1887
Volume 36, Issue 3
  • E-ISSN: 1365-2117

Abstract

[Abstract

Sequence architectures along the margins of rift basins are still poorly documented compared to passive continental margin settings. The Eocene Shahejie Formation on the rift margin of the Dongying Depression records a complex sequence stratigraphic distribution of conglomerate, sandy conglomerate, sandstone and mudstone. These facies have been mainly attributed to fan delta and marginal subaqueous fan depositional settings that developed during segmented fault activity along the rift margin. We utilize three‐dimensional (3D) seismic data, conventional cores, and wireline log data to dissect the overall wedge‐shaped upper sub‐member strata of the Shahejie Formation's fourth member. The study interval is a third‐order sequence formed between 45.4 and 42.5 Ma and contains a lowstand–transgressive systems tract (LST–TST) and a highstand systems tract–falling‐stage systems tract (HST–FSST). We found that the LST–TST developed several huge amalgamated depocenters along the Chennan border fault; whereas, these depocenters gradually diminished or even disappeared during the HST–FSST period, illustrating less significant control by the border fault. Through calculations of strata growth rates, we confirmed that the segmented activity of the border fault influences the stratigraphic distribution and facies evolution during these two periods. Specifically, deep‐water depositional systems, represented by marginal subaqueous fans were widely developed in the LST–TST period and were influenced by overall strong tectonic activity, including retrogradational (R) and aggradational (A) patterns. However, the aggradational to progradational (AP) deltas and progradational to degradational (PD) deltas dominated the generally muted tectonic activity setting during the HST–FSST. Additionally, influenced by localized segmented fault activity, these systems tracts exhibit incomplete vertical development, resulting in spatial variability in stratigraphic stacking patterns.

,

Rift basins are interesting and complex, and this study examines stratigraphic architecture and facies evolution within a particular interval near a border fault with variable spatio‐temporal activity.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12876
2024-06-10
2024-07-14
Loading full text...

Full text loading...

References

  1. Al‐Hussaini, A., Steel, R. J., Melvin, J., Olariu, C., Ertug, K., & Hooker, N. (2019). New evidence of regressing and transgressing Jurassic siliciclastic coastlines within the Dhruma formation in northern Central Arabia, Saudi Arabia. Sedimentary Geology, 379, 114–137.
    [Google Scholar]
  2. Allen, M. B., Macdonald, D. I. M., Zhao, X., Vincent, S. J., & Brouet‐Menzies, C. (1997). Early Cenozoic two‐phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China. Marine and Petroleum Geology, 14, 951–972.
    [Google Scholar]
  3. Ambrosetti, E., Martini, I., & Sandrelli, F. (2017). Shoal water deltas in high‐accommodation settings: Insights from the lacustrine Valimi formation (gulf of Corinth, Greece). Sedimentology, 64, 425–452.
    [Google Scholar]
  4. Baudon, C., & Cartwright, J. (2008). Early stage evolution of growth faults: 3D seismic insights from the Levant Basin, eastern Mediterranean. Journal of Structural Geology, 30(7), 888–898.
    [Google Scholar]
  5. Bell, R. E., McNeill, L. C., Bull, J. M., Henstock, T. J., Collier, R. E. L., & Leeder, M. R. (2009). Fault architecture, basin structure and evolution of the Gulf of Corinth rift, central Greece. Basin Research, 21(6), 824–855.
    [Google Scholar]
  6. Bouma, A. H. (1962). Sedimentology of some flysch deposits: A graphic approach to facies interpretation (p. 168). Elsevier.
    [Google Scholar]
  7. Brown, L. F., Jr., & Fisher, W. L. (1977). Seismic stratigraphic interpretation of depositional systems: Examples from Brazilian rift and pull apart basins. In C. E.Payton (Ed.), Seismic stratigraphy‐applications to hydrocarbon exploration (Vol. 26, pp. 213–248). AAPG Memoir.
    [Google Scholar]
  8. Burgess, P. M., & Prince, G. D. (2015). Non‐unique stratal geometries: Implications for sequence stratigraphic interpretations. Basin Research, 27(3), 351–365.
    [Google Scholar]
  9. Carr, I. D., Gawthorpe, R. L., Jackson, C. A. L., Sharp, I. R., & Sadek, A. (2003). Sedimentology and sequence stratigraphy of early syn‐rift tidal sediments; the Nukhul formation, Suez rift, Egypt. Journal of Sedimentary Research, 73(3), 407–420.
    [Google Scholar]
  10. Cartwright, J. A., Trudgill, B. D., & Mansfield, C. S. (1995). Fault growth by segment linkage: An explanation for scatter in maximum displacement and trace length data from the canyonlands grabens of SE Utah. Journal of Structural Geology, 17(9), 1319–1326.
    [Google Scholar]
  11. Catuneanu, O. (2002). Sequence stratigraphy of clastic systems: Concepts, merits, and pitfalls. Journal of African Earth Sciences, 35(1), 1–43.
    [Google Scholar]
  12. Catuneanu, O., Galloway, W. E., Kendall, C. G. S. T., Miall, A. D., Posamentier, H. W., Strasser, A., & Tucker, M. E. (2011). Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy, 44(3), 173–245.
    [Google Scholar]
  13. Chen, D., & Peng, Z. (1985). K–Ar ages and Pb, Sr isotopic characteristic of Cenozoic volcanic rocks in Shandong, China. Geochimica, 4, 293–303. (in Chinese with English abstract).
    [Google Scholar]
  14. Chiarella, D., Capella, W., Longhitano, S. G., & Muto, F. (2020). Fault‐controlled base‐of‐scarp deposits. Basin Research, 33(2), 1056–1075.
    [Google Scholar]
  15. Childs, C., Nicol, A., Walsh, J. J., & Watterson, J. (2003). The growth and propagation of synsedimentary faults. Journal of Structural Geology, 25(4), 633–648.
    [Google Scholar]
  16. Colombera, L., & Mountney, N. P. (2020). Accommodation and sediment‐supply controls on clastic parasequences: A meta‐analysis. Sedimentology, 67(4), 1667–1709.
    [Google Scholar]
  17. Cowie, P. A. (1998). A healing‐reloading feedback control on the growth rate of seismogenic faults. Journal of Structural Geology, 20(8), 1075–1087.
    [Google Scholar]
  18. Davies, S. J., & Gibling, M. R. (2003). Architecture of coastal and alluvial deposits in an extensional basin; the carboniferous Joggins formation of eastern Canada. Sedimentology, 50(3), 415–439.
    [Google Scholar]
  19. Davison, I., Underhill, J. R., & Gao, D. (2012). Tectonics and sedimentation in extensional rifts; implications for petroleum systems. AAPG Memoir, 100, 15–42.
    [Google Scholar]
  20. Deng, J., Xia, S., Liu, J., Wu, P., Du, X., Chang, Y., Gao, L., Zheng, X., & Ma, J. (2020). Sequence architecture and depositional evolution of Dongying formation in steep slope zone of northern Liaodong Bay and its responses to tectonism. Geological Journal, 55(7), 5251–5274.
    [Google Scholar]
  21. Dillinger, A., & George, A. D. (2019). Syn‐rift sequence development in a fault‐controlled embayment (early Permian Irwin River coal measures, northern Perth Basin, Western Australia). Sedimentology, 66(7), 2828–2873.
    [Google Scholar]
  22. Feng, Y. (1994). Tectono‐magmatic evolution of Yangxing depression (in Chinese with English abstract). Oil and Gas Geology, 15, 173–179.
    [Google Scholar]
  23. Feng, Y. (1999). Lower tertiary stratigraphic framework and basing filling model in Dongying Depression. Earth Science–Journal of China University of Geosciences, 14, 634–642. (in Chinese with English abstract).
    [Google Scholar]
  24. Feng, Y., Jiang, S., Hu, S., Li, S., Lin, C., & Xie, X. (2016). Sequence stratigraphy and importance of syndepositional structural slope‐break for architecture of Paleogene syn‐rift lacustrine strata, Bohai Bay basin, E. China. Marine and Petroleum Geology, 69, 183–204.
    [Google Scholar]
  25. Feng, Y., Li, S., & Lu, Y. (2013). Sequence stratigraphy and architectural variability in late Eocene lacustrine strata of the Dongying Depression, Bohai Bay basin, eastern China. Sedimentary Geology, 295, 1–26.
    [Google Scholar]
  26. Fu, S., Liu, Z., Ge, J., Tian, N., Yin, K., Wang, X., Li, L., & Wang, H. (2021). Tectono‐sedimentary analysis of the lower cretaceous succession in the sags of the Ondor sum uplift, southern Erlian Basin, NE China. Marine and Petroleum Geology, 124, 104851.
    [Google Scholar]
  27. Gawthorpe, R. L., Andrews, J. E., Collier, R. E. L., Ford, M., Henstra, G. A., Kranis, H., Leeder, M. R., Muravchik, M., & Skourtsos, E. (2017). Building up or out? Disparate sequence architectures along an active rift margin; Corinth rift, Greece. Geology (Boulder), 45, 1111–1114.
    [Google Scholar]
  28. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12(3–4), 195–218.
    [Google Scholar]
  29. Ge, J., Zhu, X., Zhao, X., Liao, J., Ma, B., & Jones, B. G. (2020). Tectono‐sedimentary signature of the second rift phase in multiphase rifts: A case study in the Lufeng depression (38–33.9 Ma), Pearl River Mouth Basin, south China sea. Marine and Petroleum Geology, 114, 104218.
    [Google Scholar]
  30. Hampson, G. J. (2016). Towards a sequence stratigraphic solution set for autogenic processes and allogenic controls: Upper cretaceous strata, book cliffs, Utah, USA. Journal of the Geological Society, 173(5), 817–836.
    [Google Scholar]
  31. Hemelsdaël, R., Ford, M., Malartre, F., & Gawthorpe, R. (2017). Interaction of an antecedent fluvial system with early normal fault growth: Implications for syn‐rift stratigraphy, western Corinth rift (Greece). Sedimentology, 64(7), 1957–1997.
    [Google Scholar]
  32. Henstra, G. A., Cullen, T. M., Gawthorpe, R. L., Munoz Barrera, J. M., Muravchik, M., & Rotevatn, A. (2023). The evolution of catchment‐depositional system relationships on the dip slopes of intra‐rift basement highs: An example from the Frøya high, mid‐Norwegian rifted margin. Basin Research, 35, 1259–1287.
    [Google Scholar]
  33. Henstra, G. A., Grundvåg, S., Johannessen, E. P., Kristensen, T. B., Midtkandal, I., Nystuen, J. P., Rotevatn, A., Surlyk, F., Sæther, T., & Windelstad, J. (2016). Depositional processes and stratigraphic architecture within a coarse‐grained rift‐margin turbidite system: The Wollaston Forland group, east Greenland. Marine and Petroleum Geology, 76, 187–209.
    [Google Scholar]
  34. Henstra, G. A., Rotevatn, A., Gawthorpe, R. L., & Ravnås, R. (2015). Evolution of a major segmented normal fault during multiphase rifting: The origin of plan‐view zigzag geometry. Journal of Structural Geology, 74, 45–63.
    [Google Scholar]
  35. Holz, M., Vilas‐Boas, D. B., Troccoli, E. B., Santana, V. C., & Vidigal‐Souza, P. A. (2017). Conceptual models for sequence stratigraphy of continental rift successions. In Stratigraphy & Timescales (Vol. 2, pp. 119–186). Academic Press.
    [Google Scholar]
  36. Hunt, D., & Tucker, M. E. (1992). Stranded parasequences and the forced regressive wedge systems tract: Deposition during base‐level fall. Sedimentary Geology, 39(4), 511–524.
    [Google Scholar]
  37. Jackson, C. A. L., Gawthorpe, R. L., Carr, I. D., & Sharp, I. R. (2005). Normal faulting as a control on the stratigraphic development of shallow marine syn‐rift sequences: The Nukhul and lower Rudeis formations, hammam Faraun fault block, Suez rift, Egypt. Sedimentology, 52(2), 313–338.
    [Google Scholar]
  38. Jia, Y., Lin, C., Eriksson, K. A., Niu, C., Li, H., & Zhang, P. (2019). Fault control on depositional systems and sequence stratigraphic architecture in a multiphase, rifted, lacustrine basin: A case study from the paleogene of the central Bohai Bay basin, northeast China. Marine and Petroleum Geology, 101, 459–475.
    [Google Scholar]
  39. Kim, Y.‐S., & Sanderson, D. J. (2005). The relationship between displacement and length of faults. Earth‐Science Reviews, 68, 317–334.
    [Google Scholar]
  40. Kra, K. L., Qiu, L., Yang, Y., Yang, B., Ahmed, K. S., Camara, M., Khan, D., Wang, Y., & Kouame, M. E. (2022). Sedimentological and diagenetic impacts on sublacustrine fan sandy conglomerates reservoir quality: An example of the Paleogene Shahejie formation (Es4s member) in the Dongying Depression, Bohai Bay basin (East China). Sedimentary Geology, 427, 106047.
    [Google Scholar]
  41. Lambiase, J. J., & Bosworth, W. (1995). Structural controls on sedimentation in continental rifts. Geological Society, London, Special Publications, 80(1), 117–144.
    [Google Scholar]
  42. Leeder, M. R., & Gawthorpe, R. L. (1987). Sedimentary models for extensional tilt‐block/half‐graben basins. Continental Extensional Tectonics, Geological Society Special Publication, 28, 139–152.
    [Google Scholar]
  43. Lei, H., Jiang, Z., & Zhou, H. (2018). Analysis of paleoclimate evolution of the hyperthermal period in the early Paleogene: Taking the Dongying Depression as an example. Earth Science Frontiers, 25(4), 176–184. (in Chinese with English abstract).
    [Google Scholar]
  44. Leppard, C. W., & Gawthorpe, R. L. (2006). Sedimentology of rift climax deep water systems; lower Rudeis formation, hammam Faraun fault block, Suez rift, Egypt. Sedimentary Geology, 191, 67–87.
    [Google Scholar]
  45. Li, J., Liu, Z., Liu, J., Chen, L., Liu, H., Huang, L., Qian, L., Lu, K., & Liu, K. (2021). Transformation of sediment delivery and dispersal patterns controlled by relay‐ramp evolution along the boundary fault of a lacustrine rift: The Eocene Shahejie formation, Dongying sag, Bohai Bay basin, NE China. Marine and Petroleum Geology, 128, 105044.
    [Google Scholar]
  46. Li, J., Shan, H., & Yao, Y. (1992). A correlation of tertiary formations between the Jiyang–Changwei depressions and their adjacent area in Shandong province (in Chinese with English abstract). Acta Petrolei Sinica, 13, 33–35.
    [Google Scholar]
  47. Li, Z., Yang, W., Wang, Y., Zhang, L., Luo, X., Liu, S., Zhang, L., & Luo, X. (2019). Anatomy of a lacustrine stratigraphic sequence within the fourth member of the Eocene Shahejie formation along the steep margin of the Dongying Depression, eastern China. AAPG Bulletin, 103(2), 469–504.
    [Google Scholar]
  48. Lin, C., Zhang, Y., Li, S., Ren, J., & Zhang, Y. (2004). Episodic rifting dynamic process and quantitative model of Mesozoic e Cenozoic faulted basins in eastern China. Earth Science, 29(5), 583–588. (in Chinese with English abstract).
    [Google Scholar]
  49. Liu, J., Xian, B., Ji, Y., Gong, C., Wang, J., Wang, Z., Chen, P., Song, D., Wei, W., Zhang, X., & Dou, L. (2020). Alternating of aggradation and progradation dominated clinothems and its implications for sediment delivery to deep lake: The Eocene Dongying Depression, Bohai Bay basin, east China. Marine and Petroleum Geology, 114, 104197.
    [Google Scholar]
  50. Liu, J., Xian, B., Tan, X., Zhang, L., Su, M., Wu, Q., Wang, Z., Chen, P., He, Y., Zhang, S., Li, J., Gao, Y., & Yu, Q. (2022). Depositional process and dispersal pattern of a faulted margin hyperpycnal system: The Eocene Dongying Depression, Bohai Bay basin, China. Marine and Petroleum Geology, 135, 105405.
    [Google Scholar]
  51. Liu, J., Xian, B., Wang, J., Ji, Y., Lu, Z., & Liu, S. (2017). Sedimentary architecture of a sub‐lacustrine debris fan: Eocene Dongying Depression, Bohai Bay basin, east China. Sedimentary Geology, 362, 66–82.
    [Google Scholar]
  52. Lowe, D. R. (1982). Sediment gravity flows: II. Depositional models with special reference to the deposits of high‐density turbidity currents. Journal of Sedimentary Research, 52, 279–297.
    [Google Scholar]
  53. Ma, L., Zheng, H., & Xie, X. (2005). Faulted structures and hydrocarbon migration in central uplift belt of Dongying Depression. Oil & Gas Geology, 26(2), 246–251. (in Chinese with English abstract).
    [Google Scholar]
  54. Ma, P., Lin, C., Ren, L., Jahren, J., Dong, D., Yu, G., Ma, C., Wang, D., Liu, L., & Hellevang, H. (2021). Linkage and growth of the independent and coherent faults: Insight into the effect of relay ramps on sedimentation patterns in the northern Bonan sag, Bohai Bay basin. Marine and Petroleum Geology, 127, 104985.
    [Google Scholar]
  55. Macdonald, H. A., Peakall, J., Wignall, P. B., & Best, J. (2011). Sedimentation in deep‐sea lobe‐elements: Implications for the origin of thickening‐upward sequences. Journal of the Geological Society, 168(2), 319–332.
    [Google Scholar]
  56. Madof, A. S., Harris, A. D., & Connell, S. D. (2016). Nearshore along‐strike variability: Is the concept of the systems tract unhinged?Geology, 44(4), 315–318.
    [Google Scholar]
  57. Martins‐Neto, M. A., & Catuneanu, O. (2010). Rift sequence stratigraphy. Marine and Petroleum Geology, 27(1), 247–253.
    [Google Scholar]
  58. Mitchum, R. M., Jr., Vail, P. R., & Sangree, J. B. (1977). Seismic stratigraphy and global changes of sea level, part six: Stratigraphic interpretation of seismic reflection patterns in depositional sequences, in C. E. Payton, ed., seismic stratigraphy‐applications to hydrocarbon exploration. AAPG Memoir, 26, 17–134.
    [Google Scholar]
  59. Morley, C. K., Haranya, C., Phoosongsee, W., Pongwapee, S., Kornsawan, A., & Wonganan, N. (2004). Activation of rift oblique and rift parallel pre‐existing fabrics during extension and their effect on deformation style: Examples from the rifts of Thailand. Journal of Structural Geology, 26(10), 1803–1829.
    [Google Scholar]
  60. Morley, C. K., Nelson, R. A., Patton, T. L., & Munn, S. G. (1990). Transfer zones in the east African rift system and their relevance to hydrocarbon exploration in rifts. AAPG Bulletin, 74(8), 1234–1253.
    [Google Scholar]
  61. Mutti, E., & Normark, W. R. (1987). Comparing examples of modern and ancient turbidite systems: Problems and concepts. In J. K.Leggett & G. G.Zuffa (Eds.), Marine clastic sedimentology (pp. 1–38). Springer.
    [Google Scholar]
  62. Neal, J., & Abreu, V. (2009). Sequence stratigraphy hierarchy and the accommodation succession method. Geology (Boulder), 37(9), 779–782.
    [Google Scholar]
  63. Oruche, N. E., & Dix, G. R. (2021). Sequence stratigraphy of a middle to upper Ordovician foreland succession (Ottawa embayment, central Canada): Evidence for tectonic control on sequence architecture along southern Laurentia. Basin Research, 33(1), 779–808.
    [Google Scholar]
  64. Panpichityota, N., Morley, C. K., & Ghosh, J. (2018). Link between growth faulting and initiation of a mass transport deposit in the northern Taranaki Basin, New Zealand. Basin Research, 30(2), 237–248.
    [Google Scholar]
  65. Peacock, D. C. P., & Sanderson, D. J. (1991). Displacements, segment linkage and relay ramps in normal fault zones. Journal of Structural Geology, 13(6), 721–733.
    [Google Scholar]
  66. Phoosongsee, J., & Morley, C. K. (2019). Evolution of a major extensional boundary fault system during multi‐phase rifting in the Songkhla Basin, gulf of Thailand. Journal of Asian Earth Sciences, 172, 1–13.
    [Google Scholar]
  67. Plenderleith, G. E., Dodd, T. J. H., & McCarthy, D. J. (2022). The effect of breached relay ramp structures on deep‐lacustrine sedimentary systems. Basin Research, 34(3), 1191–1219.
    [Google Scholar]
  68. Privat, A. M. L. J., Hodgson, D. M., Jackson, C. A. L., Schwarz, E., & Peakall, J. (2021). Evolution from syn‐rift carbonates to early post‐rift deep‐marine intraslope lobes: The role of rift basin physiography on sedimentation patterns. Sedimentology, 68(6), 2563–2605.
    [Google Scholar]
  69. Prosser, S. (1993). Rift‐related linked depositional systems and their seismic expression. In: Williams, G.D., Dobb, A. (eds.). Tectonics and Seismic Sequence Stratigraphy Geological Society Special Publication, 71, 35–66.
    [Google Scholar]
  70. Qi, J., & Yang, Q. (2010). Cenozoic structural deformation and dynamic processes of the Bohai Bay basin province, China. Marine and Petroleum Geology, 27(4), 757–771.
    [Google Scholar]
  71. Qin, Y., Zhu, X., Wang, T., Guo, C., & Xie, S. (2020). Forced regression and its sedimentary response to continental lacustrine rift basin: A case of the member 3 of Shahejie formation in Laizhouwan sag, Bohai Bay Basin. Journal of Palaeogeography (Chinese Edition), 22(3), 457–468. (in Chinese with English abstract).
    [Google Scholar]
  72. Qin, Y., Zhu, X., Zhu, S., & Mcelroy, B. (2021). Impact of deep‐time palaeoclimate on the sedimentary records and morphology of lacustrine shoal‐water deltas, upper Eocene Dongying Depression, Bohai Bay basin, China. Sedimentology, 68(7), 3253–3278.
    [Google Scholar]
  73. Ryan, L., Magee, C., & Jackson, C. A. L. (2017). The kinematics of normal faults in the Ceduna subbasin, offshore southern Australia: Implications for hydrocarbon trapping in a frontier basin. AAPG Bulletin, 101(3), 321–341.
    [Google Scholar]
  74. Shang, W., Xu, S., Mao, Z., Li, X., Gao, G., & Li, Z. (2022). High‐resolution sequence stratigraphy in continental lacustrine basin: A case of Eocene Shahejie formation in the Dongying Depression, Bohai Bay basin. Marine and Petroleum Geology, 136, 105438.
    [Google Scholar]
  75. Shanley, K., & McCabe, P. (1994). Perspectives on the sequence stratigraphy of continental strata. AAPG Bulletin, 78(4), 544–568.
    [Google Scholar]
  76. Soreghan, M. J., & Cohen, A. S. (1996). Textural and compositional variability across littoral segments of lake Tanganyika: The effect of asymmetric basin structure on sedimentation in large rift lakes. AAPG Bulletin, 80(3), 382–409.
    [Google Scholar]
  77. Soreghan, M. J., Scholz, C. A., & Wells, J. T. (1999). Coarse‐grained, deep‐water sedimentation along a border fault margin of Lake Malawi, Africa: Seismic stratigraphic analysis. Journal of Sedimentary Research, 69(4), 832–846.
    [Google Scholar]
  78. Strugale, M., & Cartwright, J. (2022). Tectono‐stratigraphic evolution of the rift and pos‐rift systems in the northern Campos Basin, offshore Brazil. Basin Research, 34(5), 1655–1687.
    [Google Scholar]
  79. Tillmans, F., Gawthorpe, R. L., Jackson, C. A. L., & Rotevatn, A. (2021). Syn‐rift sediment gravity flow deposition on a late Jurassic fault‐terraced slope, northern North Sea. Basin Research, 33(3), 1844–1879.
    [Google Scholar]
  80. Van Wagoner, J. C., Mitchum, R. M., Campion, K. M., & Rahmanian, V. D. (1990). Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: Concepts for high resolution correlation of time and facies. Geological Magazine, 7, 55.
    [Google Scholar]
  81. Wang, R., Shi, W., Xie, X., Tang, D., Manger, W., Busbey, A. B., & Xu, L. (2018). Boundary fault linkage and its effect on upper Jurassic to lower cretaceous sedimentation in the Gudian half‐graben, Songliao Basin, northeastern China. Marine and Petroleum Geology, 98, 33–49.
    [Google Scholar]
  82. Wang, S., Liu, K., Wang, H., & Chen, M. (2021). Growth and linkage of normal faults experiencing multiple non‐coaxial extension: A case from the Qikou sag, Bohai Bay basin, East China. Basin Research, 34, 748–777.
    [Google Scholar]
  83. Wu, Q., Xian, B., Gao, X., Bai, Q., Wang, Z., Liu, J., Chen, P., Li, Y., Rahman, N. U., Tian, R., Zhang, W., & Zhang, H. (2022). Differences of sedimentary triggers and depositional architecture of lacustrine turbidites from normal regression to forced regression: Eocene Dongying Depression, Bohai Bay basin, East China. Sedimentary Geology, 439, 106222.
    [Google Scholar]
  84. Xia, S., Lin, C., Wu, W., & Du, X. (2022). Sequence architecture, depositional evolution and responses to tectonic subsidence and lacustrine fluctuation in lacustrine rift basin: A case study from Cenozoic Liaodong Bay, Bohai Bay basin. Journal of Petroleum Science and Engineering, 208, 109494.
    [Google Scholar]
  85. Xian, B., Wang, J., Gong, C., Yin, Y., Chao, C., Liu, J., Zhang, G., & Yan, Q. (2018). Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin, central China. Sedimentary Geology, 368, 68–82.
    [Google Scholar]
  86. Xu, S., Han, J., Wang, Y., He, M., & Xu, S. (2020). How much systems‐tract scale, three‐dimensional stratigraphic variability is present in sequence stratigraphy?: An answer from the middle Miocene Pearl River Mouth Basin. AAPG Bulletin, 104(6), 1261–1285.
    [Google Scholar]
  87. Yang, T., Cao, Y., & Liu, H. (2023). Highstand sublacustrine fans: The role of a sudden increase in sediment supply. Basin Research, 35, 1486–1508.
    [Google Scholar]
  88. Yao, Y., Liang, H., & Cai, Z. (1994). Tertiary in petroliferous regions of China: IV, the Bohai Gulf Basin (p. 240). Petroleum Industry Press. (in Chinese with English abstract).
    [Google Scholar]
  89. Yoshida, M., Yoshiuchi, Y., & Hoyanagi, K. (2009). Occurrence conditions of hyperpycnal flows, and their significance for organic‐matter sedimentation in a Holocene estuary, Niigata plain, Central Japan. Island Arc, 18(2), 320–332.
    [Google Scholar]
  90. Young, M. J., Gawthorpe, R. L., & Hardy, S. (2001). Growth and linkage of a segmented normal fault zone; the late Jurassic Murchison‐Statfjord north fault, northern North Sea. Journal of Structural Geology, 23(12), 1933–1952.
    [Google Scholar]
  91. Zecchin, M., Meller, D., & Roda, C. (2006). Sequence stratigraphy and architectural variability in growth fault‐bounded basin fills: A review of Plio‐Pleistocene stratal units of the Crotone Basin, southern Italy. Journal of the Geological Society, London, 163, 471–486.
    [Google Scholar]
  92. Zhang, W., Zha, M., Han, H., Yu, J., Cui, S., & Qu, Z. (2017). Quantitative research of coupling relationship between boundary fault activity and sedimentary evolution in Dongying Depression. Journal of China University of Petroleum (Edition of Natural Science), 41(4), 18–26. (in Chinese with English abstract).
    [Google Scholar]
  93. Zhang, X., Zhu, X., Lu, Z., Lin, C., Wang, X., Pan, R., Geng, M., & Xue, Y. (2019). An early Eocene subaqueous fan system in the steep slope of lacustrine rift basins, Dongying Depression, Bohai Bay basin, China: Depositional character, evolution and geomorphology. Journal of Asian Earth Sciences, 171, 28–45.
    [Google Scholar]
  94. Zhang, Z., Zhu, X., Zhang, R., Li, Q., Shen, M., & Zhang, J. (2020). To establish a sequence stratigraphy in lacustrine rift basin: A 3D seismic case study from paleogene Baxian sag in Bohai Bay basin, China. Marine and Petroleum Geology, 120, 104505.
    [Google Scholar]
  95. Zhao, K., Du, X., Lu, Y., Xiong, S., & Wang, Y. (2019). Are light‐dark coupled laminae in lacustrine shale seasonally controlled? A case study using astronomical tuning from 42.2 to 45.4 Ma in the Dongying Depression, Bohai Bay basin, eastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 528, 35–49.
    [Google Scholar]
  96. Zhou, Y., Ji, Y., Pigott, J. D., Meng, Q., & Wan, L. (2014). Tectono‐stratigraphy of lower cretaceous Tanan sub‐basin, Tamtsag Basin, Mongolia: Sequence architecture, depositional systems and controls on sediment infill. Marine and Petroleum Geology, 49, 176–202.
    [Google Scholar]
  97. Zhu, W., Wu, J., Zhang, G., Ren, J., Zhao, Z., Wu, K., Zhong, K., & Liu, S. (2015). Discrepancy tectonic evolution and petroleum exploration in China offshore Cenozoic basin. Earth Science Frontiers, 22(1), 88–101.
    [Google Scholar]
  98. Zhu, X., Liu, Q., Ge, J., Dong, Y., Zhu, S., Tan, M., & Yang, Y. (2019). Reconstruction of sediment‐dispersal patterns using seismic sedimentology in the southeastern Zhanhua sag, Bohai Bay basin, China. Journal of Petroleum Science and Engineering, 182, 106335.
    [Google Scholar]
  99. Zhu, X., Pan, R., Li, S., Wang, H., Zhang, X., Ge, J., & Lu, Z. (2018). Seismic sedimentology of sand‐gravel bodies on the steep slope of rift basins — A case study of the Shahejie formation, Dongying sag, Eastern China. Interpretation, 6(2), 13–27.
    [Google Scholar]
  100. Zhu, Y., Liu, S., Zhang, B., Gurnis, M., & Ma, P. (2020). Reconstruction of the Cenozoic deformation of the Bohai Bay basin, North China. Basin Research, 33(1), 364–381.
    [Google Scholar]
/content/journals/10.1111/bre.12876
Loading
/content/journals/10.1111/bre.12876
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error