Quaternary glaciation. In V. P.Singh, P.Singh, & U. K.Haritashya (Eds.), Encyclopedia of snow, ice and glaciers (pp. 873–882). https://doi.org/10.1007/978‐90‐481‐2642‐2_423
    [Google Scholar]
  25. ENEL‐DCO . (1984). Localizzazione di un impianto nucleare nella Regione Lombardia, completamento degli studi geologici e geomorfologici locali. Area di Viadana; Area di S. Benedetto Po; Dorsale Ferrarese: Rome, Ente Nazionale per L'Energia Elettrica–Direzione delle Costruzioni, 3 vols.
  26. Fontana, D. (1991). Detrital carbonate grains as provenance indicators in the Upper Cretaceous Pietraforte Formxation (northern Apennines). Sedimentology, 38, 1085–1095.
    [Google Scholar]
  27. Fontana, D., Amoroso, S., Minarelli, L., & Stefani, M. (2019). Sand liquefaction phenomena induced by a blast test: New insights from composition and texture of sands (late Quaternary, Emilia, Italy). Journal of Sedimentary Research, 89(1), 13–27.
    [Google Scholar]
  28. Fontana, D., Lugli, S., Dori, S. M., Caputo, R., & Stefani, M. (2015). Sedimentology and composition of sands injected during the seismic crisis of May 2012 (Emilia, Italy): Clues for source layer identification and liquefaction regime. Sedimentary Geology, 325, 158–167.
    [Google Scholar]
  29. Garzanti, E., Ando, S., & Vezzoli, G. (2008). Settling equivalence of detrital minerals and grain‐size dependence of sediment composition. Earth and Planetary Science Letters, 273, 138–151.
    [Google Scholar]
  30. Garzanti, E., Vezzoli, G., & Andò, S. (2011). Paleogeographic and paleodrainage changes during Pleistocene glaciations (Po Plain, northern Italy). Earth‐Science Reviews, 105, 25–48.
    [Google Scholar]
  31. GeoMol Team . (2015). GeoMol, assessing subsurface potentials of the alpine foreland basins for sustainable planning and use of natural resources. Project Report. Alpine Space Programme (p. 188).
  32. Goodbred, S. L., Jr., & Kuehl, S. A. (2000). The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges–Brahmaputra delta. Sedimentary Geology, 133(3–4), 227–248. https://doi.org/10.1016/S0037‐0738(00)00041‐5
    [Google Scholar]
  33. Gunderson, K. L., Pazzaglia, F. J., Picotti, V., Anastasio, D. A., Kodama, K. P., Rittenou, R. T., Frankel, K. F., Ponza, A., Berti, C., Negri, A., & Sabbatini, A. (2014). Unraveling tectonic and climatic controls on synorogenic growth strata (northern Apennines, Italy). GSA Bulletin, 126‐3(4), 532–552.
    [Google Scholar]
  34. Ji, H., Chen, S., Pan, S., Xu, C., Tian, Y., Li, P., Liu, Q., & Chen, L. (2022). Fluvial sediment source to sink transfer at the Yellow River Delta: Quantifications, causes, and environmental impacts. Journal of Hydrology, 608, 127622. https://doi.org/10.1016/j.jhydrol.2022.127622
    [Google Scholar]
  35. Li, J., Shi, X., Liu, S., Qiao, S., Zhang, H., Wu, K., Fang, X., Yang, G., Cao, P., Sun, X., & Kornkanitnan, N. (2021). Frequency of deep‐sea turbidity as an important component of the response of a source‐to‐sink system to climate: A case study in the eastern middle Bengal Fan since 32 ka. Marine Geology, 441, 106603. https://doi.org/10.1016/j.margeo.2021.106603
    [Google Scholar]
  36. Limonta, M., Garzanti, E., & Resentini, A. (2023). Petrology of Bengal Fan turbidites (IODP Expeditions 353 and 354): Provenance versus diagenetic control. Journal of Sedimentary Research, 93(4), 256–272. https://doi.org/10.2110/jsr.2022.071
    [Google Scholar]
  37. Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1). https://doi.org/10.1029/2004PA001071
    [Google Scholar]
  38. Liu, Z., Zhao, Y., Colin, C., Stattegger, K., Wiesner, M. G., Huh, C. A., Zhang, Y., Li, X., Sompongchaiyakul, P., You, C. F., & Li, Y. (2016). Source‐to‐sink transport processes of fluvial sediments in the South China Sea. Earth‐Science Reviews, 153, 238–273. https://doi.org/10.1016/j.earscirev.2015.08.005
    [Google Scholar]
  39. Lugli, S., Marchetti Dori, S., & Fontana, D. (2007). Alluvial sand composition as a tool to unravel the late quaternary sedimentation of the Modena plain, northern Italy. In J.Arribas, S.Critelli, & M. J.Johnsson (Eds.), Sedimentary provenance and Petrogenesis: Perspectives from petrography and geochemistry (Vol. 420, pp. 57–72). Geological Society of America.
    [Google Scholar]
  40. Lugli, S., Marchetti Dori, S., Fontana, D., & Panini, F. (2004). Composition of sands in cores along the high‐speed rail (TAV): Preliminary indications on the sedimentary evolution of the Modena plain. Alpine And Mediterranean Quaternary, 17, 379–389.
    [Google Scholar]
  41. Marcolla, A., Monegato, G., Mozzi, P., Miola, A., & Stefani, C. (2021). Seesaw longitudinal–transverse drainage patterns driven by Middle and Late Pleistocene climate cycles in the foreland basin of the south‐eastern European Alps. Sedimentary Geology, 421, 105960. https://doi.org/10.1016/j.sedgeo.2021.105960
    [Google Scholar]
  42. Martelli, L., Bonini, M., Calabrese, L., Corti, G., Ercolessi, G., Molinari, F. C., Piccardi, L., Pondrelli, S., Sani, F., & Severi, P. (2017). Seismotectonic map of Emilia Romagna Region and surrounding areas to scale 1:250.000. D.R.E.Am. MAP.
    [Google Scholar]
  43. Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., Rogledi, S., & Sciunnach, D. (2003). Onset of major Pleistocene glaciations in the Alps. Geology, 31, 989–992.
    [Google Scholar]
  44. Muttoni, G., Scardia, G., Kent, D. V., Morsiani, E., Tremolada, F., Cremaschi, M., & Peretto, C. (2011). First dated human occupation of Italy at ~0.85 Ma during the late Early Pleistocene climate transition. Earth and Planetary Science Letters, 307, 241–252.
    [Google Scholar]
  45. Norini, G., Aghib, F. S., Di Capua, A., Facciorusso, J., Castaldini, D., Marchetti, M., Cavallin, A., Pini, R., Ravazzi, C., Zuluaga, M. C., & Piccin, A. (2021). Assessment of liquefaction potential in the central Po plain from integrated geomorphological, stratigraphic and geotechnical analysis. Engineering Geology, 282, 105997. https://doi.org/10.1016/j.enggeo.2021.105997
    [Google Scholar]
  46. Palamenghi, L., Schwenk, T., Spiess, V., & Kudrass, H. R. (2011). Seismostratigraphic analysis with centennial to decadal time resolution of the sediment sink in the Ganges–Brahmaputra subaqueous delta. Continental Shelf Research, 31(6), 712–730. https://doi.org/10.1016/j.csr.2011.01.008
    [Google Scholar]
  47. Piovan, S., Mozzi, P., & Stefani, C. (2010). Bronze age paleohydrography of the southern venetian plain. Geoarchaeology an International Journal, 25, 6–35.
    [Google Scholar]
  48. Ravazzi, C., Marchetti, M., Zanon, M., Perego, R., Quirino, T., Deaddis, M., De Amicis, M., & Margaritora, D. (2013). Lake evolution and landscape history in the lower Mincio River valley, unravelling drainage changes in the central Po plain (N‐Italy) since the bronze age. Quaternary International, 288, 195–205.
    [Google Scholar]
  49. Razum, I., Lužar‐Oberiter, B., Zaccarini, F., Babić, L., Miko, S., Hasan, O., Ilijanić, N., Beqiraj, E., & Pawlowsky‐Glahn, V. (2021). New sediment provenance approach based on orthonormal log ratio transformation of geochemical and heavy mineral data: Sources of eolian sands from the southeastern Adriatic archipelago. Chemical Geology, 583, 120451.
    [Google Scholar]
  50. Reimer, P. J., Austin, W. E., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., & Talamo, S. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon, 62(4), 725–757.
    [Google Scholar]
  51. Remitti, F., Vannucchi, P., Bettelli, G., Fantoni, L., Panini, F., & Vescovi, P. (2011). Tectonic and sedimentary evolution of the frontal part of an ancient subduction complex at the transition from accretion to erosion: The case of the Ligurian wedge of the northern Apennines, Italy. Geological Society of America Bulletin, 123(1–2), 51–70.
    [Google Scholar]
  52. Ricci Lucchi, F. (1987). Semi‐allochtonous sedimentation in the Apenninic thrust belt. Sedimentary Geology, 50, 119–134.
    [Google Scholar]
  53. Ricci Lucchi, F., Colalongo, M. L., Cremonini, G., Gasperi, G. F., Iaccarino, S., Papani, G., Raffi, S., & Rio, D. (1982). Evoluzione sedimentaria e paleogeografica nel margine appenninico. In G.Cremonini & F.Ricci Lucchi (Eds.), Guida alla geologia del margine appenninico padano (pp. 17–46). Guide Geologiche Regionali S.G.I.
    [Google Scholar]
  54. Richardson, J. L., & Vepraskas, M. J. (2001). Wetland soilsgenesis, hydrology, landscapes, and classification (p. 417). CRC Press, LLC.
    [Google Scholar]
  55. Savi, S., Norton, K. P., Picotti, V., Akçar, N., Delunel, R., Brardinoni, F., Kubik, P., & Schlunegger, F. (2014). Quantifying sediment supply at the end of the last glaciation: Dynamic reconstruction of an alpine debris‐flow fan. Geological Society of America Bulletin, 126(5–6), 773–790.
    [Google Scholar]
  56. Scardia, G., Muttoni, G., & Sciunnach, D. (2006). Subsurface magnetostratigraphy of Pleistocene sediments from the Po plain (Italy): Constraints on rates of sedimentation and rock uplift. Geological Society of America Bulletin, 118, 1299–1312.
    [Google Scholar]
  57. Schroeder, A., Wiesner, M. G., & Liu, Z. (2015). Fluxes of clay minerals in the South China Sea. Earth and Planetary Science Letters, 430, 30–42. https://doi.org/10.1016/j.epsl.2015.08.001
    [Google Scholar]
  58. Simoni, A., Ponza, A., Picotti, V., & Berti, M. (2013). Landslide‐related sediment yield rate in a large Apenninic catchment. In Margottini, C., Canuti, P., Sassa, K. (eds), Landslide science and practice: Volume 4: Global environmental change (pp. 307–313). https://doi.org/10.1007/978‐3‐642‐31337‐0_39
    [Google Scholar]
  59. Singh, I. B. (1972). On the bedding in the natural‐levee and point‐bar deposits of the Gomti River, Uttar Pradesh, India. Sedimentary Geology, 7, 309–317.
    [Google Scholar]
  60. Sinha, R., Gibling, M. R., Kettanah, Y., Tandon, S. K., Bhattacharja, P. S., Dasgupta, A. S., & Ghazanfari, P. (2009). Craton‐derived alluvium as a major sediment source in the Himalayan Foreland Basin of India. Geological Society of America Bulletin, 121(11/12), 1596–1610.
    [Google Scholar]
  61. Stefani, C. (2002). Variation in terrigenous supplies in the Upper Pliocene to recent deposits of the Venice area. Sedimentary Geology, 153(1–2), 43–55. https://doi.org/10.1016/S0037‐0738(02)00101‐X
    [Google Scholar]
  62. Stolt, M. H., & Rabenhorst, M. C. (2011). Introduction and historical development of subaqueous soil concepts. In P. M.Huang, Y.Li, & M. E.Sumner (Eds.), Handbook of soil science. CRC Press.
    [Google Scholar]
  63. Tentori, D., Amorosi, A., Milli, S., & Marsaglia, K. M. (2021). Sediment dispersal pathways in the Po coastal plain since the last glacial maximum: Provenance signals of autogenic and eustatic forcing. Basin Research, 33, 1407–1428.
    [Google Scholar]
  64. Tentori, D., Milli, S., & Marsaglia, K. M. (2018). A source‐to‐sink compositional model of a present highstand: An example in the low‐rank Tiber depositional sequence (Latium Tyrrhenian margin, Italy). Journal of Sedimentary Research, 88(10), 1238–1259.
    [Google Scholar]
  65. Turrini, C., Lacombe, O., & Roure, F. (2014). Present‐day 3D structural model of the Po Valley basin, Northern Italy. Marine and Petroleum Geology, 56, 266–289. https://doi.org/10.1016/j.marpetgeo.2014.02.006
    [Google Scholar]
  66. Van Grinsven, M., Marsaglia, K. M., & Romans, B. W. (2019). Sand provenance from source to sink in the Santa Monica Basin, California Borderlands: Significance of Calleguas Creek Input. Journal of Sedimentary Research, 17(1), 102–116. https://doi.org/10.2110/sepmsp.110.06
    [Google Scholar]
  67. Weltje, G. J. (2004). A quantitative approach to capturing the compositional variability of modern sands. Sedimentary Geology, 171, 59–77.
    [Google Scholar]
  68. Xue, Z., Liu, J. P., DeMaster, D., Van Nguyen, L., & Ta, T. (2010). Late Holocene evolution of the Mekong subaqueous delta, southern Vietnam. Marine Geology, 269(1–2), 46–60. https://doi.org/10.1016/j.margeo.2009.12.005
    [Google Scholar]
  69. Zuffa, G. G. (1985). Optical analyses of arenites: Influence of methodology on compositional results. In G.Zuffa (Ed.), Provenance of arenites (Vol. 148, pp. 165–189). D. Reidel, NATO Advanced Study Institute.
    [Google Scholar]
/content/journals/10.1111/bre.12858
Loading
/content/journals/10.1111/bre.12858
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): intermediate sink; Middle Pleistocene; Po Plain; sediment provenance

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error