1887
Volume 36, Issue 3
  • E-ISSN: 1365-2117

Abstract

[

The upper reaches of the Han River flowed southward to the Sichuan Basin before the subsidence of the Hanzhong Basin. Soon after the subsidence and synchronous uplift of the Micang Shan, the upstream tributaries of the Han River were captured by an east‐flowing river, ultimately forming the modern Han River.

, Abstract

The Cenozoic India‐Asia collision has elevated the Tibetan Plateau and produced large strike‐slip faults in the interior and margins of the plateau, which profoundly influenced drainage reorganization and divide migration in Asia. Recent studies have revealed that the drainage divides between the major rivers in and around the Tibetan Plateau have been migrating for tens of millions of years, due to tectonic and/or climatic disturbance or river capture events. Drainage‐divide stability analysis can provide new, independent insights into the Cenozoic evolution of the river systems. In this study, we focus on the Hanzhong Basin and the adjacent Micang Shan (Shan means Mountain(s)) at the tail of the Qingchuan strike‐slip fault in the outskirts of eastern Tibet. We investigated the stability of the Micang Shan drainage divide, which separates the Han and Jialing rivers (two major tributaries of the Yangtze River), using two methods—‐plot and Gilbert metrics. The results show that most segments of the Micang Shan drainage divide are either moving south or stable. We further calculated the predicted stable divide location and identified the abandoned river channels and residual planation surfaces. Based on these analyses, we suggest that (1) the migration of the Micang Shan drainage divide is driven by the tectonic subsidence of the Hanzhong Basin; and (2) the upper reaches of the Han River flowed southward to the Sichuan Basin before basin subsidence. This study supports the hypothesis that the Palaeo‐Middle Yangtze River and its tributaries primarily flowed southward. Moreover, the flow direction of the Middle Yangtze River has been, and still is, transitioning from southward to eastward. The change in river network flow direction is driven by regional block tilting towards the east, surface deformation from strike‐slip faulting, regional extension east of the Tibetan Plateau and/or increased influence from the summer monsoon.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12875
2024-05-28
2024-07-14
Loading full text...

Full text loading...

References

  1. Abendanon, E. (1908). Structural geology of the middle Yang‐Tzïkiang gorges. The Journal of Geology, 16(7), 587–616.
    [Google Scholar]
  2. Authemayou, C., Brocard, G., Delcaillau, B., Molliex, S., Pedoja, K., Husson, L., Aribowo, S., & Cahyarini, S. Y. (2018). Unraveling the roles of asymmetric uplift, normal faulting and groundwater flow to drainage rearrangement in an emerging karstic landscape. Earth Surface Processes and Landforms, 43(9), 1885–1898. https://doi.org/10.1002/esp.4363
    [Google Scholar]
  3. Barbour, G. B. (1936). Physiographic history of the Yangtze. The Geographical Journal, 87(1), 17–32. https://doi.org/10.2307/1786198
    [Google Scholar]
  4. Beeson, H. W., McCoy, S. W., & Keen‐Zebert, A. (2017). Geometric disequilibrium of river basins produces long‐lived transient landscapes. Earth and Planetary Science Letters, 475, 34–43. https://doi.org/10.1016/j.epsl.2017.07.010
    [Google Scholar]
  5. Bian, S., Tan, X., Liu, Y., Fan, S., Gong, J., Zhou, C., Shi, F., & Murphy, M. A. (2024). Orographic rainfall drives the Himalaya drainage divide to move north. Geomorphology, 444, 108952. https://doi.org/10.1016/j.geomorph.2023.108952
    [Google Scholar]
  6. Bonnet, S. (2009). Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide. Nature Geoscience, 2(11), 766–771. https://doi.org/10.1038/ngeo666
    [Google Scholar]
  7. Brookfield, M. (1998). The evolution of the great river systems of southern Asia during the Cenozoic India‐Asia collision: Rivers draining southwards. Geomorphology, 22(3–4), 285–312. https://doi.org/10.1016/S0169‐555X(97)00082‐2
    [Google Scholar]
  8. Burchfiel, B. C., Zhiliang, C., Yupinc, L., & Royden, L. H. (1995). Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review, 37(8), 661–735. https://doi.org/10.1080/00206819509465424
    [Google Scholar]
  9. Buscher, J. T., Ascione, A., & Valente, E. (2017). Decoding the role of tectonics, incision and lithology on drainage divide migration in the Mt. Alpi region, southern Apennines, Italy. Geomorphology, 276, 37–50. https://doi.org/10.1016/j.geomorph.2016.10.003
    [Google Scholar]
  10. Chang, Y., Xu, C. H., & Reiners, P. W. (2010). The exhumation evolution of the Micang Shan‐Hannan uplift since cretaceous: Evidence from apatite (U‐Th)/He dating. Acta Geophysica Sinica, 53(4), 912–919. https://doi.org/10.3969/j.issn.0001‐5733.2010.04.016
    [Google Scholar]
  11. Chen, C.‐Y., Willett, S. D., Christl, M., & Shyu, J. B. H. (2021). Drainage basin dynamics during the transition from early to mature orogeny in southern Taiwan. Earth and Planetary Science Letters, 562, 116874. https://doi.org/10.1016/j.epsl.2021.116874
    [Google Scholar]
  12. Chen, F., Xue, G., Wang, Y., Zhang, H., Clift, P. D., Xing, Y., He, J., Albert, J. S., Chen, J., & Xie, P. (2023). Evolution of the Yangtze River and its biodiversity. The Innovations, 4(3), 100417. https://doi.org/10.1016/j.xinn.2023.100417
    [Google Scholar]
  13. Chen, Y., Yan, M., Fang, X., Song, C., Zhang, W., Zan, J., Zhang, Z., Li, B., Yang, Y., & Zhang, D. (2017). Detrital zircon U–Pb geochronological and sedimentological study of the Simao Basin, Yunnan: Implications for the early Cenozoic evolution of the Red River. Earth and Planetary Science Letters, 476, 22–33. https://doi.org/10.1016/j.epsl.2017.07.025
    [Google Scholar]
  14. Clark, M. K., Schoenbohm, L. M., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., Tang, W., Wang, E., & Chen, L. (2004). Surface uplift, tectonics, and erosion of eastern Tibet from large‐scale drainage patterns. Tectonics, 23(1), TC1006. https://doi.org/10.1029/2002TC001402
    [Google Scholar]
  15. Clift, P. D., Blusztajn, J., & Nguyen, A. D. (2006). Large‐scale drainage capture and surface uplift in eastern Tibet‐SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. Geophysical Research Letters, 33(19), L19403. https://doi.org/10.1029/2006GL027772
    [Google Scholar]
  16. Clift, P. D., Carter, A., Wysocka, A., Van Hoang, L., Zheng, H., & Neubeck, N. (2020). A Late Eocene‐Oligocene through‐flowing river between the Upper Yangtze and South China sea. Geochemistry, Geophysics, Geosystems, 21(7), e2020GC009046. https://doi.org/10.1029/2020GC009046
    [Google Scholar]
  17. Clift, P. D., Long, H. V., Hinton, R., Ellam, R. M., Hannigan, R., Tan, M. T., Blusztajn, J., & Duc, N. A. (2008). Evolving east Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River‐Song Hong sediments. Geochemistry, Geophysics, Geosystems, 9(4), Q04039. https://doi.org/10.1029/2007GC001867
    [Google Scholar]
  18. Deng, B., Chew, D., Jiang, L., Mark, C., Cogné, N., Wang, Z., & Liu, S. (2018). Heavy mineral analysis and detrital U‐Pb ages of the intracontinental paleo‐Yangzte basin: Implications for a transcontinental source‐to‐sink system during late cretaceous time. Bulletin, 130(11–12), 2087–2109. https://doi.org/10.1130/B32037.1
    [Google Scholar]
  19. Deng, B., Chew, D., Mark, C., Liu, S., Cogné, N., Jiang, L., O'Sullivan, G., Li, Z., & Li, J. (2021). Late Cenozoic drainage reorganization of the paleo‐Yangtze river constrained by multi‐proxy provenance analysis of the paleo‐lake Xigeda. GSA Bulletin, 133(1–2), 199–211. https://doi.org/10.1130/B35579.1
    [Google Scholar]
  20. Dodds, P. S., & Rothman, D. H. (2000). Scaling, universality, and geomorphology. Annual Review of Earth and Planetary Sciences, 28(1), 571–610. https://doi.org/10.1146/annurev.earth.28.1.571
    [Google Scholar]
  21. Enkelmann, E., Ratschbacher, L., Jonckheere, R., Nestler, R., Fleischer, M., Gloaguen, R., Hacker, B. R., Zhang, Y. Q., & Ma, Y. S. (2006). Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin?Geological Society of America Bulletin, 118(5–6), 651–671. https://doi.org/10.1130/B25805.1
    [Google Scholar]
  22. Fan, C., Wang, E., Wang, G., & Wang, S. F. (2008). Dextral strike‐slip and tectonic transformation of the northern Longmen Shan fault belt from late Neogene: A case study from the Qingchuan fault. Chinese Journal of Geology, 43(3), 417–433. https://doi.org/10.3321/j.issn:0563‐5020.2008.03.001
    [Google Scholar]
  23. Fan, N., Chu, Z., Jiang, L., Hassan, M. A., Lamb, M. P., & Liu, X. (2018). Abrupt drainage basin reorganization following a Pleistocene river capture. Nature Communications, 9(1), 1–6. https://doi.org/10.1038/s41467‐018‐06238‐6
    [Google Scholar]
  24. Fan, N., Kong, P., Robl, J. C., Zhou, H., Wang, X., Jin, Z., & Liu, X. (2021). Timing of river capture in major Yangtze River tributaries: Insights from sediment provenance and morphometric indices. Geomorphology, 392, 107915. https://doi.org/10.1016/j.geomorph.2021.107915
    [Google Scholar]
  25. Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
    [Google Scholar]
  26. Forte, A. M., & Whipple, K. X. (2018). Criteria and tools for determining drainage divide stability. Earth and Planetary Science Letters, 493, 102–117. https://doi.org/10.1016/j.epsl.2018.04.026
    [Google Scholar]
  27. Forte, A. M., & Whipple, K. X. (2019). The topographic analysis kit (TAK) for TopoToolbox. Earth Surface Dynamics, 7(1), 87–95. https://doi.org/10.5194/esurf‐7‐87‐2019
    [Google Scholar]
  28. Fu, X., Zhu, W., Geng, J., Yang, S., Zhong, K., Huang, X., Zhang, L., & Xu, X. (2021). The present‐day Yangtze River was established in the late Miocene: Evidence from detrital zircon ages. Journal of Asian Earth Sciences, 205, 104600. https://doi.org/10.1016/j.jseaes.2020.104600
    [Google Scholar]
  29. Garzanti, E., Andò, S., & Vezzoli, G. (2008). Settling equivalence of detrital minerals and grain‐size dependence of sediment composition. Earth and Planetary Science Letters, 273(1–2), 138–151. https://doi.org/10.1016/j.epsl.2008.06.020
    [Google Scholar]
  30. Goren, L., Fox, M., & Willett, S. D. (2014). Tectonics from fluvial topography using formal linear inversion: Theory and applications to the Inyo Mountains, California. Journal of Geophysical Research: Earth Surface, 119(8), 1651–1681. https://doi.org/10.1002/2014JF003079
    [Google Scholar]
  31. Gourbet, L., Leloup, P. H., Paquette, J. L., Sorrel, P., Maheo, G., Wang, G., Yadong, X., Cao, K., Antoine, P. O., Eymard, I., & Liu, W. (2017). Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution. Tectonophysics, 700, 162–179. https://doi.org/10.1016/j.tecto.2017.02.007
    [Google Scholar]
  32. Gregory, J. W., & Gregory, C. (1925). The geology and physical geography of Chinese Tibet, and its relations to the mountain system of south‐eastern Asia, from observations made during the Percy Sladen expedition, 1922. Philosophical Transactions of the Royal Society of London, Series B, 213(402–410), 171–298. https://doi.org/10.1098/rstb.1925.0005
    [Google Scholar]
  33. Guo, R., Sun, X., Li, Y., Wei, C., Zhang, Z., Leng, Y., Klötzli, U., Li, G., Lv, L., & Chen, X. (2021). Cenozoic evolution of the Yangtze River: Constraints from detrital zircon UPb ages. Palaeogeography, Palaeoclimatology, Palaeoecology, 579, 110586. https://doi.org/10.1016/j.palaeo.2021.110586
    [Google Scholar]
  34. Hack, J. T. (1957). Studies of longitudinal stream profiles in Virginia and Maryland (Vol. 294): US Government Printing Office.
  35. He, C., Yang, C.‐J., Rao, G., Roda‐Boluda, D. C., Yuan, X., Yang, R., Gao, L., & Zhang, L. (2021). Landscape response to normal fault linkage: Insights from numerical modeling. Geomorphology, 388, 107796. https://doi.org/10.1016/j.geomorph.2021.107796
    [Google Scholar]
  36. He, C., Yang, C. J., Turowski, J. M., Rao, G., Roda‐Boluda, D. C., & Yuan, X. P. (2021). Constraining tectonic uplift and advection from the main drainage divide of a mountain belt. Nature Communications, 12(1), 1–10. https://doi.org/10.1038/s41467‐020‐20748‐2
    [Google Scholar]
  37. He, J., Garzanti, E., Jiang, T., Barbarano, M., Liu, E., Chen, S., Liao, Y., Li, X., & Wang, H. (2023). Evolution of eastern Asia river systems reconstructed by the mineralogy and detrital‐zircon geochronology of modern Red River and coastal Vietnam river sand. Earth‐Science Reviews, 245, 104572. https://doi.org/10.1016/j.earscirev.2023.104572
    [Google Scholar]
  38. Hoang, L. V., Wu, F. Y., Clift, P. D., Wysocka, A., & Swierczewska, A. (2009). Evaluating the evolution of the Red River system based on in situ U‐Pb dating and Hf isotope analysis of zircons. Geochemistry, Geophysics, Geosystems, 10(11), Q11008. https://doi.org/10.1029/2009GC002819
    [Google Scholar]
  39. Howard, A. D. (1994). A detachment‐limited model of drainage basin evolution. Water Resources Research, 30(7), 2261–2285. https://doi.org/10.1029/94WR00757
    [Google Scholar]
  40. Jiao, R., Fox, M., & Yang, R. (2022). Late Cenozoic erosion pattern of the eastern margin of the Sichuan Basin: Implications for the drainage evolution of the Yangtze River. Geomorphology, 398, 108025. https://doi.org/10.1016/j.geomorph.2021.108025
    [Google Scholar]
  41. Kirby, E., & Whipple, K. X. (2012). Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44, 54–75. https://doi.org/10.1016/j.jsg.2012.07.009
    [Google Scholar]
  42. Kirby, E., Whipple, K. X., Tang, W., & Chen, Z. (2003). Distribution of active rock uplift along the eastern margin of the Tibetan plateau: Inferences from bedrock channel longitudinal profiles. Journal of Geophysical Research: Solid Earth, 108(B4), 2217. https://doi.org/10.1029/2001JB000861
    [Google Scholar]
  43. Liu, Y., Tan, X., Ye, Y., Zhou, C., Lu, R., Murphy, M. A., Xu, X., & Suppe, J. (2020). Role of erosion in creating thrust recesses in a critical‐taper wedge: An example from eastern Tibet. Earth and Planetary Science Letters, 540, 116270. https://doi.org/10.1016/j.epsl.2020.116270
    [Google Scholar]
  44. Liu‐Zeng, J., Tapponnier, P., Gaudemer, Y., & Ding, L. (2008). Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution. Journal of Geophysical Research: Earth Surface, 113(F4), F0418. https://doi.org/10.1029/2007JF000897
    [Google Scholar]
  45. Malusà, M. G., Resentini, A., & Garzanti, E. (2016). Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Research, 31, 1–19. https://doi.org/10.1016/j.gr.2015.09.002
    [Google Scholar]
  46. Mcbride, E. F. (1985). Diagenetic processes that affect provenance determinations in sandstone. Provenance of Arenites, 148, 95–113. https://doi.org/10.1007/978‐94‐017‐2809‐6_5
    [Google Scholar]
  47. Molnar, P., & England, P. (1990). Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg?Nature, 346(6279), 29–34. https://doi.org/10.1038/346029a0
    [Google Scholar]
  48. Nesbitt, H. W., Young, G. M., McLennan, S. M., & Keays, R. R. (1996). Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. The Journal of Geology, 104(5), 525–542. https://doi.org/10.1086/629850
    [Google Scholar]
  49. Ouimet, W. B., Whipple, K. X., & Granger, D. E. (2009). Beyond threshold hillslopes: Channel adjustment to base‐level fall in tectonically active mountain ranges. Geology, 37(7), 579–582. https://doi.org/10.1130/G30013A.1
    [Google Scholar]
  50. Perron, J. T., Kirchner, J. W., & Dietrich, W. E. (2009). Formation of evenly spaced ridges and valleys. Nature, 460(7254), 502–505. https://doi.org/10.1038/nature08174
    [Google Scholar]
  51. Perron, J. T., & Royden, L. (2013). An integral approach to bedrock river profile analysis. Earth Surface Processes and Landforms, 38(6), 570–576. https://doi.org/10.1002/esp.3302
    [Google Scholar]
  52. Richardson, N., Densmore, A., Seward, D., Wipf, M., & Yong, L. (2010). Did incision of the three gorges begin in the Eocene?Geology, 38(6), 551–554. https://doi.org/10.1130/G30527.1
    [Google Scholar]
  53. Richardson, N. J., Densmore, A. L., Seward, D., Fowler, A., Wipf, M., Ellis, M. A., Yong, L., & Zhang, Y. (2008). Extraordinary denudation in the Sichuan Basin: Insights from low‐temperature thermochronology adjacent to the eastern margin of the Tibetan plateau. Journal of Geophysical Research: Solid Earth, 113(B4), B04409. https://doi.org/10.1029/2006JB004739
    [Google Scholar]
  54. Rohrmann, A., Kirby, E., & Schwanghart, W. (2023). Accelerated Miocene incision along the Yangtze River driven by headward drainage basin expansion. Science Advances, 9(36), eadh1636. https://doi.org/10.1126/sciadv.adh1636
    [Google Scholar]
  55. Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E., Chen, Z., Shen, F., & Liu, Y. (1997). Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313), 788–790. https://doi.org/10.1126/science.276.5313.788
    [Google Scholar]
  56. Schwanghart, W., & Scherler, D. (2014). TopoToolbox 2‐MATLAB‐based software for topographic analysis and modeling in earth surface sciences. Earth Surface Dynamics, 2(1), 1–7. https://doi.org/10.5194/esurf‐2‐1‐2014
    [Google Scholar]
  57. Shelef, E., & Goren, L. (2021). The rate and extent of wind‐gap migration regulated by tributary confluences and avulsions. Earth Surface Dynamics, 9(4), 687–700. https://doi.org/10.5194/esurf‐9‐687‐2021
    [Google Scholar]
  58. Shen, X., Tian, Y., Zhang, G., Zhang, S., Carter, A., Kohn, B., Vermeesch, P., Liu, R., & Li, W. (2019). Late Miocene hinterland crustal shortening in the Longmen Shan thrust belt, the eastern margin of the Tibetan plateau. Journal of Geophysical Research: Solid Earth, 124(11), 11972–11991. https://doi.org/10.1029/2019JB018358
    [Google Scholar]
  59. Shi, F., Tan, X., Zhou, C., & Liu, Y. (2021). Impact of asymmetric uplift on mountain asymmetry: Analytical solution, numerical modeling, and natural examples. Geomorphology, 389, 107862. https://doi.org/10.1016/j.geomorph.2021.107862
    [Google Scholar]
  60. Shi, Y. (2002). Characteristics of late quaternary monsoonal glaciation on the Tibetan plateau and in East Asia. Quaternary International, 97, 79–91. https://doi.org/10.1016/S1040‐6182(02)00053‐8
    [Google Scholar]
  61. Sun, H. Y. (2015). Late quaternary activity of the Qingchuan fault: Implications for the tectonic movement mechanism in regional area (pp. 1–97). Institute of Geology, China Earthquake Administration.
    [Google Scholar]
  62. Sun, X., Kuiper, K. F., Wang, J., Tian, Y., Vermeesch, P., Zhang, Z., Zhao, J., & Wijbrans, J. R. (2018). Geochronology of detrital muscovite and zircon constrains the sediment provenance changes in the Yangtze river during the Late Cenozoic. Basin Research, 30, 636–649. https://doi.org/10.1111/bre.12268
    [Google Scholar]
  63. Sun, X., Tian, Y., Kuiper, K. F., Li, C. A., Zhang, Z., & Wijbrans, J. R. (2021). No Yangtze River prior to the late Miocene: Evidence from detrital muscovite and K‐feldspar 40Ar/39Ar geochronology. Geophysical Research Letters, 48(5), e2020GL089903. https://doi.org/10.1029/2020GL089903
    [Google Scholar]
  64. Tan, X., Liu, Y., Lee, Y. H., Lu, R., Xu, X., Suppe, J., Shi, F., & Xu, C. (2019). Parallelism between the maximum exhumation belt and the Moho ramp along the eastern Tibetan plateau margin: Coincidence or consequence?Earth and Planetary Science Letters, 507, 73–84. https://doi.org/10.1016/j.epsl.2018.12.001
    [Google Scholar]
  65. Tan, X. B., Lee, Y. H., Chen, W. Y., Cook, K. L., & Xu, X. W. (2014). Exhumation history and faulting activity of the southern segment of the Longmen Shan, eastern Tibet. Journal of Asian Earth Sciences, 81, 91–104. https://doi.org/10.1016/j.jseaes.2013.12.002
    [Google Scholar]
  66. Tan, X. B., Xu, X. W., Lee, Y. H., Lu, R. Q., Liu, Y., Xu, C., Li, K., Yu, G. H., & Kang, W. J. (2017). Late Cenozoic thrusting of major faults along the central segment of Longmen Shan, eastern Tibet: Evidence from low‐temperature thermochronology. Tectonophysics, 712, 145–155. https://doi.org/10.1016/j.tecto.2017.05.016
    [Google Scholar]
  67. Tang, Y. J., & Zong, G. F. (1987). Fossil mammals from the Pliocene of Hanzhong region, Saanxi Province, and their stratigraphic significance. Vertebrata Paleasiatica, 3, 222–235.
    [Google Scholar]
  68. Tapponnier, P., Xu, Z., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., & Jingsui, Y. (2001). Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547), 1671–1677. https://doi.org/10.1126/science.105978
    [Google Scholar]
  69. Tian, J., & Lin, Z. (2021). Late quaternary activity of the Qingchuan fault, eastern Tibetan plateau margin: Insights from stream channel offsets and catchment erosion. Geomorphology, 395, 107949. https://doi.org/10.1016/j.geomorph.2021.107949
    [Google Scholar]
  70. Tian, Y., Kohn, B. P., Zhu, C., Xu, M., Hu, S., & Gleadow, A. J. (2012). Post‐orogenic evolution of the Mesozoic Micang Shan Foreland Basin system, central China. Basin Research, 24(1), 70–90. https://doi.org/10.1111/j.1365‐2117.2011.00516.x
    [Google Scholar]
  71. Tian, Y., Zhu, C. Q., Xu, M., Rao, S., & Kohn, B. P. (2010). Exhumation history of the Micangshan‐Hannan dome since cretaceous and its tectonic significance: Evidences from apatite fission track analysis. Chinese Journal of Geophysics, 53(4), 920–930. https://doi.org/10.3969/j.issn.0001‐5733.2010.04.017
    [Google Scholar]
  72. Vacherat, A., Bonnet, S., & Mouthereau, F. (2018). Drainage reorganization and divide migration induced by the excavation of the Ebro basin (NE Spain). Earth Surface Dynamics, 6(2), 369–387. https://doi.org/10.5194/esurf‐6‐369‐2018
    [Google Scholar]
  73. Wang, E., Kirby, E., Furlong, K. P., Van Soest, M., Xu, G., Shi, X., Kamp, P. J., & Hodges, K. V. (2012). Two‐phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 5(9), 640–645. https://doi.org/10.1038/ngeo1538
    [Google Scholar]
  74. Wang, M., Tian, Y., Zhou, B., Jiao, R., & Zhang, G. (2022). Instant far‐field effects of continental collision: An example study in the Qinling orogen, northeast of the Tibetan plateau. Tectonophysics, 833, 229334. https://doi.org/10.1016/j.tecto.2022.229334
    [Google Scholar]
  75. Wang, M., Zhou, B., Yang, X., & Li, J. (2013). A study on the activity of the faults around and the late quaternary tectonic features in the Hanzhong basin. Seismology and Geology, 35(4), 778. https://doi.org/10.3969/j.issn.0253‐4967.2013.04.008
    [Google Scholar]
  76. Wang, M., Zhou, B., Yang, X., Xie, C., & Gao, X. (2013). Characteristics of late‐quaternary activity and seismic risk of the northeastern section of the Longmenshan fault zone. Acta Geologica Sinica‐English Edition, 87(6), 1674–1689. https://doi.org/10.1111/1755‐6724.12168
    [Google Scholar]
  77. Wang, P., Zheng, H., & Liu, S. (2013). Geomorphic constraints on middle Yangtze River reversal in eastern Sichuan Basin, China. Journal of Asian Earth Sciences, 69, 70–85. https://doi.org/10.1016/j.jseaes.2012.09.018
    [Google Scholar]
  78. Wang, P., Zheng, H., Liu, S., & Hoke, G. (2018). Late cretaceous drainage reorganization of the middle Yangtze River. Lithosphere, 10(3), 392–405. https://doi.org/10.1130/L695.1
    [Google Scholar]
  79. Whipple, K., Forte, A., DiBiase, R., Gasparini, N., & Ouimet, W. (2017). Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution. Journal of Geophysical Research: Earth Surface, 122(1), 248–273. https://doi.org/10.1002/2016JF003973
    [Google Scholar]
  80. Whipple, K. X. (2009). The influence of climate on the tectonic evolution of mountain belts. Nature Geoscience, 2(2), 97–104. https://doi.org/10.1038/ngeo413
    [Google Scholar]
  81. Whipple, K. X., DiBiase, R. A., Ouimet, W. B., & Forte, A. M. (2017). Preservation or piracy: Diagnosing low‐relief, high‐elevation surface formation mechanisms. Geology, 45(1), 91–94. https://doi.org/10.1130/G38490.1
    [Google Scholar]
  82. Willett, S. D., McCoy, S. W., Perron, J. T., Goren, L., & Chen, C. Y. (2014). Dynamic reorganization of river basins. Science, 343(6175), 1248765. https://doi.org/10.1126/science.124876
    [Google Scholar]
  83. Wissink, G. K., Hoke, G. D., Garzione, C. N., & Liu‐Zeng, J. (2016). Temporal and spatial patterns of sediment routing across the southeast margin of the Tibetan plateau: Insights from detrital zircon. Tectonics, 35(11), 2538–2563. https://doi.org/10.1002/2016TC004252
    [Google Scholar]
  84. Xiang, F., Zhu, L., Wang, C., Zhao, X., Chen, H., & Yang, W. (2007). Quaternary sediment in the Yichang area: Implications for the formation of the three gorges of the Yangtze River. Geomorphology, 85(3–4), 249–258. https://doi.org/10.1016/j.geomorph.2006.03.027
    [Google Scholar]
  85. Xie, W., Wang, X., Zhang, H., Liu, Q., Wang, S., & Lu, H. (2021). Drainage evolution in intermontane basins at the Qinling‐Daba Mountains. Science China Earth Sciences, 64, 1949–1968. https://doi.org/10.1007/s11430‐020‐9820‐y
    [Google Scholar]
  86. Xu, C., Zhou, Z., Chang, Y., & Guillot, F. (2010). Genesis of Daba arcuate structural belt related to adjacent basement upheavals: Constraints from fission‐track and (U‐Th)/He thermochronology. Science China Earth Sciences, 53, 1634–1646. https://doi.org/10.1007/s11430‐010‐4112‐y
    [Google Scholar]
  87. Yan, Y., Yao, D., Tian, Z. X., Huang, C. Y., Dilek, Y., Clift, P. D., & Li, Z. A. (2018). Tectonic topography changes in Cenozoic East Asia: A landscape erosion‐sediment archive in the South China Sea. Geochemistry, Geophysics, Geosystems, 19(6), 1731–1750. https://doi.org/10.1029/2017GC007356
    [Google Scholar]
  88. Yang, C., Jiao, R., Zattin, M., Shen, C., Wang, Y., Feng, W., Zou, Y., & Ge, X. (2023). Late Oligocene–Early Miocene incision of the three gorges and the initial establishment of an east‐flowing Yangtze River. Geomorphology, 441, 108897. https://doi.org/10.1016/j.geomorph.2023.108897
    [Google Scholar]
  89. Yang, R., Suhail, H. A., Gourbet, L., Willett, S. D., Fellin, M. G., Lin, X., Gong, J., Wei, X., Maden, C., Jiao, R., & Chen, H. (2020). Early Pleistocene drainage pattern changes in eastern Tibet: Constraints from provenance analysis, thermochronometry, and numerical modeling. Earth and Planetary Science Letters, 531, 115955. https://doi.org/10.1016/j.epsl.2019.115955
    [Google Scholar]
  90. Yang, R., Willett, S. D., & Goren, L. (2015). In situ low‐relief landscape formation as a result of river network disruption. Nature, 520(7548), 526–529. https://doi.org/10.1038/nature14354
    [Google Scholar]
  91. Yang, Z., Ratschbacher, L., Jonckheere, R., Enkelmann, E., Dong, Y., Shen, C., Wiesinger, M., & Zhang, Q. (2013). Late‐stage foreland growth of China's largest orogens (Qinling, Tibet): Evidence from the Hannan‐Micang crystalline massifs and the northern Sichuan Basin, central China. Lithosphere, 5(4), 420–437. https://doi.org/10.1130/L260.1
    [Google Scholar]
  92. Ye, Y., Tan, X., Liu, Y., Zhou, C., Shi, F., Lee, Y.‐H., & Murphy, M. A. (2022). The impact of erosion on fault segmentation in thrust belts: Insights from thermochronology and fluvial shear stress analysis (southern Longmen Shan, eastern Tibet). Geomorphology, 397, 108020. https://doi.org/10.1016/j.geomorph.2021.108020
    [Google Scholar]
  93. Ye, Y., Tan, X., & Zhou, C. (2022). Initial topography matters in drainage divide migration analysis: Insights from numerical simulations and natural examples. Geomorphology, 409, 108266. https://doi.org/10.1016/j.geomorph.2022.108266
    [Google Scholar]
  94. Yin, A., & Harrison, T. M. (2000). Geologic evolution of the Himalayan‐Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1), 211–280. https://doi.org/10.1146/annurev.earth.28.1.211
    [Google Scholar]
  95. Yin, A., & Nie, S. Y. (1996). A phanerozoic palinspastic reconstruction of China and its neighboring regions. In A.Yin & T. M.Harrison (Eds.), The tectonic evolution of Asia (pp. 442–485). Cambridge University Press.
    [Google Scholar]
  96. Zeng, X., & Tan, X. (2023). Drainage divide migration in response to strike‐slip faulting: An example from northern Longmen Shan, eastern Tibet. Tectonophysics, 848, 229720. https://doi.org/10.1016/j.tecto.2023.229720
    [Google Scholar]
  97. Zhang, D., Cao, K., Yuan, X., Wang, G., & van der Beek, P. (2022). Late Oligocene‐early Miocene origin of the first bend of the Yangtze River explained by thrusting‐induced river reorganization. Geomorphology, 411, 108303. https://doi.org/10.1016/j.geomorph.2022.108303
    [Google Scholar]
  98. Zhang, D., Wang, X., Zhang, H., Liu, Q., Wang, S., & Lu, H. (2023). Drainage connection and terrace formation promoted early hominin occupation in the upper Hanjiang River during the early‐middle Pleistocene. Acta Geographica Sinica, 78(5), 1213–1232.
    [Google Scholar]
  99. Zhang, H., Kirby, E., Pitlick, J., Anderson, R. S., & Zhang, P. (2017). Characterizing the transient geomorphic response to base‐level fall in the northeastern Tibetan plateau. Journal of Geophysical Research: Earth Surface, 122(2), 546–572. https://doi.org/10.1002/2015JF003715
    [Google Scholar]
  100. Zhang, Q., Dong, Y. P., Yang, C., & Qu, H. J. (2010). Sedimentological restriction during the uplift period in Micangshan. Northwestern Geology, 43(3), 12–19.
    [Google Scholar]
  101. Zhang, Z., Daly, J. S., Tian, Y., Wang, Y., Badenszki, E., Sun, X., & Liu, Y. (2023). Sedimentary recycling in Jianchuan Basin, SE Tibet: A solution to the debate on the formation age of the first bend (Yangtze River). Geomorphology, 440, 108888. https://doi.org/10.1016/j.geomorph.2023.108888
    [Google Scholar]
  102. Zhang, Z., Daly, J. S., Tyrrell, S., Sun, X., Badenszki, E., Li, Y., Zhang, D., Tian, Y., & Yan, Y. (2021). Formation of the three gorges (Yangtze River) no earlier than 10 Ma. Earth‐Science Reviews, 216, 103601. https://doi.org/10.1016/j.earscirev.2021.103601
    [Google Scholar]
  103. Zhao, X., Zhang, H., Hetzel, R., Kirby, E., Duvall, A. R., Whipple, K. X., Xiong, J., Li, Y., Pang, J., Wang, Y., & Wang, P. (2021). Existence of a continental‐scale river system in eastern Tibet during the late cretaceous–early Palaeogene. Nature Communications, 12(1), 7231. https://doi.org/10.1038/s41467‐021‐27587‐9
    [Google Scholar]
  104. Zhao, X., Zhang, H., Lease, R. O., Wang, Y., Pang, J., Li, Y., Wang, P., Zhang, J., Xie, H., Wang, Y., & Tao, Y. (2023). Early Cenozoic drainage evolution and surface uplift of the eastern Tibetan plateau: Insights from the Ninglang Basin. Geophysical Research Letters, 50(19), e2023GL105499. https://doi.org/10.1029/2023GL105499
    [Google Scholar]
  105. Zhao, X., Zhang, H., Tao, Y., Wang, Y., Pang, J., Ma, Y., Zhang, J., Ma, Z., & Xiong, J. (2021). Pliocene to early Pleistocene drainage reorganization in eastern Tibet inferred from detrital zircons. Geophysical Research Letters, 48(20), e2021GL094563. https://doi.org/10.1029/2021GL094563
    [Google Scholar]
  106. Zheng, H. (2015). Birth of the Yangtze River: Age and tectonic‐geomorphic implications. National Science Review, 2(4), 438–453. https://doi.org/10.1093/nsr/nwv063
    [Google Scholar]
  107. Zheng, H., Clift, P. D., He, M., Bian, Z., Liu, G., Liu, X., Xia, L., Yang, Q., & Jourdan, F. (2021). Formation of the first bend in the Late Eocene gave birth to the modern Yangtze River. China Geology, 49(1), 35–39. https://doi.org/10.1130/G48149.1
    [Google Scholar]
  108. Zheng, H., Clift, P. D., Wang, P., Tada, R., Jia, J., He, M., & Jourdan, F. (2013). Pre‐miocene birth of the Yangtze River. Proceedings of the National Academy of Sciences, 110(19), 7556–7561. https://doi.org/10.1073/pnas.1216241110
    [Google Scholar]
  109. Zhou, C., Tan, X., Liu, Y., Lu, R., Murphy, M. A., He, H., Han, Z., & Xu, X. (2022). Ongoing westward migration of drainage divides in eastern Tibet, quantified from topographic analysis. Geomorphology, 402, 108123. https://doi.org/10.1016/j.geomorph.2022.108123
    [Google Scholar]
  110. Zhou, C., Tan, X., Liu, Y., & Shi, F. (2022). A cross‐divide contrast index (C) for assessing controls on the main drainage divide stability of a mountain belt. Geomorphology, 398, 108071. https://doi.org/10.1016/j.geomorph.2021.108071
    [Google Scholar]
  111. Zhou, C., Tan, X., Liu, Y., & Shi, F. (2024). Quantifying the migration rate of drainage divides from high‐resolution topographic data. Earth Surface Dynamics, 12, 433–448. https://doi.org/10.5194/esurf‐12‐433‐2024
    [Google Scholar]
  112. Zondervan, J. R., Stokes, M., Boulton, S. J., Telfer, M. W., & Mather, A. E. (2020). Rock strength and structural controls on fluvial erodibility: Implications for drainage divide mobility in a collisional mountain belt. Earth and Planetary Science Letters, 538, 116221. https://doi.org/10.1016/j.epsl.2020.116221
    [Google Scholar]
/content/journals/10.1111/bre.12875
Loading
/content/journals/10.1111/bre.12875
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error