1887
Volume 36, Issue 3
  • E-ISSN: 1365-2117

Abstract

[Abstract

The internal fault architecture is crucial in assessing the significance of faults in fluid migration. The development of overlapping zones between segments and subsidiary structures is characteristic of a strike–slip faults. However, their internal architectures and roles in fluid migration are still poorly understood. The Tarim Basin's recently identified strike–slip faults imply that the petroleum resource is hosted in caves that were formed by subsequent dissolution after the formation of the fault zones in carbonate rocks, indicating that the internal fault architecture may be closely linked to the accumulation of petroleum. We investigated the architecture of the strike–slip fault zone using field, geochemical, seismic and well‐logging data. The results revealed that the strike–slip faults contain flower‐like structures in their vertical profiles and an and ‘X’ conjugate pattern in their horizontal slices. The fault core may become more complex because of the flower structure as fault breccia, slip surfaces, hydrothermal veins, dissolved pores and caves develop, and the damage zone contains multiple stages of fractures with high dip angles. Compared with ‘X’ pattern conjugate faults, NE‐trending strike–slip faults have a more developed and connected fault zone. The fault core acts as a fast conduit for fluid transport and experiences significant elemental losses, and the elemental variations in the damage zone may relate in long‐term and relatively lower‐level fluid–rock interactions. Three fault zone architecture models were created, namely, a releasing bend, a restraining bend and a single segment, and their controlling impacts on fluid migration were addressed accordingly. Our findings imply that fluid migration and accumulation are more favourable at the releasing bend than at the restraining bend and single segment.

,

The fault zone architecture of strike‐slip faults can vary. Based on comprehensive studies in deep‐seated carbonate strata, three fault zone models were created and the various roles of fault zone components were discussed. According to our findings, the releasing bends are a better location for fluid migration and buildup.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12868
2024-05-13
2024-07-14
Loading full text...

Full text loading...

References

  1. Allen, M. B., Vincent, S. J., & Wheeler, P. J. (1999). Late Cenozoic tectonics of the Kepingtage thrust zone: Interactions of the Tien Shan and Tarim Basin, northwest China. Tectonics, 18, 639–654.
    [Google Scholar]
  2. Arancibia, G., Fujita, K., Hoshino, K., Mitchell, T. M., Cembrano, J., Gomila, R., Morata, D., Faulkner, D. R., & Rempe, M. (2014). Hydrothermal alteration in an exhumed crustal fault zone: Testing geochemical mobility in the Caleta Coloso fault, Atacama fault system, northern Chile. Tectonophysics, 623, 147–168. https://doi.org/10.1016/j.tecto.2014.03.024
    [Google Scholar]
  3. Balsamo, F., Clemenzi, L., Storti, F., Solum, J., & Taberner, C. (2019). Tectonic control on vein attributes and deformation intensity in fault damage zones affecting Natih platform carbonates, Jabal Qusaybah, North Oman. Journal of Structural Geology, 122, 38–57. https://doi.org/10.1016/j.jsg.2019.02.009
    [Google Scholar]
  4. Bau, M., & Dulski, P. (1995). Comparative study of yttrium and rare‐earth element behaviours in fluorine‐rich hydrothermal fluids. Contributions to Mineralogy and Petrology, 119(2–3), 213–223. https://doi.org/10.1007/BF00307282
    [Google Scholar]
  5. Bau, M., Möller, P., & Dulski, P. (1997). Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox‐cycling. Marine Chemistry, 56(1), 123–131. https://doi.org/10.1016/S0304‐4203(96)00091‐6
    [Google Scholar]
  6. Bauer, J. F., Meier, S., & Philipp, S. L. (2015). Architecture, fracture system, mechanical properties and permeability structure of a fault zone in lower Triassic sandstone, upper Rhine Graben. Tectonophysics, 647‐648, 132–145. https://doi.org/10.1016/j.tecto.2015.02.014
    [Google Scholar]
  7. Beach, A., Welbon, A. I., Brockbank, P. J., & McCallum, J. E. (1999). Reservoir damage around faults; outcrop examples from the Suez rift. PG, 5, 109–116. https://doi.org/10.1144/petgeo.5.2.109
    [Google Scholar]
  8. Berg, S. S., & Skar, T. (2005). Controls on damage zone asymmetry of a normal fault zone: Outcrop analyses of a segment of the Moab fault, SE Utah. Journal of Structural Geology, 27(10), 1803–1822. https://doi.org/10.1016/j.jsg.2005.04.012
    [Google Scholar]
  9. Billi, A., & Storti, F. (2004). Fractal distribution of particle size in carbonate cataclastic rocks from the core of a regional strike‐slip fault zone. Tectonophysics, 384, 115–128. https://doi.org/10.1016/j.tecto.2004.03.015
    [Google Scholar]
  10. Bossennec, C., Géraud, Y., Moretti, I., Mattioni, L., & Stemmelen, D. (2018). Pore network properties of sandstones in a fault damage zone. Journal of Structural Geology, 110, 24–44. https://doi.org/10.1016/j.jsg.2018.02.003
    [Google Scholar]
  11. Boulton, C., Menzies, C. D., Toy, V. G., Townend, J., & Sutherland, R. (2017). Geochemical and microstructural evidence for interseismic changes in fault zone permeability and strength, alpine fault, New Zealand. Geochemistry, Geophysics, Geosystems, 18, 238–265.
    [Google Scholar]
  12. Brogi, A. (2008). Fault zone architecture and permeability features in siliceous sedimentary rocks: Insights from the Rapolano geothermal area (northern Apennines, Italy). Journal of Structural Geology, 30(2), 237–256. https://doi.org/10.1016/j.jsg.2007.10.004
    [Google Scholar]
  13. Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24(11), 1025–1028. https://doi.org/10.1130/0091‐7613(1996)024<1025:FZAAPS>2.3.CO;2
    [Google Scholar]
  14. Cembrano, J., González, G., Arancibia, G., Ahumada, I., Olivares, V., & Herrera, V. (2005). Fault zone development and strain partitioning in an extensional strike‐slip duplex: A case study from the Mesozoic Atacama fault system, northern Chile. Tectonophysics, 400(1–4), 105–125. https://doi.org/10.1016/j.tecto.2005.02.012
    [Google Scholar]
  15. Chemenda, A. I., Cavalié, O., Vergnolle, M., Bouissou, S., & Delouis, B. (2016). Numerical model of formation of a 3‐D strike‐slip fault system. Comptes Rendus Geoscience, 348, 61–69. https://doi.org/10.1016/j.crte.2015.09.008
    [Google Scholar]
  16. Chester, F. M. (1993). Intemal structure and weakening mechanisms of the San Andreas fault. Journal of Geophysical Research, 98, 771–786.
    [Google Scholar]
  17. Childs, C., Manzocchi, T., Walsh, J. J., Bonson, C. G., Nicol, A., & Schöpfer, M. P. J. (2009). A geometric model of fault zone and fault rock thickness variations. Journal of Structural Geology, 31(2), 117–127. https://doi.org/10.1016/j.jsg.2008.08.009
    [Google Scholar]
  18. Choi, J. H., Edwards, P., Ko, K., & Kim, Y. S. (2016). Definition and classification of fault damage zones: A review and a new methodological approach. Earth‐Science Reviews, 152, 70–87. https://doi.org/10.1016/j.earscirev.2015.11.006
    [Google Scholar]
  19. Clausen, J. A., Gabrielsen, R. H., Johnsen, E., & Korstgard, J. A. (2003). Fault architecture and clay smear distribution. Examples from field studies and drained ring‐shear experiments. Norwegian Journal of Geology, 83(2), 131–146.
    [Google Scholar]
  20. Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29, 47–65. https://doi.org/10.1680/geot.1979.29.1.47
    [Google Scholar]
  21. Cunningham, W. D., & Mann, P. (2007). Tectonics of strike‐slip restraining and releasing bends. Geological Society, London, Special Publications, 290(1), 1–12. https://doi.org/10.1144/SP290.1
    [Google Scholar]
  22. Dai, F. G., Yang, K. S., & Liu, D. Y. (2009). Geological interpretation of the seismic profile in Tarim Basin and tectonic evolution of this area. Geology in China, 36, 747–760.
    [Google Scholar]
  23. Deng, S., Li, H., Zhang, Z., Zhang, J., & Yang, X. (2019). Structural characterization of intracratonic strike‐slip faults in the central Tarim Basin. AAPG Bulletin, 103(1), 109–137. https://doi.org/10.1306/06071817354
    [Google Scholar]
  24. Dooley, T. P., & Schreurs, G. (2012). Analogue modelling of intraplate strike‐slip tectonics: A review and new experimental results. Tectonophysics, 574–575, 1–71. https://doi.org/10.1016/j.tecto.2012.05.030
    [Google Scholar]
  25. Duan, Q., Yang, X., Ma, S., Chen, J. Y., & Chen, J. Y. (2016). Fluid–rock interactions in seismic faults: Implications from the structures and mineralogical and geochemical compositions of drilling cores from the rupture of the 2008 Wenchuan earthquake, China. Tectonophysics, 666, 260–280. https://doi.org/10.1016/j.tecto.2015.11.008
    [Google Scholar]
  26. Evans, J. P., & Chester, F. M. (1995). Fluid‐rock interaction in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures. Journal of Geophysical Research: Solid Earth, 100, 13007–13020. https://doi.org/10.1029/94JB02625
    [Google Scholar]
  27. Evans, J. P., Forster, C. B., & Goddard, J. V. (1997). Permeability of fault‐related rocks, and implications for hydraulic structure of fault zones. Journal of Structural Geology, 19(11), 1393–1404. https://doi.org/10.1016/S0191‐8141(97)00057‐6
    [Google Scholar]
  28. Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C. A. J., & Withjack, M. O. (2010). A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32(11), 1557–1575. https://doi.org/10.1016/j.jsg.2010.06.009
    [Google Scholar]
  29. Faulkner, D. R., Lewis, A. C., & Rutter, E. H. (2003). On the internal structure and mechanics of large strike‐slip fault zones: Field observations of the Carboneras fault in southeastern Spain. Tectonophysics, 367(3–4), 235–251. https://doi.org/10.1016/S0040‐1951(03)00134‐3
    [Google Scholar]
  30. Finzi, Y., Hearn, E. H., Ben‐Zion, Y., & Lyakhovsky, V. (2009). Structural properties and deformation patterns of evolving strike‐slip faults: Numerical simulations incorporating damage rheology. Pure and Applied Geophysics, 166, 1537–1573. https://doi.org/10.1007/s00024‐009‐0522‐1
    [Google Scholar]
  31. Fossen, H., & Hesthammer, J. (2000). Possible absence of small faults in the Gullfaks field, northern North Sea: Implications for downscaling of faults in some porous sandstones. Journal of Structural Geology, 22, 851–863. https://doi.org/10.1016/S0191‐8141(00)00013‐4
    [Google Scholar]
  32. Fossen, H., Schultz, R. A., Shipton, Z. K., & Mair, K. (2007). Deformation bands in sandstone: A review. JGS, 164, 755–769. https://doi.org/10.1144/0016‐76492006‐036
    [Google Scholar]
  33. Gibson, I. L., Kirkpatrick, R. J., Emmerman, R., Schmincke, H. U., Pritchard, G., Oakley, P. J., Thorpe, R. S., & Marriner, G. F. (1982). The trace element composition of the lavas and dikes from a 3‐km vertical section through the lava pile of eastern Iceland. Journal of Geophysical Research: Solid Earth, 87(B8), 6532–6546.
    [Google Scholar]
  34. Haines, T. J., Michie, E. A. H., Neilson, J. E., & Healy, D. (2016). Permeability evolution across carbonate hosted normal fault zones. Marine and Petroleum Geology, 72, 62–82. https://doi.org/10.1016/j.marpetgeo.2016.01.008
    [Google Scholar]
  35. Han, Y., & Zhao, G. (2018). Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo‐Asian Ocean. Earth‐Science Reviews, 186, 129–152. https://doi.org/10.1016/j.earscirev.2017.09.012
    [Google Scholar]
  36. He, B. Z., Jiao, C. L., Xu, Z. Q., Cai, Z. H., Zhang, J. X., Liu, S. L., Li, H. B., Chen, W. W., & Yu, Z. Y. (2016). The paleotectonic and paleogeography reconstructions of the Tarim Basin and its adjacent areas (NW China) during the late early and middle Paleozoic. Gondwana Research, 30, 191–206. https://doi.org/10.1016/j.gr.2015.09.011
    [Google Scholar]
  37. Hennings, P., Allwardt, P., Paul, P., Zahm, C., Reid, R., Alley, H., Kirschner, R., Lee, B., & Hough, E. (2012). Relationship between fractures, fault zones, stress, and reservoir productivity in the suban gas field, Sumatra, Indonesia. AAPG Bulletin, 96(4), 753–772. https://doi.org/10.1306/08161109084
    [Google Scholar]
  38. Hesthammer, J., Landrø, M., & Fossen, H. (2001). Use and abuse of seismic data in reservoir characterisation. Marine and Petroleum Geology, 18(5), 635–655. https://doi.org/10.1016/S0264‐8172(01)00011‐3
    [Google Scholar]
  39. Jochum, K. P., & Nohl, U. (2008). Reference materials in geochemistry and environmental research and the GeoReM database. Chemical Geology, 253(1–2), 50–53. https://doi.org/10.1016/j.chemgeo.2008.04.002
    [Google Scholar]
  40. Kim, N., Park, S., & Choi, J. (2021). Internal architecture and earthquake rupture behavior of a long‐lived intraplate strike–slip fault: A case study from the southern Yangsan fault, Korea. Tectonophysics, 816, 229006. https://doi.org/10.1016/j.tecto.2021.229006
    [Google Scholar]
  41. Kim, Y., Peacock, D. C. P., & Sanderson, D. J. (2004). Fault damage zones. Journal of Structural Geology, 26(3), 503–517. https://doi.org/10.1016/j.jsg.2003.08.002
    [Google Scholar]
  42. Kranidiotis, P., & MacLean, W. H. (1987). Systematics of chlorite alteration at the Phelps dodge massive sulfide deposit, Matagami, Quebec. Economic Geology, 82(7), 1898–1911.
    [Google Scholar]
  43. Laborde, A., Barrier, L., Simoes, M., Li, H., Coudroy, T., van Der Woerd, J., & Tapponnier, P. (2019). Cenozoic deformation of the Tarim Basin and surrounding ranges (Xinjiang, China): A regional overview. Earth‐Science Reviews, 197, 102891. https://doi.org/10.1016/j.earscirev.2019.102891
    [Google Scholar]
  44. Laubach, S. E., Eichhubl, P., Hargrove, P., Ellis, M. A., & Hooker, J. N. (2014). Fault core and damage zone fracture attributes vary along strike owing to interaction of fracture growth, quartz accumulation, and differing sandstone composition. Journal of Structural Geology, 68, 207–226. https://doi.org/10.1016/j.jsg.2014.08.007
    [Google Scholar]
  45. Laubach, S. E., Eichhubl, P., Hilgers, C., & Lander, R. H. (2010). Structural diagenesis. Journal of Structural Geology, 32(12), 1866–1872. https://doi.org/10.1016/j.jsg.2010.10.001
    [Google Scholar]
  46. Li, C., Chen, H., Zhang, F., Lin, X., Cheng, X., Li, Y., Chen, C., Zhang, L., Shang, J. W., Sun, D., Lv, H. X., Ren, P., An, K. X., Wu, L., Yang, S. F., Wang, C., Zhang, Y. Q., Wu, H. X., Yang, S. M., & Zhang, F. F. (2021). Cenozoic basin‐filling evolution of the SW Tarim Basin and its implications for the uplift of western Kunlun: Insights from (seismo) stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 562, 110149. https://doi.org/10.1016/j.palaeo.2020.110149
    [Google Scholar]
  47. Li, C., Wang, X., Li, B., & He, D. (2013). Paleozoic fault systems of the Tazhong Uplift, Tarim Basin, China. Marine and Petroleum Geology, 39, 48–58. https://doi.org/10.1016/j.marpetgeo.2012.09.010
    [Google Scholar]
  48. Li, Y. J., Gao, Y. J., Zhou, H., Zhang, G. Y., Wen, L., Zhao, Y., Li, C., Zheng, D. M., Liu, Y. L., Li, H. H., Luo, C. M., Huang, T. F., Zhao, T. Y., Gao, Y. Y., & Shi, B. (2022). Early Paleozoic collision‐related structures in the Tarim Craton, NW China: Implications for the Proto‐Tethys evolution. Journal of Asian Earth Sciences, 241, 105458. https://doi.org/10.1016/j.jseaes.2022.105458
    [Google Scholar]
  49. Liu, H. Q., Xu, Y. G., Zhong, Y. T., Luo, Z. Y., Mundil, R., Riley, T. R., Zhang, L., & Xie, W. (2019). Crustal melting above a mantle plume: insights from the Permian Tarim Large Igneous Province, NW China. Lithos, 326, 370–383. https://doi.org/10.1016/j.lithos.2018.12.031
    [Google Scholar]
  50. Liu, Y., & Konietzky, H. (2018). Particle‐based modeling of pull‐apart basin development. Tectonics, 37, 343–358. https://doi.org/10.1002/2017TC004685
    [Google Scholar]
  51. Liu, Y., Suppe, J., Cao, Y. C., Hao, F., Liu, Y. D., Wang, X., Wu, K. Y., Cao, Z. C., & Wei, H. H. (2023). Linkage and formation of strike‐slip faults in deep basins and the implications for petroleum accumulation: A case study from the Shunbei area of the Tarim Basin, China. AAPG Bulletin, 107, 331–355. https://doi.org/10.1306/11142220110
    [Google Scholar]
  52. Liu, Y., Wu, K., Wang, X., Pei, Y., Liu, B., & Guo, J. (2017). Geochemical characteristics of fault core and damage zones of the Hong‐Che fault zone of the Junggar Basin (NW China) with implications for the fault sealing process. Journal of Asian Earth Sciences, 143, 141–155. https://doi.org/10.1016/j.jseaes.2017.04.025
    [Google Scholar]
  53. Liu, Y., Wu, K. Y., Wang, X., Liu, B., Guo, J. X., & Du, Y. N. (2017). Architecture of buried reverse fault zone in the sedimentary basin: A case study from the Hong‐Che fault zone of the Junggar Basin. Journal of Structural Geology, 105, 1–17. https://doi.org/10.1016/j.jsg.2017.11.002
    [Google Scholar]
  54. Liu, Z., Jiang, Y. H., Jia, R. Y., Zhao, P., Zhou, Q., Wang, G. C., & Ni, C. Y. (2014). Origin of Middle Cambrian and Late Silurian potassic granitoids from the western Kunlun orogen, northwest China: A magmatic response to the Proto‐Tethys evolution. Mineralogy and Petrology, 108, 91–110. https://doi.org/10.1007/s00710‐013‐0288‐0
    [Google Scholar]
  55. Loveless, S., Bense, V., & Turner, J. (2011). Fault architecture and deformation processes within poorly lithified rift sediments, Central Greece. Journal of Structural Geology, 33(11), 1554–1568. https://doi.org/10.1016/j.jsg.2011.09.008
    [Google Scholar]
  56. Lu, H. F., Howell, D. G., Jia, D., Cai, D. S., Wu, S. M., Chen, C. M., Zenon, C. V., & Shi, Y. S. (1994). Rejuvenation of the Kuqa Foreland Basin, Northern Flank of the Tarim Basin, Northwest China. International Geology Review, 36, 1151–1158. https://doi.org/10.1080/00206819409465509
    [Google Scholar]
  57. Lu, X. B., Wang, Y., Tian, F., Li, X. H., Yang, D. B., Li, T., Lv, Y. P., & He, X. M. (2017). New insights into the carbonate karstic fault system and reservoir formation in the southern Tahe area of the Tarim Basin. Marine and Petroleum Geology, 86, 587–605. https://doi.org/10.1016/j.marpetgeo.2017.06.023
    [Google Scholar]
  58. Lv, H. T., Zhang, S. N., & Ma, Q. Y. (2017). Classification and formation mechanism of fault systems in the central and northern Tarim Basin. Petroleum Geology & Experiment, 39, 444–451.
    [Google Scholar]
  59. Mann, P. (2007). Global catalogue, classification and tectonic origins of restraining‐ and releasing bends on active and ancient strike‐slip fault systems. Geological Society, London, Special Publications, 290, 13–142.
    [Google Scholar]
  60. Martel, S. J., Pollard, D. D., & Segall, P. (1988). Development of simple strike‐slip fault zones, mount abbot quadrangle, Sierra Nevada, California. Geological Society of America Bulletin, 100(9), 1451–1465. https://doi.org/10.1130/0016‐7606(1988)100<1451:DOSSSF>2.3.CO;2
    [Google Scholar]
  61. Matonti, C., Lamarche, J., Guglielmi, Y., & Marié, L. (2012). Structural and petrophysical characterization of mixed conduit/seal fault zones in carbonates: Example from the Castellas fault (SE France). Journal of Structural Geology, 39, 103–121. https://doi.org/10.1016/j.jsg.2012.03.003
    [Google Scholar]
  62. Mayolle, S., Soliva, R., Caniven, Y., Wibberley, C., Ballas, G., Milesi, G., & Dominguez, S. (2019). Scaling of fault damage zones in carbonate rocks. Journal of Structural Geology, 124, 35–50. https://doi.org/10.1016/j.jsg.2019.03.007
    [Google Scholar]
  63. McBeck, J. A., Ben‐Zion, Y., Zhou, X., & Renard, F. (2022). Precursory off‐fault deformation in restraining and releasing step overs: Insights from discrete element method models. Journal of Geophysical Research: Solid Earth, 127, e2022JB024326. https://doi.org/10.1029/2022JB024326
    [Google Scholar]
  64. McBee, W. (2003). Nemaha Strike‐Slip Fault Zone. AAPG Mid‐Continent Section Meeting, 13, 1–14.
    [Google Scholar]
  65. Meng, Q., & Hodgetts, D. (2019). Structural styles and decoupling in stratigraphic sequences with double décollements during thin‐skinned contractional tectonics: Insights from numerical modelling. Journal of Structural Geology, 127, 103862. https://doi.org/10.1016/j.jsg.2019.103862
    [Google Scholar]
  66. Michie, E. A. H. (2015). Influence of host lithofacies on fault rock variation in carbonate fault zones: A case study from the Island of Malta. Journal of Structural Geology, 76, 61–79. https://doi.org/10.1016/j.jsg.2015.04.005
    [Google Scholar]
  67. Michie, E. A. H., Haines, T. J., Healy, D., Neilson, J. E., Timms, N. E., & Wibberley, C. A. J. (2014). Influence of carbonate facies on fault zone architecture. Journal of Structural Geology, 65, 82–99. https://doi.org/10.1016/j.jsg.2014.04.007
    [Google Scholar]
  68. Möller, P. (1983). Lanthanoids as a geochemical probe and problems in Lanthanoid geochemistry distribution and behaviour of Lanthanoids in non‐magmatic‐phases. In S. P.Sinha (Ed.), Systematics and the properties of the lanthanides (pp. 561–616). Springer.
    [Google Scholar]
  69. Möller, P., Parekh, P. P., & Schneider, H. (1976). The application of Tb/Ca‐Tb/La abundance ratios to problems of fluorspar genesis. Mineralium Deposita, 11(1), 111–116.
    [Google Scholar]
  70. Molli, G., Cortecci, G., Vaselli, L., Ottria, G., Cortopassi, A., Dinelli, E., Mussi, M., & Barbieri, M. (2010). Fault zone structure and fluid–rock interaction of a high angle normal fault in Carrara marble (NW Tuscany, Italy). Journal of Structural Geology, 32(9), 1334–1348. https://doi.org/10.1016/j.jsg.2009.04.021
    [Google Scholar]
  71. Morton, N., Girty, G. H., & Rockwell, T. K. (2012). Fault zone architecture of the San Jacinto fault zone in horse canyon, southern California: A model for focused post‐seismic fluid flow and heat transfer in the shallow crust. Earth and Planetary Science Letters, 329‐330, 71–83. https://doi.org/10.1016/j.epsl.2012.02.013
    [Google Scholar]
  72. Niwa, M., Mizuochi, Y., & Tanase, A. (2015). Changes in chemical composition caused by water‐rock interactions across a strike‐slip fault zone: Case study of the Atera fault, Central Japan. Geofluids, 15(3), 387–409. https://doi.org/10.1111/gfl.12096
    [Google Scholar]
  73. Nozaki, Y., Zhang, J., & Amakawa, H. (1997). The fractionation between Y and Ho in the marine environment. Earth and Planetary Science Letters, 148(1), 329–340. https://doi.org/10.1016/S0012‐821X(97)00034‐4
    [Google Scholar]
  74. Oglesby, D. D. (2005). The dynamics of strike‐slip step‐overs with linking dip‐slip faults. Bulletin of the Seismological Society of America, 95(5), 1604–1622. https://doi.org/10.1785/0120050058
    [Google Scholar]
  75. Peacock, D. C. P., Dimmen, V., Rotevatn, A., & Sanderson, D. J. (2017). A broader classification of damage zones. Journal of Structural Geology, 102, 179–192. https://doi.org/10.1016/j.jsg.2017.08.004
    [Google Scholar]
  76. Peacock, D. C. P., & Sanderson, D. J. (1995). Strike‐slip relay ramps. Journal of Structural Geology, 17(10), 1351–1360. https://doi.org/10.1016/0191‐8141(95)97303‐W
    [Google Scholar]
  77. Qi, L. X. (2016). Oil and gas breakthrough in ultra‐deep Ordovician carbonate formations in Shuntuouole uplift, Tarim Basin. China Petroleum Exploration, 21(3), 38–51. (in Chinese with English abstract).
    [Google Scholar]
  78. Qi, L. X. (2021). Structural characteristics and storage control function of the shun I fault zone in the Shunbei region, Tarim Basin. Journal of Petroleum Science and Engineering, 203, 108653. https://doi.org/10.1016/j.petrol.2021.108653
    [Google Scholar]
  79. Riedel, W. (1929). Zur Mechanik geologischer Brucherscheinungen (pp. 354–368). Centralblatt Mineralogie, Abteilung B.
    [Google Scholar]
  80. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A, 32(5), 751–767. https://doi.org/10.1107/S0567739476001551
    [Google Scholar]
  81. Shipton, Z. K., & Cowie, P. A. (2001). Damage zone and slip‐surface evolution over μm to km scales in high‐porosity Navajo sandstone, Utah. Journal of Structural Geology, 23, 1825–1844. https://doi.org/10.1016/S0191‐8141(01)00035‐9
    [Google Scholar]
  82. Siahi, M., Hofmann, A., Master, S., Wilson, A., & Mayr, C. (2018). Trace element and stable (C, O) and radiogenic (Sr) isotope geochemistry of stromatolitic carbonate rocks of the Mesoarchaean Pongola Supergroup: Implications for seawater composition. Chemical Geology, 476, 389–406. https://doi.org/10.1016/j.chemgeo.2017.11.036
    [Google Scholar]
  83. Sibson, R. H. (1990). Conditions for fault‐valve behaviour. Geological Society, London, Special Publications, 54(1), 15–28. https://doi.org/10.1144/GSL.SP.1990.054.01.02
    [Google Scholar]
  84. Sibson, R. H. (1994). Crustal stress, faulting and fluid flow. SP, 78, 69–84. https://doi.org/10.1144/GSL.SP.1994.078.01.07
    [Google Scholar]
  85. Sibson, R. H. (1996). Structural permeability of fluid‐driven fault‐fracture meshes. Journal of Structural Geology, 18, 1031–1042. https://doi.org/10.1016/0191‐8141(96)00032‐6
    [Google Scholar]
  86. Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, 42(1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
    [Google Scholar]
  87. Sylvester, A. G. (1988). Strike‐slip faults. Geological Society of America Bulletin, 100(11), 1666–1703. https://doi.org/10.1130/0016‐7606(1988)100<1666:SSF>2.3.CO;2
    [Google Scholar]
  88. Talyor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks (pp. 1–312). Scientific Publication.
    [Google Scholar]
  89. Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265. https://doi.org/10.1029/95RG00262
    [Google Scholar]
  90. Tchalenko, J. S. (1970). Similarities between shear zones of different magnitudes. Geological Society of America Bulletin, 81(6), 1625. https://doi.org/10.1130/0016‐7606(1970)81[1625:SBSZOD]2.0.CO;2
    [Google Scholar]
  91. Torabi, A., & Berg, S. S. (2011). Scaling of fault attributes: A review. Marine and Petroleum Geology, 28, 1444–1460. https://doi.org/10.1016/j.marpetgeo.2011.04.003
    [Google Scholar]
  92. Torabi, A., Ellingsen, T. S. S., Johannessen, M. U., Alaei, B., Rotevatn, A., & Chiarella, D. (2020). Fault zone architecture and its scaling laws: Where does the damage zone start and stop?Geological Society, London, Special Publications, 496(1), 99–124. https://doi.org/10.1144/SP496‐2018‐151
    [Google Scholar]
  93. Torabi, A., Johannessen, M. U., & Ellingsen, T. S. S. (2019). Fault Core thickness: Insights from siliciclastic and carbonate rocks. Geofluids, 2019, 1–24. https://doi.org/10.1155/2019/2918673
    [Google Scholar]
  94. Tveranger, J., Braathen, A., Bastesen, E., Cardozo, N., Eigestad, G. T., Espedal, M., Fachri, M., Fossen, H., Heimsund, B. O., Nøttveit, H., Røe, P., Schueller, S., Skorstad, A., Soleng, H., Syversveen, A. R., Torabi, A., & Øian, E. (2008). Final report on fault facies I project (p. 191). Centre for Integrated Petroleum Research, Unifob Petroleum, University of Bergen.
    [Google Scholar]
  95. Walker, R. J., Holdsworth, R. E., Imber, J., Faulkner, D. R., & Armitage, P. J. (2013). Fault zone architecture and fluid flow in interlayered basaltic volcaniclastic‐crystalline sequences. Journal of Structural Geology, 51, 92–104. https://doi.org/10.1016/j.jsg.2013.03.004
    [Google Scholar]
  96. Wan, B., Li, S., Xiao, W., & Windley, B. F. (2018). Where and when did the Paleo‐Asian Ocean form?Precambrian Research, 317, 241–252.
    [Google Scholar]
  97. Wang, X., John, S., Guan, S. W., Aurelia, H. F., Ramon, G. M., & Jia, C. Z. (2011). Cenozoic structure and tectonic evolution of the Kuqa Fold Belt, Southern Tianshan, China. In K. R.McClay, J. H.Shaw, & J.Suppe (Eds.), Thrust Fault‐Related Folding (pp. 215–243). AAPG Memoir.
    [Google Scholar]
  98. Wang, Z. Y., Gao, Z. Q., Fan, T. L., Shang, Y. X., Qi, L. X., & Yun, L. (2020). Structural characterization and hydrocarbon prediction for the SB5M strike‐slip fault zone in the Shuntuo low uplift, Tarim Basin. Marine and Petroleum Geology, 117, 104418. https://doi.org/10.1016/j.marpetgeo.2020.104418
    [Google Scholar]
  99. Wibberley, C. A. J., Yielding, G., & Di Toro, G. (2008). Recent advances in the understanding of fault zone internal structure: A review. Geological Society, London, Special Publications, 299(1), 5–33.
    [Google Scholar]
  100. Williams, J. N., Toy, V. G., Massiot, C., McNamara, D. D., Smith, S. A. F., & Mills, S. (2018). Controls on fault zone structure and brittle fracturing in the foliated hanging wall of the alpine fault. Solid Earth, 9, 469–489. https://doi.org/10.5194/se‐9‐469‐2018
    [Google Scholar]
  101. Wintsch, R. P., Christoffersen, R., & Kronenberg, A. K. (1995). Fluid‐rock reaction weakening of fault zones. Journal of Geophysical Research: Solid Earth, 100(B7), 13021–13032. https://doi.org/10.1029/94JB02622
    [Google Scholar]
  102. Woodcock, N. H., Dickson, J. A. D., & Tarasewicz, J. P. T. (2007). Transient permeability and reseal hardening in fault zones: Evidence from dilation breccia textures. SP, 270, 43–53. https://doi.org/10.1144/GSL.SP.2007.270.01.03
    [Google Scholar]
  103. Wu, G. H., Kim, Y. S., Su, Z., Yang, P. F., Ma, D. B., & Zheng, D. M. (2020). Segment interaction and linkage evolution in a conjugate strike‐slip fault system from the Tarim Basin, NW China. Marine and Petroleum Geology, 112, 104054. https://doi.org/10.1016/j.marpetgeo.2019.104054
    [Google Scholar]
  104. Yang, S. F., Chen, H. L., Li, Z. L., Li, Y. Q., Yu, X., Li, D. X., & Meng, L. F. (2013). Early Permian Tarim Large Igneous Province in northwest China. Science China: Earth Sciences, 56, 2015–2026. https://doi.org/10.1007/s11430‐013‐4653‐y
    [Google Scholar]
  105. Yang, Y., Tang, L. J., Guo, Y., & Xie, D. Q. (2016). Deformation characteristics and formation mechanism of NNE‐trending strike‐slip faults in Tazhong uplift. Geology in China, 43(5), 1569–1578. (in Chinese with English abstract).
    [Google Scholar]
  106. Yang, Y., Yao, W. Q., Yan, J. J., Guo, Y., & Xie, D. Q. (2018). Mesozoic and Cenozoic structural deformation in the NW Tarim Basin, China: A case study of the Piqiang‐Selibuya fault. International Geology Review, 60, 929–943. https://doi.org/10.1080/00206814.2017.1360803
    [Google Scholar]
  107. Ye, J., Liu, M., & Wang, H. (2015). A numerical study of strike‐slip bend formation with application to the Salton Sea pull‐apart basin. Geophysical Research Letters, 42, 1368–1374.
    [Google Scholar]
  108. Yin, A., & Harrison, T. M. (2000). Geologic evolution of the Himalayan‐Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1), 211–280. https://doi.org/10.1146/annurev.earth.28.1.211
    [Google Scholar]
  109. Yun, L., & Deng, S. (2022). Structural styles of deep strike‐slip faults in Tarim Basin and the characteristics of their control on reservoir formation and hydrocarbon accumulation: A case study of Shunbei oil and gas field. Acta Petrolei Sinica, 43, 770. https://doi.org/10.7623/syxb202206003
    [Google Scholar]
  110. Zhang, F. Q., Dilek, Y., Cheng, X. G., Wu, H. X., Lin, X. B., & Chen, H. L. (2019). Late Neoproterozoic–early Paleozoic seismic structure–stratigraphy of the SW Tarim block (China), its passive margin evolution and the Tarim–Rodinia breakup. Precambrian Research, 334, 105456. https://doi.org/10.1016/j.precamres.2019.105456
    [Google Scholar]
  111. Zhao, Z. H. (2016). Principles of trace element geochemistry. Science Press.
    [Google Scholar]
/content/journals/10.1111/bre.12868
Loading
/content/journals/10.1111/bre.12868
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error