1887
Volume 36, Issue 3
  • E-ISSN: 1365-2117

Abstract

[Abstract

Chlorite minerals, mainly in the form of clay coats, play a critical role in determining the reservoir quality of siliciclastic rocks. They can positively influence reservoir quality by preserving porosity during deep burial, but they can also play a negative role by reducing permeability through pore filling. The main aim of this research is to determine the optimal conditions for chlorite growth in sedimentary basins. This study investigates the Lower Cretaceous turbidite sandstone of the Agat Formation in the North Sea. We used a source‐to‐sink approach to investigate the impact of sediment source composition, chemical weathering and depositional environment on chlorite formation. Understanding the interplay between these processes can help refine exploration and exploitation strategies, optimise hydrocarbon recovery, and reduce exploration risks. Representative samples from two hydrocarbon fields (the Duva and Agat fields) were investigated using petrography, geochemistry, heavy mineral identification and quantification, and U–Pb geochronology of detrital zircons. Our results show a strong heterogeneity in the sediment provenance between the two turbidite systems. In the Duva field, the sandstone is derived from a mixture of mafic and felsic sources, producing Fe‐rich sediments. Intense chemical weathering generates fine fraction materials rich in kaolinite, vermiculite, and hydroxy‐interlayered clays, which are transported into shallow marine settings. Subsequent interaction with seawater results in the formation of glauconitic materials, Fe‐illite, and phosphatic concretions. These Fe‐rich materials are remobilised into deep marine settings, providing precursors for the development of authigenic Fe‐clays such as berthierine and chlorite. Conversely, in the Agat field, the sandstone is predominantly sourced from felsic rocks that underwent low chemical weathering, producing sediment rich in quartz and feldspar with a low amount of clays. With few Fe‐rich materials transported into the basin, the development of chlorite in the Agat field was less pervasive. Basin configuration and depositional environment exerted additional control on chlorite distribution. In the confined turbidite system (e.g. Duva field), chlorite is typically found as coating, whereas in less confined turbidite systems (e.g. Agat field) chlorite shows complex distribution related to depositional environment and dewatering processes. Our findings demonstrate the importance of considering the entire sediment routing system, from source to sink, when predicting chlorite occurrence and its impact on reservoir quality in deep marine settings. This integrated approach can guide exploration and development efforts in deepwater clastic reservoirs.

,

The influence of sediment provenance and depositional setting on chlorite formation in the Agat Formation.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12867
2024-05-14
2024-07-14
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/3/bre12867.html?itemId=/content/journals/10.1111/bre.12867&mimeType=html&fmt=ahah

References

  1. Ajdukiewicz, J. M., & Larese, R. E. (2012). How clay grain coats inhibit quartz cement and preserve porosity in deeply buried sandstones: Observations and experiments. American Association of Petroleum Geologists Bulletin, 96, 2091–2119. https://doi.org/10.1306/02211211075
    [Google Scholar]
  2. Anand, R. R., & Gilkes, R. J. (1984). Weathering of ilmenite in a lateritic pallid zone. Clays and Clay Minerals, 32, 363–374. https://doi.org/10.1346/CCMN.1984.0320504
    [Google Scholar]
  3. Ansart, C., 2022. Formation des latérites du bouclier amazonien: Apports du couplage minéralogie—géochimie—géochronologie. Paris‐Saclay University.
    [Google Scholar]
  4. Azzam, F., Blaise, T., Dewla, M., Patrier, P., Beaufort, D., Elmola, A. A., Brigaud, B., Portier, E., Barbarand, J., & Clerc, S. (2023). Role of depositional environment on clay coat distribution in deeply buried turbidite sandstones: Insights from the Agat field, Norwegian North Sea. Marine and Petroleum Geology, 155, 106379. https://doi.org/10.1016/J.MARPETGEO.2023.106379
    [Google Scholar]
  5. Azzam, F., Blaise, T., Patrier, P., Abd‐Elmola, A., Beaufort, D., Portier, E., Brigaud, B., Barbarand, J., & Clerc, S. (2022). Diagenesis and reservoir quality evolution of the Lower Cretaceous turbidite sandstones of the Agat Formation (Norwegian North Sea): Impact of clay grain coating and carbonate cement. Marine and Petroleum Geology, 142, 105768. https://doi.org/10.1016/j.marpetgeo.2022.105768
    [Google Scholar]
  6. Barbarand, J., Bour, I., Pagel, M., Quesnel, F., Delcambre, B., Dupuis, C., & Yans, J. (2018). Post‐Paleozoic evolution of the northern Ardenne Massif constrained by apatite fission‐track thermochronology and geological data. BSGF Earth Sciences Bulletin, 189, 16. https://doi.org/10.1051/bsgf/2018015
    [Google Scholar]
  7. Basu, A., Young, S. W., Suttner, L. J., James, W. C., & Mack, G. H. (1975). Re‐evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Research, 45, 873–882. https://doi.org/10.1306/212F6E6F‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  8. Bauck, M., Faleide, J. I., & Fossen, H. (2021). Late Jurassic to Late Cretaceous canyons on the Måløy Slope: Source to sink fingerprints on the northernmost North Sea rift margin, Norway. Norwegian Journal of Geology, 101, 1–30. https://doi.org/10.17850/njg101‐3‐1
    [Google Scholar]
  9. Beaufort, D., Rigault, C., Billon, S., Billault, V., Inoue, A., Inoue, S., & Patrier, P. (2015). Chlorite and chloritization processes through mixed‐layer mineral series in low‐temperature geological systems—A review. Clay Minerals, 50, 497–523. https://doi.org/10.1180/claymin.2015.050.4.06
    [Google Scholar]
  10. Billault, V., Beaufort, D., Baronnet, A., & Lacharpagne, J.‐C. (2003). A nanopetrographic and textural study of grain‐coating chlorites in sandstone reservoirs. Clay Minerals, 38, 315–328. https://doi.org/10.1180/0009855033830098
    [Google Scholar]
  11. Bingen, B., & Solli, A. (2009). Geochronology of magmatism in the Caledonian and Sveconorwegian belts of Baltica: Synopsis for detrital zircon provenance studies. Norsk Geologisk Tidsskrift, 89, 267–290.
    [Google Scholar]
  12. Bloch, S., Lander, R. H., & Bonnell, L. (2002). Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. American Association of Petroleum Geologists Bulletin, 86, 301–328. https://doi.org/10.1306/61eedabc‐173e‐11d7‐8645000102c1865d
    [Google Scholar]
  13. Blott, S. J., & Pye, K. (2001). GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26, 1237–1248. https://doi.org/10.1002/ESP.261
    [Google Scholar]
  14. Bouma, A. H. (2000). Coarse‐grained and fine‐grained turbidite systems as end member models: Applicability and dangers. Marine and Petroleum Geology, 17, 137–143. https://doi.org/10.1016/S0264‐8172(99)00020‐3
    [Google Scholar]
  15. Bouma, A. H. (2004). Key controls on the characteristics of turbidite systems. Geological Society—Special Publications, 222, 9–22. https://doi.org/10.1144/GSL.SP.2004.222.01.02
    [Google Scholar]
  16. Braun, J. J., Pagel, M., Muller, J. P., Bilong, P., Michard, A., & Guillet, B. (1990). Cerium anomalies in lateritic profiles. Geochimica et Cosmochimica Acta, 54, 781–795. https://doi.org/10.1016/0016‐7037(90)90373‐S
    [Google Scholar]
  17. Brekke, H. (2000). The tectonic evolution of the Norwegian Sea continental margin with emphasis on the Voring and More Basins. Geological Society Special Publication, 167, 327–378. https://doi.org/10.1144/GSL.SP.2000.167.01.13
    [Google Scholar]
  18. Bugge, T., Tveiten, B., & Bäckström, S. (2001). The depositional history of the cretaceous in the northeastern North Sea. Norwegian Petroleum Society Special Publications, 10, 279–291. https://doi.org/10.1016/S0928‐8937(01)80018‐7
    [Google Scholar]
  19. Bukta, K. E. (2018). Slørebotn sub‐basin tectono‐stratigraphic framework. The University of Stavanger.
    [Google Scholar]
  20. Butler, J. P., Jamieson, R. A., Steenkamp, H. M., & Robinson, P. (2013). Discovery of coesite–eclogite from the Nordøyane UHP domain, Western Gneiss Region, Norway: Field relations, metamorphic history, and tectonic significance. Journal of Metamorphic Geology, 31, 147–163. https://doi.org/10.1111/jmg.12004
    [Google Scholar]
  21. Chen, M., Sun, M., Cai, K., Buslov, M. M., Zhao, G., & Rubanova, E. S. (2014). Geochemical study of the Cambrian–Ordovician meta‐sedimentary rocks from the northern Altai‐Mongolian terrane, northwestern Central Asian Orogenic Belt: Implications on the provenance and tectonic setting. Journal of Asian Earth Sciences, 96, 69–83. https://doi.org/10.1016/j.jseaes.2014.08.028
    [Google Scholar]
  22. Clark, S. P. (1966). Section 1: Composition of rocks. In Handbook of physical constants (pp. 1–6). Geological Society of America. https://doi.org/10.1130/MEM97‐p1
    [Google Scholar]
  23. Corentin, P., Deconinck, J.‐F., Pellenard, P., Amédro, F., Bruneau, L., Chenot, E., Matrion, B., Huret, E., & Landrein, P. (2020). Environmental and climatic controls of the clay mineralogy of Albian deposits in the Paris and Vocontian basins (France). Cretaceous Research, 108, 104342. https://doi.org/10.1016/j.cretres.2019.104342
    [Google Scholar]
  24. Cornu, S., Lucas, Y., Lebon, E., Ambrosi, J. P., Luizão, F., Rouiller, J., Bonnay, M., & Neal, C. (1999). Evidence of titanium mobility in soil profiles, Manaus, central Amazonia. Geoderma, 91, 281–295. https://doi.org/10.1016/S0016‐7061(99)00007‐5
    [Google Scholar]
  25. Craigie, N. (2018). Geochemistry and mineralogy. In Principles of elemental chemostratigraphy: A practical user guide (pp. 39–83). Springer International Publishing. https://doi.org/10.1007/978‐3‐319‐71216‐1_3
    [Google Scholar]
  26. Crittenden, S., Cole, J. M., & Kirk, M. J. (1998). The distribution of Aptian sandstones in the central and northern North Sea (UK sector)—A lowstand systems tract play. Part 2: Distribution and exploration strategy. Journal of Petroleum Geology, 21, 187–211. https://doi.org/10.1111/j.1747‐5457.1998.tb00653.x
    [Google Scholar]
  27. Cuthbert, S. J., Carswell, D. A., Krogh‐Ravna, E. J., & Wain, A. (2000). Eclogites and eclogites in the Western Gneiss Region, Norwegian Caledonides. Lithos, 52, 165–195. https://doi.org/10.1016/S0024‐4937(99)00090‐0
    [Google Scholar]
  28. Deepthy, R., & Balakrishnan, S. (2005). Climatic control on clay mineral formation: Evidence from weathering profiles developed on either side of the Western Ghats. Journal of Earth System Science, 114, 545–556. https://doi.org/10.1007/BF02702030
    [Google Scholar]
  29. Dowey, P. J., Hodgson, D. M., & Worden, R. H. (2012). Pre‐requisites, processes, and prediction of chlorite grain coatings in petroleum reservoirs: A review of subsurface examples. Marine and Petroleum Geology, 32, 63–75. https://doi.org/10.1016/j.marpetgeo.2011.11.007
    [Google Scholar]
  30. Duteil, T., Bourillot, R., Grégoire, B., Virolle, M., Brigaud, B., Nouet, J., Braissant, O., Portier, E., Féniès, H., Patrier, P., Gontier, E., Svahn, I., & Visscher, P. T. (2020). Experimental formation of clay‐coated sand grains using diatom biofilm exopolymers. Geology, 48, 1012–1017. https://doi.org/10.1130/G47418.1/5074182/g47418.pdf
    [Google Scholar]
  31. Ehrenberg, S. N. (1993). Preservation of anomalously high porosity in deeply buried sandstones by grain‐coating chlorite: Examples from the Norwegian continental shelf. American Association of Petroleum Geologists Bulletin, 77, 1260–1286. https://doi.org/10.1306/f4c8e062‐1712‐11d7‐8645000102c1865d
    [Google Scholar]
  32. Follestad, B. A. (1974). Tangen. Beskrivelse til kvartaergeologisk kart 1916 II—M 1:50 000 med fargetrykt kart. Norges Geologiske Undersøkelse, 313, 62.
    [Google Scholar]
  33. Fossen, H., Cavalcante, G. C., & de Almeida, R. P. (2017). Hot versus cold orogenic behavior: Comparing the Araçuaí‐West Congo and the Caledonian Orogens. Tectonics, 36, 2159–2178. https://doi.org/10.1002/2017TC004743
    [Google Scholar]
  34. Fredin, O., Viola, G., Zwingmann, H., Sørlie, R., Brönner, M., Lie, J. E., Grandal, E. M., Müller, A., Margreth, A., Vogt, C., & Knies, J. (2017). The inheritance of a mesozoic landscape in western Scandinavia. Nature Communications, 8. https://doi.org/10.1038/ncomms14879
    [Google Scholar]
  35. Gärtner, A., Linnemann, U., Sagawe, A., Hofmann, M., Ullrich, B., & Kleber, A. (2013). Morphology of zircon crystal grains in sediments—Characteristics, classifications, definitions Morphologie von zirkonen in sedimenten—Merkmale, klassifikationen, definitionen. Journal of Central European Geology, 59, 65–73.
    [Google Scholar]
  36. Giles, M. R., Stevenson, S., Martin, S. V., Cannon, S. J. C., Hamilton, P. J., Marshall, J. D., & Samways, G. M. (1992). The reservoir properties and diagenesis of the Brent Group: A regional perspective. Geological Society, London, Special Publications, 61, 289–327. https://doi.org/10.1144/GSL.SP.1992.061.01.16
    [Google Scholar]
  37. Glennie, K. W. (2009). Petroleum geology of the North Sea: Basic concepts and recent advances: Fourth edition. In Petroleum Geology of the North Sea: Basic Concepts and Recent Advances: Fourth Edition (pp. 245–293). Wiley. https://doi.org/10.1002/9781444313413
    [Google Scholar]
  38. Goldberg, K., & Humayun, M. (2010). The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil. Palaeogeography Palaeoclimatology Palaeoecology, 293, 175–183. https://doi.org/10.1016/j.palaeo.2010.05.015
    [Google Scholar]
  39. Gradstein, F. M., Waters, C. N., Charnock, M., Munsterman, D., Hollerbach, M., Brunstad, H., Hammer, Ø., & Vergara, L. (2016). Stratigraphic guide to the cromer knoll, shetland and chalk groups, north sea and norwegian sea. Newsletters on Stratigraphy, 49, 73–280. https://doi.org/10.1127/nos/2016/0071
    [Google Scholar]
  40. Griffiths, J., Worden, R. H., Utley, J. E. P., Brostrøm, C., Martinius, A. W., Lawan, A. Y., & Al‐Hajri, A. I. (2021). Origin and distribution of grain‐coating and pore‐filling chlorite in deltaic sandstones for reservoir quality assessment. Marine and Petroleum Geology, 134, 105326. https://doi.org/10.1016/j.marpetgeo.2021.105326
    [Google Scholar]
  41. Hansen, H. N., Løvstad, K., Lageat, G., Clerc, S., & Jahren, J. (2021). Chlorite coating patterns and reservoir quality in deep marine depositional systems—Example from the Cretaceous Agat Formation, Northern North Sea, Norway. Basin Research, 33, 2725–2744. https://doi.org/10.1111/BRE.12581
    [Google Scholar]
  42. Heinrich, B., & Nicole, D. (2011). Chapter 6. A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions. Geological Society, London, Memoirs, 36, 81–92. https://doi.org/10.1144/M36.6
    [Google Scholar]
  43. Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110. https://doi.org/10.1023/A:1008119611481
    [Google Scholar]
  44. Hugo, V., & Cornell, D. H. (1991). Altered ilmenites in Holocene dunes from Zululand, South Africa: Petrographic evidence for multistage alteration. South African Journal of Geology, 94, 365–378.
    [Google Scholar]
  45. Indrevær, K., Gabrielsen, R. H., & Faleide, J. I. (2017). Early cretaceous synrift uplift and tectonic inversion in the loppa high area, southwestern Barents Sea, Norwegian shelf. Journal of the Geological Society, 174, 242–254. https://doi.org/10.1144/jgs2016‐066
    [Google Scholar]
  46. Jackson, C. A. L., Barber, G. P., & Martinsen, O. J. (2008). Submarine slope morphology as a control on the development of sand‐rich turbidite depositional systems: 3D seismic analysis of the Kyrre Fm (Upper Cretaceous), Måløy Slope, offshore Norway. Marine and Petroleum Geology, 25, 663–680. https://doi.org/10.1016/J.MARPETGEO.2007.12.007
    [Google Scholar]
  47. Johannessen, K., Kohlmann, F., Ksienzyk, A., Dunkl, I., & Jacobs, J. (2013). Tectonic evolution of the SW Norwegian passive margin based on low‐temperature thermochronology from the innermost Hardangerfjord. Norsk Geologisk Tidsskrift, 93, 242–260.
    [Google Scholar]
  48. Knudsen, C., Thomsen, T. B., Kalsbeek, F., Kristensen, J. A., Vital, H., & McLimans, R. K. (2015). Composition of ilmenite and provenance of zircon in northern Brazil. Geological Survey of Denmark and Greenland Bulletin, 33, 81–84. https://doi.org/10.34194/geusb.v33.4515
    [Google Scholar]
  49. Kotowski, J., Nejbert, K., & Olszewska‐Nejbert, D. (2020). Tourmalines as a tool in provenance studies of Terrigenous material in extra‐Carpathian Albian (Uppermost Lower Cretaceous) sands of Miechów Synclinorium, Southern Poland. Minerals, 10, 0917. https://doi.org/10.3390/min10100917
    [Google Scholar]
  50. Krumbein, W. C. (1963). Stratigraphy and sedimentation (2nd ed.). W.H. Freeman.
    [Google Scholar]
  51. Ksienzyk, A., Dunkl, I., Jacobs, J., Fossen, H., & Kohlmann, F. (2014). From orogen to passive margin: Constraints from fission track and (U‐Th)/He analyses on Mesozoic uplift and fault reactivation in SW Norway. Geological Society of London, Special Publication, 390, 679–702. https://doi.org/10.1144/SP390.27
    [Google Scholar]
  52. Lidmar‐Bergstrom, K., Olsson, S., & Olvmo, M. (1997). Palaeosurfaces and associated saprolites in southern Sweden (pp. 95–124). Geological Society London Special Publications.
    [Google Scholar]
  53. Lidmar‐Bergström, K., Olsson, S., & Roaldset, E. (1999). Relief features and palaeoweathering remnants in formerly glaciated Scandinavian basement areas (pp. 275–301). Special Publication of the International Association of Sedimentologists.
    [Google Scholar]
  54. Lidmar‐Bergström, K., Olsson, S., & Roaldset, E. (2009). Relief features and palaeoweathering remnants in formerly glaciated Scandinavian basement areas. In Palaeoweathering, palaeosurfaces and related continental deposits (Vol. 27, pp. 275–301). International Association of Sedimentologists Special Publications. https://doi.org/10.1002/9781444304190.ch11
    [Google Scholar]
  55. Lien, T., Midtbø, R. E., & Martinsen, O. J. (2006). Depositional facies and reservoir quality of deep‐marine sandstones in the Norwegian Sea. Norsk Geologisk Tidsskrift, 86, 71–92.
    [Google Scholar]
  56. Loveland, P. J. (1984). The soil clays of Great Britain: I. England and Wales. Clay Minerals, 19, 681–707. https://doi.org/10.1180/claymin.1984.019.5.02
    [Google Scholar]
  57. Ludwig, K. R. (1998). On the treatment of concordant uranium‐lead ages. Geochimica et Cosmochimica Acta, 62(4), 665–676. https://doi.org/10.1016/S0016‐7037(98)00059‐3
    [Google Scholar]
  58. Martinsen, O. J., Lien, T., & Jackson, C. (2005). Cretaceous and Palaeogene turbidite systems in the North Sea and Norwegian Sea basins: Source, staging area and basin physiography controls on reservoir development. Petroleum Geology Conference Proceedings, 6, 1147–1164. https://doi.org/10.1144/0061147
    [Google Scholar]
  59. McLennan, S. M. (1989). Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21, 169–200.
    [Google Scholar]
  60. Meunier, A., Caner, L., Hubert, F., El Albani, A., & Pret, D. (2013). The weathering intensity scale (WIS): An alternative approach of the chemical index of alteration (CIA). American Journal of Science, 313, 113–143. https://doi.org/10.2475/02.2013.03
    [Google Scholar]
  61. Meyer, R. (1976). Continental sedimentation, soil genesis and marine transgression in the basal beds of the Cretaceous in the east of the Paris Basin. Sedimentology, 23, 235–253. https://doi.org/10.1111/j.1365‐3091.1976.tb00048.x
    [Google Scholar]
  62. Migoń, P., & Lidmar‐Bergström, K. (2001). Weathering mantles and their significance for geomorphological evolution of central and northern Europe since the Mesozoic. Earth‐Science Reviews, 56, 285–324. https://doi.org/10.1016/S0012‐8252(01)00068‐X
    [Google Scholar]
  63. Morad, S., Ketzer, J. M., & De Ros, L. F. (2013). Linking diagenesis to sequence stratigraphy: An integrated tool for understanding and predicting reservoir quality distribution. In Linking diagenesis to sequence stratigraphy (Vol. 45, pp. 1–36). International Association of Sedimentologists Special Publications. https://doi.org/10.1002/9781118485347.ch1
    [Google Scholar]
  64. Morton, A., Hallsworth, C., & Chalton, B. (2004). Garnet compositions in Scottish and Norwegian basement terrains: A framework for interpretation of North Sea sandstone provenance. Marine and Petroleum Geology, 21, 393–410. https://doi.org/10.1016/j.marpetgeo.2004.01.001
    [Google Scholar]
  65. Morton, A. C., & Hallsworth, C. (1994). Identifying provenance‐specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology, 90, 241–256. https://doi.org/10.1016/0037‐0738(94)90041‐8
    [Google Scholar]
  66. Morton, A. C., & Hallsworth, C. R. (1999). Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124, 3–29. https://doi.org/10.1016/S0037‐0738(98)00118‐3
    [Google Scholar]
  67. Mücke, A., & Bhadra Chaudhuri, J. N. (1991). The continuous alteration of ilmenite through pseudorutile to leucoxene. Ore Geology Reviews, 6, 25–44. https://doi.org/10.1016/0169‐1368(91)90030‐B
    [Google Scholar]
  68. Murakami, T., Ito, J.‐I., Utsunomiya, S., Kasama, T., Kozai, N., & Ohnuki, T. (2004). Anoxic dissolution processes of biotite: Implications for Fe behavior during Archean weathering. Earth and Planetary Science Letters, 224, 117–129. https://doi.org/10.1016/j.epsl.2004.04.040
    [Google Scholar]
  69. Oakman, C. D., & Partington, M. A. (1998). Petroleum geology of the North Sea. In K. W.Glennie (Ed.), Cretaceous petroleum geology of the North Sea, basic concepts and recent advances (Vol. 294–349, 4th ed., pp. 294–349). Blackwell Scientific. https://doi.org/10.1016/s0037‐0738(00)00100‐7
    [Google Scholar]
  70. Odin, G. S. (1988). Green marine clays: Oolitic ironstone facies, verdine facies, glaucony facies and celadonite‐bearing facies—A comparative study. Green marine clays: Oolitic ironstone facies, verdine facies, glaucony facies and celadonite‐bearing facies—A comparative study (Vol. 27, pp. 396–397). Elsevier. https://doi.org/10.1016/0012‐8252(90)90077‐9
    [Google Scholar]
  71. Olesen, O., Bering, D., Brönner, M., Dalsegg, E., Fabian, K., Fredin, O., Gellein, J., Husteli, B., Magnus, C., Rønning, J. S., & Solbakk, T. (2012). NGU Report 2012.005 Tropical Weathering in Norway, TWIN Final Report 188.
  72. Patrier, P., Beaufort, D., Azzam, F., Blaise, T., Portier, E., Brigaud, B., & Clerc, S. (2023). New insights on diagenetic chlorite and its source material in turbiditic sandstones of contrasted reservoir quality in the lower cretaceous Agat formation (Duva oil and gas field, northern Norwegian North Sea). Marine and Petroleum Geology, 152, 106221. https://doi.org/10.1016/j.marpetgeo.2023.106221
    [Google Scholar]
  73. Porten, K. W., Warchoł, M. J., & Kane, I. A. (2019). Formation of detrital clay grain coats by dewatering of deep‐water sands and significance for reservoir quality. Journal of Sedimentary Research, 89, 1231–1249. https://doi.org/10.2110/jsr.2019.65
    [Google Scholar]
  74. Price, J. R., & Velbel, M. A. (2014). Rates of biotite weathering, and clay mineral transformation and Neoformation, determined from watershed geochemical mass‐balance methods for the Coweeta hydrologic laboratory, southern blue Ridge Mountains, North Carolina, USA. Aquatic Geochemistry, 20, 203–224. https://doi.org/10.1007/s10498‐013‐9190‐y
    [Google Scholar]
  75. Ravna, E. J. K., Kullerud, K., & Ellingsen, E. (2006). Prograde garnet‐bearing ultramafic rocks from the Tromsø Nappe, northern Scandinavian Caledonides. Lithos, 92, 336–356. https://doi.org/10.1016/j.lithos.2006.03.058
    [Google Scholar]
  76. Redfield, T. F., Osmundsen, P. T., & Hendriks, B. W. H. (2005). The role of fault reactivation and growth in the uplift of western Fennoscandia. Journal of the Geological Society, 162, 1013–1030. https://doi.org/10.1144/0016‐764904‐149
    [Google Scholar]
  77. Roaldset, E., Pettersen, E., Longva, O., & Mangerud, J. (1982). Remnants of preglacial weathering in western Norway. Norsk Geologisk Tidsskrift, 62, 169–178.
    [Google Scholar]
  78. Roduit, N. (2007). Un logiciel d'analyse d'images pétrographiques polyvalent.
  79. Rudnick, R., & Gao, S. (2003). Composition of the continental crust. Treatise on Geochemistry, 3, 1–64. https://doi.org/10.1016/B0‐08‐043751‐6/03016‐4
    [Google Scholar]
  80. Ryan, P. C., & Hillier, S. (2002). Berthierine/chamosite, corrensite, and discrete chlorite from evolved verdine and evaporite‐associated facies in the Jurassic Sundance formation, Wyoming. American Mineralogist, 87, 1607–1615. https://doi.org/10.2138/am‐2002‐11‐1210
    [Google Scholar]
  81. Saïag, J., Brigaud, B., Portier, É., Desaubliaux, G., Bucherie, A., Miska, S., & Pagel, M. (2016). Sedimentological control on the diagenesis and reservoir quality of tidal sandstones of the upper Cape Hay formation (Permian, Bonaparte Basin, Australia). Marine and Petroleum Geology, 77, 597–624. https://doi.org/10.1016/j.marpetgeo.2016.07.002
    [Google Scholar]
  82. Schmidt, V., & McDonald, D. A. (1979). Texture and recognition of secondary porosity in sandstones. In P. A.Scholle & P. R.Schluger (Eds.), Aspects of diagenesis: Society of economic paleontologists and mineralogists special publication (Vol. 26, pp. 209–225). Society of Economic Paleontologists and Mineralogists. https://doi.org/10.2110/PEC.79.26.0209
    [Google Scholar]
  83. Sharma, A., & Rajamani, V. (2000). Weathering of gneissic rocks in the upper reaches of Cauvery river, south India: Implications to neotectonics of the region. Chemical Geology, 166, 203–223. https://doi.org/10.1016/S0009‐2541(99)00222‐3
    [Google Scholar]
  84. Singer, A. (1984). The paleoclimatic interpretation of clay minerals in sediments—A review. Earth Science Reviews, 21, 251–293. https://doi.org/10.1016/0012‐8252(84)90055‐2
    [Google Scholar]
  85. Skibeli, M., Barnes, K., Straume, T., Syvertsen, S. E., & Shanmugam, G. (1995). A sequence stratigraphic study of Lower Cretaceous deposits in the northernmost North Sea. Norwegian Petroleum Society Special Publications, 5, 389–400. https://doi.org/10.1016/S0928‐8937(06)80077‐9
    [Google Scholar]
  86. Strømsøe, J. R., & Paasche, Ø. (2011). Weathering patterns in high‐latitude regolith. Journal of Geophysical Research: Earth Surface, 116, 12–15. https://doi.org/10.1029/2010JF001954
    [Google Scholar]
  87. Sugimori, H., Yokoyama, T., & Murakami, T. (2009). Kinetics of biotite dissolution and Fe behavior under low O2 conditions and their implications for Precambrian weathering. Geochimica et Cosmochimica Acta, 73, 3767–3781. https://doi.org/10.1016/j.gca.2009.03.034
    [Google Scholar]
  88. Surdam, R. C., Crossey, L. J., Hagen, E. S., & Heasler, H. P. (1989). Organic‐inorganic interactions and sandstone diagenesis. American Association of Petroleum Geologists Bulletin, 73, 1–23. https://doi.org/10.1306/703c9ad7‐1707‐11d7‐8645000102c1865d
    [Google Scholar]
  89. Taylor, G., & Eggleton, R. A. (2001). Regolith geology and geomorphology.
  90. Taylor, K. (1990). Berthierine from the non‐marine Wealden (Early Cretaceous) sediments of South‐East England. Clay Minerals, 25, 391–399. https://doi.org/10.1180/claymin.1990.025.3.13
    [Google Scholar]
  91. Taylor, K. G. (1996). Early cretaceous iron ooids in the Paris Basin: Pedogenic versus marine origin and their palaeoclimatic significance. Cretaceous Research, 17, 109–118. https://doi.org/10.1006/cres.1996.0009
    [Google Scholar]
  92. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Blackwell Scientific Publications.
    [Google Scholar]
  93. Thiry, M. (2000). Palaeoclimatic interpretation of clay minerals in marine deposits: An outlook from the continental origin. Earth Science Reviews, 49, 201–221. https://doi.org/10.1016/S0012‐8252(99)00054‐9
    [Google Scholar]
  94. Thiry, M., Quesnel, F., Yans, J., Wyns, R., Vergari, A., Theveniaut, H., Simon‐Coinçon, R., Ricordel, C., Moreau, M.‐G., Giot, D., Dupuis, C., Bruxelles, L., Barbarand, J., & Baele, J.‐M. (2006). Continental France and Belgium during the early cretaceous: Paleoweatherings and paleolandforms. Bulletin de la Société Géologique de France, 177, 155–175. https://doi.org/10.2113/gssgfbull.177.3.155
    [Google Scholar]
  95. Tijani, M. N., Okunlola, O. A., & Abimbola, A. F. (2006). Lithogenic concentrations of trace metals in soils and saprolites over crystalline basement rocks: A case study from SW Nigeria. Journal of African Earth Sciences, 46, 427–438. https://doi.org/10.1016/j.jafrearsci.2006.08.003
    [Google Scholar]
  96. Van Houten, F. B., & Purucker, M. E. (1984). Glauconitic peloids and chamositic ooids—Favorable factors, constraints, and problems. Earth Science Reviews, 20, 211–243. https://doi.org/10.1016/0012‐8252(84)90002‐3
    [Google Scholar]
  97. Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9, 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
    [Google Scholar]
  98. Virolle, M., Brigaud, B., Beaufort, D., Patrier, P., Abdelrahman, E., Thomas, H., Portier, E., Samson, Y., Bourillot, R., & Féniès, H. (2022). Authigenic berthierine and incipient chloritization in shallowly buried sandstone reservoirs: Key role of the source‐to‐sink context. GSA Bulletin, 134, 739–761. https://doi.org/10.1130/b35865.1
    [Google Scholar]
  99. Virolle, M., Brigaud, B., Bourillot, R., Féniès, H., Portier, E., Duteil, T., Nouet, J., Patrier, P., & Beaufort, D. (2019). Detrital clay grain coats in estuarine clastic deposits: Origin and spatial distribution within a modern sedimentary system, the Gironde estuary (south‐west France). Sedimentology, 66, 859–894. https://doi.org/10.1111/sed.12520
    [Google Scholar]
  100. Wang, J., Wu, C., Li, Z., Zhu, W., Zhou, T., Wu, J., & Wang, J. (2019). Whole‐rock geochemistry and zircon Hf isotope of Late Carboniferous–Triassic sediments in the Bogda region, NW China: Clues for provenance and tectonic setting. Geological Journal, 54, 1853–1877. https://doi.org/10.1002/gj.3110
    [Google Scholar]
  101. Weibel, R., & Friis, H. (2007). Chapter 10. Alteration of opaque heavy minerals as a reflection of the geochemical conditions in depositional and diagenetic environments. Developments in Sedimentology, 58, 277–303. https://doi.org/10.1016/S0070‐4571(07)58010‐6
    [Google Scholar]
  102. White, A. F., Bullen, T. D., Schulz, M. S., Blum, A. E., Huntington, T. G., & Peters, N. E. (2001). Differential rates of feldspar weathering in granitic regoliths. Geochimica et Cosmochimica Acta, 65, 847–869. https://doi.org/10.1016/S0016‐7037(00)00577‐9
    [Google Scholar]
  103. Wiest, J. D., Jacobs, J., Ksienzyk, A. K., & Fossen, H. (2018). Sveconorwegian vs. Caledonian orogenesis in the eastern Øygarden complex, SW Norway—Geochronology, structural constraints and tectonic implications. Precambrian Research, 305, 1–18. https://doi.org/10.1016/j.precamres.2017.11.020
    [Google Scholar]
  104. Wooldridge, L. J., Worden, R. H., Griffiths, J., Thompson, A., & Chung, P. (2017). Biofilm origin of clay‐coated sand grains. Geology, 45, 875–878. https://doi.org/10.1130/G39161.1
    [Google Scholar]
  105. Worden, R. H., Griffiths, J., Wooldridge, L. J., Utley, J. E. P., Lawan, A. Y., Muhammed, D. D., Simon, N., & Armitage, P. J. (2020). Chlorite in sandstones. Earth‐Science Reviews, 204, 103105. https://doi.org/10.1016/j.earscirev.2020.103105
    [Google Scholar]
  106. Xiao, M., Yuan, X., Cheng, D., Wu, S., Cao, Z., Tang, Y., & Xie, Z. (2018). Feldspar dissolution and its influence on reservoirs: A case study of the lower Triassic Baikouquan formation in the northwest margin of the Junggar Basin, China. Geofluids, 2018, 1–19. https://doi.org/10.1155/2018/6536419
    [Google Scholar]
  107. Yuan, G., Cao, Y., Jia, Z., Gluyas, J., Yang, T., Wang, Y., & Xi, K. (2015). Selective dissolution of feldspars in the presence of carbonates: The way to generate secondary pores in buried sandstones by organic CO2. Marine and Petroleum Geology, 60, 105–119. https://doi.org/10.1016/j.marpetgeo.2014.11.001
    [Google Scholar]
  108. Ziegler, P. A. (1975). Geologic evolution of North Sea and its tectonic framework. American Association of Petroleum Geologists Bulletin, 59, 1073–1097. https://doi.org/10.1306/83D91F2E‐16C7‐11D7‐8645000102C1865D
    [Google Scholar]
  109. Ziegler, P. A. (1990). Tectonic and palaeogeographic development of the North Sea rift system. In D. J.Blundell, & A. D.Gibbs (Eds.), Tectonic evolution of the North Sea rifts (pp. 1–36). Oxford University Press.
    [Google Scholar]
/content/journals/10.1111/bre.12867
Loading
/content/journals/10.1111/bre.12867
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error