1887
Volume 36, Issue 3
  • E-ISSN: 1365-2117

Abstract

[

Paleogeographic reconstructions illustrating the evolution of across the Gangdese magmatic arc system from Late Barremian to Cenomanian.

Paleogeographic reconstructions illustrating the evolution of across the Gangdese magmatic arc system from Late Barremian to Cenomanian.

, Abstract

Sedimentary basins adjacent to subduction‐related continental arcs provide important archives for deciphering the intricate history of convergent plate margins. The east‐west trending Gangdese magmatic arc was one of the most predominant topographic features located at the southern margin of Tibet before the arrival of the Indian plate. However, the detailed Cretaceous growth and evolution across the arc system remains ambiguous. Stratigraphy of the adjacent Xigaze forearc basin provides a well‐preserved and well‐exposed record of the tectonic and magmatic evolution of the arc throughout the Cretaceous period. We report new stratigraphic, sedimentological, geochronological, and provenance analyses of the Quarry Ridge sandstone in the Xigaze forearc basin along with compiled zircon U‐Pb ages ( = 9674) and Lu‐Hf isotopic signatures ( = 3389) from the Gangdese arc, the Xigaze forearc basin, and the Linzhou retroarc foreland basin to reconstruct the Early to middle Cretaceous magmatism and uplift of the Gangdese arc and concurrent sedimentary responses within both basins. Exhumation of the arc initiates at around 113 Ma suggested by arc detritus first arriving in both basins. Another episode of inferred uplift occurs at around 108 Ma, which resulted in coarse‐grained sedimentation in adjacent basins, preventing Central Lhasa detritus from reaching the Xigaze forearc basin further south and a facies and provenance change within the Linzhou basin. Finally, a third episode at around 101 Ma is reflected by deposition of the progradational Quarry Ridge clastic succession and marks the initiation of a substantial coarse‐grained depositional stage in the Xigaze forearc basin. Our study emphasizes the connection between coarse‐grained deposition in the forearc basin and arc magmatism and uplift. This study also provides an orogen‐scale assessment of the history of arc magmatism, uplift, and sedimentation across the Gangdese magmatic arc system, which supports interpretations that Tibet was already characterized by complex and substantial topographic relief during the Cretaceous before the collision between the Indian and Eurasian plates.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12866
2024-04-29
2024-07-14
Loading full text...

Full text loading...

References

  1. An, W., Hu, X., Garzanti, E., BouDagher‐Fadel, M. K., Wang, J., & Sun, G. (2014). Xigaze forearc basin revisited (South Tibet): Provenance changes and origin of the Xigaze Ophiolite. Geological Society of America Bulletin, 126, 1595–1613.
    [Google Scholar]
  2. Bain, H. A., & Hubbard, S. M. (2016). Stratigraphic evolution of a long‐lived submarine channel system in the Late Cretaceous Nanaimo Group, British Columbia, Canada. Sedimentary Geology, 337, 113–132.
    [Google Scholar]
  3. Barth, A. P., Wooden, J. L., Jacobson, C. E., & Economos, R. C. (2013). Detrital zircon as a proxy for tracking the magmatic arc system: The California arc example. Geology, 41, 223–226.
    [Google Scholar]
  4. Bernhardt, A., Jobe, Z. R., & Lowe, D. R. (2011). Stratigraphic evolution of a submarine channel–lobe complex system in a narrow fairway within the Magallanes foreland basin, Cerro Toro Formation, southern Chile. Marine and Petroleum Geology, 28, 785–806.
    [Google Scholar]
  5. Bouma, A. H. (1962). Sedimentology of some flysch deposits; a graphic approach to facies interpretation. Published Ph. D.
  6. Bouma, A. H. (2004). Key controls on the characteristics of turbidite systems. Geological Society, London, Special Publications, 222, 9–22.
    [Google Scholar]
  7. Capaldi, T. N., McKenzie, N. R., Horton, B. K., Mackaman‐Lofland, C., Colleps, C. L., & Stockli, D. F. (2021). Detrital zircon record of Phanerozoic magmatism in the southern Central Andes. Geosphere, 17, 876–897.
    [Google Scholar]
  8. Chapman, J. B., Ducea, M. N., Kapp, P., Gehrels, G. E., & DeCelles, P. G. (2017). Spatial and temporal radiogenic isotopic trends of magmatism in Cordilleran orogens. Gondwana Research, 48, 189–204.
    [Google Scholar]
  9. Chapman, J. B., & Kapp, P. (2017). Tibetan Magmatism Database. Geochemistry, Geophysics, Geosystems, 18, 4229–4234.
    [Google Scholar]
  10. Chapman, J. B., Shields, J. E., Ducea, M. N., Paterson, S. R., Attia, S., & Ardill, K. E. (2021). The causes of continental arc flare ups and drivers of episodic magmatic activity in Cordilleran orogenic systems. Lithos, 398–399, 106307.
    [Google Scholar]
  11. Chu, M. F., Chung, S. L., Song, B., Liu, D., O'Reilly, S. Y., Pearson, N. J., Ji, J., & Wen, D. J. (2006). Zircon U‐Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9), 745–748.
    [Google Scholar]
  12. Coutts, D. S., Matthews, W. A., & Hubbard, S. M. (2019). Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geoscience Frontiers, 10, 1421–1435.
    [Google Scholar]
  13. Dai, J., Wang, C., Zhu, D., Li, Y., Zhong, H., & Ge, Y. (2015). Multi‐stage volcanic activities and geodynamic evolution of the Lhasa terrane during the cretaceous: Insights from the Xigaze forearc basin. Lithos, 218, 127–140.
    [Google Scholar]
  14. de Silva, S. L., Riggs, N. R., & Barth, A. P. (2015). Quickening the pulse: Fractal tempos in continental arc magmatism. Elements, 11, 113–118.
    [Google Scholar]
  15. DeCelles, P. G., Ducea, M. N., Kapp, P., & Zandt, G. (2009). Cyclicity in Cordilleran orogenic systems. Nature Geoscience, 2, 251–257.
    [Google Scholar]
  16. DeCelles, P. G., & Graham, S. A. (2015). Cyclical processes in the North American Cordilleran orogenic system. Geology, 43, 499–502.
    [Google Scholar]
  17. DeCelles, P. G., Kapp, P., Ding, L., & Gehrels, G. E. (2007). Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geological Society of America Bulletin, 119, 654–680.
    [Google Scholar]
  18. DeCelles, P. G., Zandt, G., Beck, S. L., Currie, C. A., Ducea, M. N., Kapp, P., Gehrels, G. E., Carrapa, B., Quade, J., & Schoenbohm, L. M. (2015). Cyclical orogenic processes in the Cenozoic central Andes. In Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile (Vol. 212, pp. 459–490). Geological Society of America Memoirs.
    [Google Scholar]
  19. DeGraaff‐Surpless, K. and Graham, S.A. (2002) Detrital zircon provenance analysis of the Great Valley Group, California: Evolution of an arc‐forearc system, Geological Society of America Bulletin. 114(12):1564–1580.
    [Google Scholar]
  20. Deptuck, M., & Sylvester, Z. (2017). Submarine fans and their channels, levees, and lobes. In Submarine geomorphology (pp. 273–299). Springer.
    [Google Scholar]
  21. Dickinson, W. R. (1995). Forearc basin. In C. J.Busby & R. V.Ingersoll (Eds.), Tectonics of sedimentary basins (pp. 221–261). Blackwell Science.
    [Google Scholar]
  22. Dickinson, W. R., & Gehrels, G. E. (2009). Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288, 115–125.
    [Google Scholar]
  23. Ding, L., Kapp, P., Cai, F., Garzione, C. N., Xiong, Z., Wang, H., & Wang, C. (2022). Timing and mechanisms of Tibetan Plateau uplift. Nature Reviews Earth and Environment, 3, 652–667.
    [Google Scholar]
  24. Ding, L., Xu, Q., Yue, Y., Wang, H., Cai, F., & Li, S. (2014). The Andean‐type Gangdese Mountains: Paleoelevation record from the Paleocene–Eocene Linzhou Basin. Earth and Planetary Science Letters, 392, 250–264.
    [Google Scholar]
  25. Dobbs, S. C., Riggs, N. R., Marsaglia, K. M., González‐León, C. M., Cecil, M. R., & Smith, M. E. (2021). The Permian Monos formation: Stratigraphic and detrital zircon evidence for Permian cordilleran arc development along the southwestern margin of Laurentia (northwestern Sonora, Mexico). Geosphere, 17, 520–537.
    [Google Scholar]
  26. Dürr, S. B. (1996). Provenance of Xigaze fore‐arc basin clastic rocks (Cretaceous, south Tibet). Geological Society of America Bulletin, 108, 669–684.
    [Google Scholar]
  27. Einsele, G. (2000). Sedimentary basins: Evolution, facies, and sediment budgets (p. 792). Springer‐Verlag. https://doi.org/10.1007/978‐3‐662‐04029‐4
    [Google Scholar]
  28. Einsele, G., Liu, B., Dürr, S., Frisch, W., Liu, G., Luterbacher, H. P., Ratschbacher, L., Ricken, W., Wendt, J., Wetzel, A., Yu, G., & Zheng, H. (1994). The Xigaze forearc basin: Evolution and facies architecture (Cretaceous, Tibet). Sedimentary Geology, 90, 1–32.
    [Google Scholar]
  29. Elder, W. P. (1988). Geometry of upper cretaceous bentonite beds: Implications about volcanic source areas and paleowind patterns, western interior, United States. Geology, 16, 835–838.
    [Google Scholar]
  30. Englert, R. G., Hubbard, S. M., Coutts, D. S., & Matthews, W. A. (2018). Tectonically controlled initiation of contemporaneous deep‐water channel systems along a Late Cretaceous continental margin, western British Columbia, Canada. Sedimentology, 65, 2404–2438.
    [Google Scholar]
  31. Finzel, E. S., Enkelmann, E., Falkowski, S., & Hedeen, T. (2016). Long‐term fore‐arc basin evolution in response to changing subduction styles in southern Alaska. Tectonics, 35, 1735–1759.
    [Google Scholar]
  32. Finzel, E. S., Ridgway, K. D., & Trop, J. M. (2015). Provenance signature of changing plate boundary conditions along a convergent margin: Detrital record of spreading‐ridge and flat‐slab subduction processes, Cenozoic forearc basins, Alaska. Geosphere, 11, 823–849.
    [Google Scholar]
  33. Garzione, C. N., Hoke, G. D., Libarkin, J. C., Withers, S., MacFadden, B., Eiler, J., Ghosh, P., & Mulch, A. (2008). Rise of the Andes. Science, 320, 1304–1307.
    [Google Scholar]
  34. Ghosh, B., & Lowe, D. R. (1993). The architecture of deep‐water channel complexes, Cretaceous Venado sandstone member, Sacramento Valley, California. In S. A.Graham & D. R.Lowe (Eds.), Advances in the Sedimentary Geology of the Great Valley Group (Vol. 73, pp. 51–65). SEPM, Pacific Section, Guidebook.
    [Google Scholar]
  35. Greene, T. J., & Surpless, K. D. (2017). Facies architecture and provenance of a boulder‐conglomerate submarine channel system, Panoche Formation, Great Valley Group: A forearc basin response to middle Cretaceous tectonism in the California convergent margin. Geosphere, 13, 838–869.
    [Google Scholar]
  36. Hao, M., Malkowski, M. A., Cao, S., Dai, J., & Wang, C. (2022). Sm‐Nd isotopic compositions of deep‐marine mudstones, Xigaze forearc basin, southern Tibet: Implications for drainage evolution and expansion. Journal of Asian Earth Sciences, 234, 105228.
    [Google Scholar]
  37. Haq, B. U. (2014). Cretaceous eustasy revisited. Global and Planetary Change, 113, 44–58.
    [Google Scholar]
  38. Hay, W. W. (2017). Toward understanding Cretaceous climate—An updated review. Science China Earth Sciences, 60, 5–19.
    [Google Scholar]
  39. Herriott, T. M., Crowley, J. L., Schmitz, M. D., Wartes, M. A., & Gillis, R. J. (2019). Exploring the law of detrital zircon: LA‐ICP‐MS and CA‐TIMS geochronology of Jurassic forearc strata, Cook Inlet, Alaska, USA. Geology, 47(11), 1044–1048.
    [Google Scholar]
  40. Hickson, T. A., & Lowe, D. R. (2002). Facies architecture of a submarine fan channel‐levee complex: The Juniper Ridge Conglomerate, Coalinga, California: Architecture of a submarine fan channel‐levee complex. Sedimentology, 49, 335–362.
    [Google Scholar]
  41. Hu, F., Wu, F., Chapman, J. B., Ducea, M. N., Ji, W., & Liu, S. (2020). Quantitatively tracking the elevation of the Tibetan plateau since the cretaceous: Insights from whole‐rock Sr/Y and La/Yb ratios. Geophysical Research Letters, 47, e2020GL089202. https://doi.org/10.1029/2020GL089202
    [Google Scholar]
  42. Huang, W., van Hinsbergen, D. J. J., Maffione, M., Orme, D. A., Dupont‐Nivet, G., Guilmette, C., Ding, L., Guo, Z., & Kapp, P. (2015). Lower cretaceous Xigaze ophiolites formed in the Gangdese forearc: Evidence from paleomagnetism, sediment provenance, and stratigraphy. Earth and Planetary Science Letters, 415, 142–153.
    [Google Scholar]
  43. Hubbard, S. M., Romans, B. W., & Graham, S. A. (2008). Deep‐water foreland basin deposits of the Cerro Toro Formation, Magallanes basin, Chile: Architectural elements of a sinuous basin axial channel belt: Sinuous deep‐water foreland basin axial channel, Chile. Sedimentology, 55, 1333–1359.
    [Google Scholar]
  44. Ibarra, D. E., Dai, J., Gao, Y., Lang, X., Duan, P., Gao, Z., Chen, J., Methner, K., Sha, L., Tong, H., Han, X., Zhu, D., Li, Y., Tang, J., Cheng, H., Chamberlain, C. P., & Wang, C. (2023). High‐elevation Tibetan Plateau before India–Eurasia collision recorded by triple oxygen isotopes. Nature Geoscience, 16, 810–815.
    [Google Scholar]
  45. Ingersoll, R. V. (1979). Evolution of the Late Cretaceous forearc basin, northern and central California. Geological Society of America Bulletin, 90, 813.
    [Google Scholar]
  46. Ingersoll, R. V. (1988). Tectonics of sedimentary basins. Geological Society of America Bulletin, 100, 1704–1719.
    [Google Scholar]
  47. Ji, W.‐Q., Wu, F.‐Y., Chung, S.‐L., Li, J.‐X., & Liu, C.‐Z. (2009). Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262, 229–245.
    [Google Scholar]
  48. Jianguo, L., Batten, D. J., & Yiyong, Z. (2008). Palynological indications of environmental changes during the Late Cretaceous–Eocene on the southern continental margin of Laurasia, Xizang (Tibet). Palaeogeography, Palaeoclimatology, Palaeoecology, 265, 78–86.
    [Google Scholar]
  49. Jobe, Z. R., Bernhardt, A., & Lowe, D. R. (2010). Facies and architectural asymmetry in a conglomerate‐rich submarine channel fill, Cerro Toro Formation, Sierra Del Toro, Magallanes Basin, Chile. Journal of Sedimentary Research, 80, 1085–1108.
    [Google Scholar]
  50. Kane, I. A., & Hodgson, D. M. (2011). Sedimentological criteria to differentiate submarine channel levee subenvironments: Exhumed examples from the Rosario Fm. (Upper Cretaceous) of Baja California, Mexico, and the fort Brown Fm. (Permian), Karoo Basin, S. Africa. Marine and Petroleum Geology, 28, 807–823.
    [Google Scholar]
  51. Kapp, P., & DeCelles, P. G. (2019). Mesozoic‐Cenozoic geological evolution of the Himalayan‐Tibetan orogen and working tectonic hypotheses. American Journal of Science, 319, 159–254.
    [Google Scholar]
  52. Kapp, P., DeCelles, P. G., Leier, A. L., Fabijanic, J. M., He, S., Pullen, A., Gehrels, G. E., & Ding, L. (2007). The Gangdese retroarc thrust belt revealed. GSA Today, 17, 4.
    [Google Scholar]
  53. Kapp, P., Yin, A., Harrison, T. M., & Ding, L. (2005). Cretaceous‐Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117, 865.
    [Google Scholar]
  54. Kimbrough, D. L., Smith, D. P., Mahoney, J. B., Moore, T. E., Grove, M., Gastil, R. G., Ortega‐Rivera, A., & Fanning, C. M. (2001). Forearc‐basin sedimentary response to rapid Late Cretaceous batholith emplacement in the Peninsular Ranges of southern and Baja California. Geology, 29, 491–494.
    [Google Scholar]
  55. Leier, A. L., DeCelles, P. G., Kapp, P., & Ding, L. (2007). The Takena Formation of the Lhasa terrane, southern Tibet: The record of a Late Cretaceous retroarc foreland basin. Geological Society of America Bulletin, 119, 31–48.
    [Google Scholar]
  56. Leier, A. L., Kapp, P., Gehrels, G. E., & DeCelles, P. G. (2007). Detrital zircon geochronology of Carboniferous? Cretaceous strata in the Lhasa terrane, Southern Tibet. Basin Research, 19, 361–378.
    [Google Scholar]
  57. Li, G., Kohn, B., Sandiford, M., & Xu, Z. (2017). India‐Asia convergence: Insights from burial and exhumation of the Xigaze fore‐arc basin, south Tibet. Journal of Geophysical Research: Solid Earth, 122, 3430–3449.
    [Google Scholar]
  58. Lowe, D. R. (1982). Sediment gravity flows; II, depositional models with special reference to the deposits of high‐density turbidity currents. Journal of Sedimentary Research, 52, 279–297.
    [Google Scholar]
  59. Lowe, D. R. (2004). Deep‐water sandstones: Submarine canyon to basin plain, Western California. Pacific Section American Association of Petroleum Geologists.
    [Google Scholar]
  60. Lowe, D. R., Graham, S. A., Malkowski, M. A., & Das, B. (2019). The role of avulsion and splay development in deep‐water channel systems: Sedimentology, architecture, and evolution of the deep‐water Pliocene Godavari “A” channel complex, India. Marine and Petroleum Geology, 105, 81–99.
    [Google Scholar]
  61. Ma, X., Attia, S., Cawood, T., Cao, W., Xu, Z., & Li, H. (2022). Arc tempos of the Gangdese batholith, southern Tibet. Journal of Geodynamics, 149, 101897.
    [Google Scholar]
  62. Malkowski, M. A., Jobe, Z. R., Sharman, G. R., & Graham, S. A. (2018). Down‐slope facies variability within deep‐water channel systems: Insights from the Upper Cretaceous Cerro Toro formation, southern Patagonia. Sedimentology, 65, 1918–1946.
    [Google Scholar]
  63. Malkowski, M. A., Schwartz, T. M., Sharman, G. R., Sickmann, Z. T., & Graham, S. A. (2017). Stratigraphic and provenance variations in the early evolution of the Magallanes‐Austral foreland basin: Implications for the role of longitudinal versus transverse sediment dispersal during arc‐continent collision. Geological Society of America Bulletin, 129, 349–371.
    [Google Scholar]
  64. Malkowski, M. A., Sharman, G. R., Graham, S. A., & Fildani, A. (2017). Characterisation and diachronous initiation of coarse clastic deposition in the Magallanes‐Austral foreland basin, Patagonian Andes. Basin Research, 29, 298–326.
    [Google Scholar]
  65. Masalimova, L. U., Lowe, D. R., Sharman, G. R., King, P. R., & Arnot, M. J. (2016). Outcrop characterization of a submarine channel‐lobe complex: The Lower Mount Messenger Formation, Taranaki Basin, New Zealand. Marine and Petroleum Geology, 71, 360–390.
    [Google Scholar]
  66. Meng, F. Y., Zhao, Z., Zhu, D.‐C., Zhang, L.‐L., Guan, Q., Liu, M., Yu, F., & Mo, X. X. (2010). Petrogenesis of late cretaceous adakite‐like rocks in Mamba from the eastern Gangdese, Tibet. Acta Petrologica Sinica, 26, 2180–2192.
    [Google Scholar]
  67. Meng, J., Wang, C., Zhao, X., Coe, R., Li, Y., & Finn, D. (2012). India‐Asia collision was at 24° N and 50 Ma: Palaeomagnetic proof from southernmost Asia. Scientific Reports, 2, 925.
    [Google Scholar]
  68. Meng, Y., Mooney, W. D., Ma, Y., Xu, H., & Tang, R. (2019). Back‐arc basin evolution in the southern Lhasa sub‐terrane, southern Tibet: Constraints from U‐Pb ages and in‐situ Lu‐Hf isotopes of detrital zircons. Journal of Asian Earth Sciences, 185, 104026.
    [Google Scholar]
  69. Metcalf, K., & Kapp, P. (2019). History of subduction erosion and accretion recorded in the Yarlung Suture Zone, southern Tibet. In P. J.Treloar & M. P.Searle (Eds.), Himalayan tectonics: A modern synthesis (Vol. 483, p. 517). Geological Soc Publishing House.
    [Google Scholar]
  70. Murphy, M. A., Yin, A., Harrison, T. M., Dürr, S. B., Chen, Z., Ryerson, F. J., Kidd, W. S. F., Wang, X., & Zhou, X. (1997). Did the Indo‐Asian collision alone create the Tibetan plateau?Geology, 25, 719–722.
    [Google Scholar]
  71. Mutti, E. (1977). Distinctive thin‐bedded turbidite facies and related depositional environments in the Eocene Hecho Group (South‐central Pyrenees, Spain). Sedimentology, 24, 107–131.
    [Google Scholar]
  72. Mutti, E. (1985). Turbidite systems and their relations to depositional sequences. In G. G.Zuffa (Ed.), Provenance of arenites (pp. 65–93). Springer.
    [Google Scholar]
  73. Mutti, E., & Lucchi, F. R. (1972). Turbidites of the northern Apennines, introduction to facies analysis (English translation by T.H. Nilsen, 1978). International Geology Review, 20, 125–166.
    [Google Scholar]
  74. Mutti, E., & Lucchi, F. R. (1975). Turbidite facies and facies associations. Verlag nicht ermittelbar.
    [Google Scholar]
  75. Mutti, E., & Normark, W. R. (1987). Comparing examples of modern and ancient turbidite systems: Problems and concepts. In J. K.Leggett & G. G.Zuffa (Eds.), Marine clastic sedimentology (pp. 1–38). Springer.
    [Google Scholar]
  76. Noda, A. (2016). Forearc basins: Types, geometries, and relationships to subduction zone dynamics. Geological Society of America Bulletin, 128, 879–895.
    [Google Scholar]
  77. Normark, W. R., Piper, D. J. W., & Hess, G. R. (1979). Distributary channels, sand lobes, and mesotopography of Navy Submarine Fan, California Borderland, with applications to ancient fan sediments. Sedimentology, 26, 749–774.
    [Google Scholar]
  78. Orme, D. A., Carrapa, B., & Kapp, P. (2015). Sedimentology, provenance and geochronology of the upper Cretaceous‐lower Eocene western Xigaze forearc basin, southern Tibet. Basin Research, 27, 387–411.
    [Google Scholar]
  79. Orme, D. A., & Laskowski, A. K. (2016). Basin analysis of the Albian‐Santonian Xigaze Forearc, Lazi Region, South‐Central Tibet. Journal of Sedimentary Research, 86, 894–913.
    [Google Scholar]
  80. Orme, D. A., Laskowski, A. K., Zilinsky, M. F., Chao, W., Guo, X., Cai, F., & Lin, D. (2021). Sedimentology and provenance of newly identified Upper Cretaceous trench basin strata, Denggar, southern Tibet: Implications for development of the Eurasian margin prior to India‐Asia collision. Basin Research, 33, 1454–1473.
    [Google Scholar]
  81. Posamentier, H. W., & Martinsen, O. J. (2011). The character and genesis of submarine mass‐transport deposits: Insights from outcrop and 3D seismic data. In R. C.Shipp, P.Weimer, & H. W.Posamentier (Eds.), Mass‐transport deposits in deepwater settings (Vol. 96). SEPM Society for Sedimentary Geology.
    [Google Scholar]
  82. Posamentier, H. W., & Vail, P. R. (1988). Eustatic controls on clastic deposition II—Sequence and systems tract models. In C. K.Wilgus, B. S.Hastings, H.Posamentier, J. V.Wagoner, C. A.Ross, & C. G. S. C.Kendall (Eds.), Sea‐level changes: An integrated approach (Vol. 42). SEPM Society for Sedimentary Geology.
    [Google Scholar]
  83. Prélat, A., Hodgson, D. M., & Flint, S. S. (2009). Evolution, architecture and hierarchy of distributary deep‐water deposits: A high‐resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology, 56, 2132–2154.
    [Google Scholar]
  84. Pullen, A., Ibáñez‐Mejía, M., Gehrels, G. E., Ibáñez‐Mejía, J. C., & Pecha, M. (2014). What happens when n= 1000? Creating large‐n geochronological datasets with LA‐ICP‐MS for geologic investigations. Journal of Analytical Atomic Spectrometry, 29, 971–980.
    [Google Scholar]
  85. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29.
    [Google Scholar]
  86. Romans, B. W., Hubbard, S. M., & Graham, S. A. (2009). Stratigraphic evolution of an outcropping continental slope system, Tres Pasos Formation at Cerro Divisadero, Chile. Sedimentology, 56, 737–764.
    [Google Scholar]
  87. Schärer, U., Xu, R.‐H., & Allègre, C. J. (1984). UPb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa‐Xigaze region, Tibet. Earth and Planetary Science Letters, 69, 311–320.
    [Google Scholar]
  88. Schwartz, T. M., Surpless, K. D., Colgan, J. P., Johnstone, S. A., & Holm‐Denoma, C. S. (2021). Detrital zircon record of magmatism and sediment dispersal across the North American Cordilleran arc system (28–48° N). Earth‐Science Reviews, 220, 103734.
    [Google Scholar]
  89. Shanmugam, G. (2016). Submarine fans: A critical retrospective (1950–2015). Journal of Palaeogeography, 5, 110–184.
    [Google Scholar]
  90. Sharman, G. R., Graham, S. A., Grove, M., Kimbrough, D. L., & Wright, J. E. (2015). Detrital zircon provenance of the Late Cretaceous–Eocene California forearc: Influence of Laramide low‐angle subduction on sediment dispersal and paleogeography. Geological Society of America Bulletin, 127, 38–60.
    [Google Scholar]
  91. Sharman, G. R., & Malkowski, M. A. (2020). Needles in a haystack: Detrital zircon U‐Pb ages and the maximum depositional age of modern global sediment. Earth‐Science Reviews, 203, 103109.
    [Google Scholar]
  92. Sharman, G. R., & Malkowski, M. A. (2024). Modeling apparent Pb loss in zircon U–Pb geochronology. Geochronology, 6(1), 37–51.
    [Google Scholar]
  93. Sharman, G. R., Sharman, J. P., & Sylvester, Z. (2018). detritalPy: A Python‐based toolset for visualizing and analysing detrital geo‐thermochronologic data. Depositional Record, 4, 202–215.
    [Google Scholar]
  94. Sømme, T. O., Helland‐Hansen, W., Martinsen, O. J., & Thurmond, J. B. (2009). Relationships between morphological and sedimentological parameters in source‐to‐sink systems: A basis for predicting semi‐quantitative characteristics in subsurface systems. Basin Research, 21, 361–387.
    [Google Scholar]
  95. Spicer, R. A. (2017). Tibet, the Himalaya, Asian monsoons and biodiversity – In what ways are they related?Plant Diversity, 39, 233–244.
    [Google Scholar]
  96. Spicer, R. A., Su, T., Valdes, P. J., Farnsworth, A., Wu, F.‐X., Shi, G., Spicer, T. E. V., & Zhou, Z. (2021). Why ‘the uplift of the Tibetan Plateau’ is a myth. National Science Review, 8, nwaa091.
    [Google Scholar]
  97. Spychala, Y. T., Hodgson, D. M., Flint, S. S., & Mountney, N. P. (2015). Constraining the sedimentology and stratigraphy of submarine intraslope lobe deposits using exhumed examples from the Karoo Basin, South Africa. Sedimentary Geology, 322, 67–81.
    [Google Scholar]
  98. Spychala, Y. T., Hodgson, D. M., Prélat, A., Kane, I. A., Flint, S. S., & Mountney, N. P. (2017). Frontal and lateral submarine lobe fringes: Comparing sedimentary facies, architecture and flow processes. Journal of Sedimentary Research, 87, 75–96.
    [Google Scholar]
  99. Sundell, K. E., Gehrels, G. E., Blum, D., M., Saylor, J. E., Pecha, M. E., & Hundley, B. P. (2024). An exploratory study of “large‐n” detrital zircon geochronology of the Book Cliffs, ut via rapid (3 s/analysis) u–pb dating. Basin Research, 36, e12840.
    [Google Scholar]
  100. Surpless, K. D. (2015). Geochemistry of the Great Valley Group: An integrated provenance record. International Geology Review, 57, 747–766.
    [Google Scholar]
  101. Tang, M., Ji, W.‐Q., Chu, X., Wu, A., & Chen, C. (2021). Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology, 49, 76–80.
    [Google Scholar]
  102. Vail, P.R., Mitchum, R.M., Jr. and Thompson, S., III (1977) Seismic Stratigraphy and global changes of sea level, part 4: Global cycles of relative changes of sea level. In: Seismic stratigraphy — Applications to hydrocarbon exploration (Ed. C.E.Payton), American Association of Petroleum Geologists, 26, 0.
    [Google Scholar]
  103. Wan, X. Q., Luo, W., Wang, C. S., & Luba, J. S. (1998). Discovery and significance of Cretaceous fossils from the Xigaze forearc basin, Tibet. Journal of Asian Earth Sciences, 16, 217–223.
    [Google Scholar]
  104. Wang, C., Li, X., Liu, Z., Li, Y., Jansa, L., Dai, J., & Wei, Y. (2012). Revision of the cretaceous‐Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone. Gondwana Research, 22, 415–433.
    [Google Scholar]
  105. Wang, J.‐G., Hu, X., Garzanti, E., An, W., & Liu, X.‐C. (2017). The birth of the Xigaze forearc basin in southern Tibet. Earth and Planetary Science Letters, 465, 38–47.
    [Google Scholar]
  106. Wang, J.‐G., Hu, X., Garzanti, E., BouDagher‐Fadel, M. K., Liu, Z.‐C., Li, J., & Wu, F.‐Y. (2020). From extension to tectonic inversion: Mid‐Cretaceous onset of Andean‐type orogeny in the Lhasa block and early topographic growth of Tibet. GSA Bulletin, 132, 2432–2454.
    [Google Scholar]
  107. Wen, D., Liu, D., Chung, S., Chu, M., Ji, J., Zhang, Q., Song, B., Lee, T., Yeh, M., & Lo, C. (2008). Zircon SHRIMP U–Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252, 191–201.
    [Google Scholar]
  108. Williams, T. A., & Graham, S. A. (2013). Controls on forearc basin architecture from seismic and sequence stratigraphy of the Upper Cretaceous Great Valley Group, central Sacramento Basin, California. International Geology Review, 55, 2030–2059.
    [Google Scholar]
  109. Wu, F.‐Y., Ji, W.‐Q., Liu, C.‐Z., & Chung, S.‐L. (2010). Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore‐arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 271, 13–25.
    [Google Scholar]
  110. Xu, Q., Ding, L., Cao, Y., Cai, F., Li, S., Tan, X., Kershaw, S., & Tang, H. (2022). Late Cretaceous−early Paleogene rise of the Gangdese magmatic arc (south Tibet) from sea level to high mountains. GSA Bulletin, 135(7‐8), 1939–1954.
    [Google Scholar]
  111. Zhu, D., Wang, Q., Cawood, P. A., Zhao, Z., & Mo, X. (2017). Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research ‐ Solid Earth, 122, 214–223.
    [Google Scholar]
  112. Zhu, D.‐C., Mo, X.‐X., Niu, Y., Zhao, Z.‐D., Wang, L.‐Q., Liu, Y.‐S., & Wu, F.‐Y. (2009). Geochemical investigation of Early Cretaceous igneous rocks along an east–west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 268, 298–312.
    [Google Scholar]
  113. Zhu, D.‐C., Wang, Q., Chung, S.‐L., Cawood, P. A., & Zhao, Z.‐D. (2019). Gangdese magmatism in southern Tibet and India–Asia convergence since 120 Ma. Geological Society of London, Special Publication, 483, 583–604.
    [Google Scholar]
  114. Zhu, D.‐C., Wang, Q., Weinberg, R. F., Cawood, P. A., Zhao, Z.‐D., Hou, Z. Q., & Mo, X.‐X. (2023). Continental crustal growth processes recorded in the Gangdese Batholith, Southern Tibet. Annual Review of Earth and Planetary Sciences, 51, 155–188. https://doi.org/10.1146/annurev‐earth‐032320‐110452
    [Google Scholar]
  115. Zhu, D.‐C., Wang, Q., Zhao, Z.‐D., Chung, S.‐L., Cawood, P. A., Niu, Y., Liu, S.‐A., Wu, F.‐Y., & Mo, X.‐X. (2015). Magmatic record of India‐Asia collision. Scientific Reports, 5, 14289. https://doi.org/10.1038/srep14289
    [Google Scholar]
  116. Zhu, D.‐C., Zhao, Z.‐D., Niu, Y., Dilek, Y., Hou, Z. Q., & Mo, X.‐X. (2013). The origin and pre‐Cenozoic evolution of the Tibetan plateau. Gondwana Research, 23, 1429–1454. https://doi.org/10.1016/j.gr.2012.02.002
    [Google Scholar]
  117. Zhu, D.‐C., Zhao, Z.‐D., Niu, Y., Dilek, Y., & Mo, X.‐X. (2011). Lhasa terrane in southern Tibet came from Australia. Geology, 39, 727–730.
    [Google Scholar]
  118. Zhu, D.‐C., Zhao, Z.‐D., Niu, Y., Mo, X.‐X., Chung, S.‐L., Hou, Z.‐Q., Wang, L.‐Q., & Wu, F.‐Y. (2011). The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301, 241–255.
    [Google Scholar]
  119. Zhu, D.‐C., Zhao, Z.‐D., Pan, G.‐T., Lee, H.‐Y., Kang, Z.‐Q., Liao, Z.‐L., Wang, L.‐Q., Li, G.‐M., Dong, G.‐C., & Liu, B. (2009). Early cretaceous subduction‐related adakite‐like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequent melt–peridotite interaction?Journal of Asian Earth Sciences, 34, 298–309.
    [Google Scholar]
/content/journals/10.1111/bre.12866
Loading
/content/journals/10.1111/bre.12866
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error