1887
Volume 36, Issue 3
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

The Clarens Formation is a widespread aeolianite deposited over southern Gondwana and represents the final phase of erg evolution in the main Karoo Basin during the Early Jurassic. Previous age assessments of the formation hinge on limited detrital zircon data, supplemented by relative ages from the biostratigraphy and geochronology of the adjacent Karoo units. This study refines the depositional history of the Clarens Formation, including its sediment source dynamics as well as basin‐wide geochronological framework, based on U–Pb dating of detrital zircon grains, together with petrographic and sedimentological characterization. The abundant presence of heavy minerals like zircon, tourmaline and rutile suggests large‐scale detritus recycling, while the uniform sandstone composition on a regional scale is an indication of sediment homogenisation across the basin. Based on the prominent detrital zircon age fractions, the sediments are interpreted as having been reworked from pre‐existing rocks of the Karoo Supergroup (Permian), the Damara and Saldania Orogenic belts (650–490 Ma), whereas minor sources can be assigned to the Namaqua‐Natal Mobile Belt (1.35–1.1 Ga) and the western Sierras Pampeanas (1.30–1.33 Ga). Unstable minerals (hornblende, garnet, titanite, feldspar) provide evidence for a nearby granitic source east and southeast of the basin, related to likely Grenvillian rocks (1.0–1.3 Ga). An Early Jurassic zircon age fraction is linked to volcanic activity in the Chon Aike Magmatic Province that, at the time, was situated south and southwest of the study area. Maximum depositional ages derived from these detrital zircon dates suggest that the sedimentation of the Clarens Formation spanned an interval of ~10 Ma during the Pliensbachian and early Toarcian. More specifically, the lower part of the formation is of early Pliensbachian age or younger (~191–192), while the upper part is of early Toarcian age or younger (~181–183 Ma). These age patterns are particularly prominent in the south of the basin that was situated closer to the volcanic source.

,

Maximum depositional ages of the Early Jurassic Clarens Formation of southern Africa.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12877
2024-06-14
2024-07-14
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/3/bre12877.html?itemId=/content/journals/10.1111/bre.12877&mimeType=html&fmt=ahah

References

  1. Abrahams, M. (2020). Evaluation of tridactyl theropod tracks in southern Africa: Quantitative morphometric analysis across the Triassic–Jurassic boundary. Unpublished doctoral thesis, University of Cape Town http://hdl.handle.net/11427/32436
  2. Abrahams, M., Bordy, E. M., & Knoll, F. (2021). Hidden for one hundred years: A diverse theropod ichnoassemblage and cross‐sectional tracks from the historic Early Jurassic Tsikoane ichnosite (Clarens formation, northern Lesotho, southern Africa). Historical Biology, 33(10), 2504–2519. https://doi.org/10.1080/08912963.2020.1810681
    [Google Scholar]
  3. Andersen, T., Elburg, M., & Cawthorn‐Blazeby, A. (2016). U–Pb and Lu–Hf zircon data in young sediments reflect sedimentary recycling in eastern South Africa. Journal of the Geological Society, 173(2), 337–351. https://doi.org/10.1144/jgs2015‐006
    [Google Scholar]
  4. Andersen, T., Kristoffersen, M., & Elburg, M. A. (2016). How far can we trust provenance and crustal evolution information from detrital zircons? A South African case study. Gondwana Research, 34, 129–148. https://doi.org/10.1016/j.gr.2016.03.003
    [Google Scholar]
  5. Andò, S., Garzanti, E., Padoan, M., & Limonta, M. (2012). Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis. Sedimentary Geology, 280, 165–178.
    [Google Scholar]
  6. Bastias, J., Spikings, R., Riley, T., Ulianov, A., Grunow, A., Chiaradia, M., & Hervé, F. (2021). A revised interpretation of the Chon Aike magmatic province: Active margin origin and implications for the opening of the Weddell Sea. Lithos, 386, 106013. https://doi.org/10.1016/j.lithos.2021.106013
    [Google Scholar]
  7. Basu, A. (1985). Reading provenance from detrital quartz. In Provenance of arenites (pp. 231–247). Springer.
    [Google Scholar]
  8. Basu, A., Young, S. W., Suttner, L. J., James, W. C., & Mack, G. H. (1975). Re‐evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Research, 45(4), 873–882. https://doi.org/10.1306/212F6E6F‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  9. Bertolini, G., Marques, J. C., Hartley, A. J., Da‐Rosa, A. A., Scherer, C. M., Basei, M. A., & Frantz, J. C. (2020). Controls on Early Cretaceous desert sediment provenance in south‐west Gondwana, Botucatu formation (Brazil and Uruguay). Sedimentology, 67(5), 2672–2690. https://doi.org/10.1111/sed.12715
    [Google Scholar]
  10. Beukes, N. J. (1969). Die sedimentologie van die Etage Holkranssandsteen, sisteem Karoo. Unpublished MSc dissertation, University of the Orange Free State, Bloemfontein, 138 pp http://hdl.handle.net/11660/7671
  11. Beukes, N. J. (1970). Stratigraphy and sedimentology of the Cave Sandstone stage, Karoo system. In S. H.Haughton (Ed.), Proceedings and papers of the 2nd Gondwana symposium (pp. 321–341). Council for Scientific and Industrial Research.
    [Google Scholar]
  12. Bial, J., Büttner, S. H., Schenk, V., & Appel, P. (2015). The long‐term high‐temperature history of the central Namaqua metamorphic complex: Evidence for a Mesoproterozoic continental back‐arc in southern Africa. Precambrian Research, 268, 243–278. https://doi.org/10.1016/j.precamres.2015.07.012
    [Google Scholar]
  13. Blakey, R. C. (1988). Basin tectonics and erg response. Sedimentary Geology, 56(1‐4), 127–151.
    [Google Scholar]
  14. Blatt, H., & Christie, J. M. (1963). Undulatory extinction in quartz of igneous and metamorphic rocks and its significance in provenance studies of sedimentary rocks. Journal of Sedimentary Research, 33(3), 559–579. https://doi.org/10.1306/74D70EBB‐2B21‐11D7‐8648000102C1865D
    [Google Scholar]
  15. Bordy, E. M. (2008). Enigmatic trace fossils from the aeolian lower Jurassic Clarens Formation, southern Africa. Palaeontologia Electronica, 11, 16A.
    [Google Scholar]
  16. Bordy, E. M., Abrahams, M., Sharman, G. R., Viglietti, P. A., Benson, R. B., McPhee, B. W., Barrett, P. M., Sciscio, L., Condon, D., Mundil, R., & Rademan, Z. (2020). A chronostratigraphic framework for the upper Stormberg Group: Implications for the Triassic‐Jurassic boundary in southern Africa. Earth‐Science Reviews, 203, 103120. https://doi.org/10.1016/j.earscirev.2020.103120
    [Google Scholar]
  17. Bordy, E. M., Bumby, A. J., Catuneanu, O., & Eriksson, P. G. (2009). Possible trace fossils of putative termite origin in the lower Jurassic (Karoo Supergroup) of South Africa and Lesotho. South African Journal of Science, 105(9–10), 356–362.
    [Google Scholar]
  18. Bordy, E. M., & Catuneanu, O. (2002). Sedimentology and palaeontology of upper Karoo aeolian strata (Early Jurassic) in the Tuli Basin, South Africa. Journal of African Earth Sciences, 35(2), 301–314. https://doi.org/10.1016/S0899‐5362(02)00103‐3
    [Google Scholar]
  19. Bordy, E. M., Hancox, P. J., & Rubidge, B. S. (2004). Provenance study of the Late Triassic‐Early Jurassic Elliot Formation, main Karoo Basin, South Africa. South African Journal of Geology, 107(4), 587–602. https://doi.org/10.2113/gssajg.107.4.587
    [Google Scholar]
  20. Bordy, E. M., Hancox, P. J., & Rubidge, B. S. (2005). The contact of the Molteno and Elliot formations through the main Karoo Basin, South Africa: A second‐order sequence boundary. South African Journal of Geology, 108, 351–364. https://doi.org/10.2113/108.3.351
    [Google Scholar]
  21. Bordy, E. M., Haupt, T. N., & Head, H. V. (2021). Karoo lava‐fed deltas and a petrified forest from the Lower Jurassic of southern Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology, 575, 110484. https://doi.org/10.1016/j.palaeo.2021.110484
    [Google Scholar]
  22. Bordy, E. M., & Head, H. V. (2018). Lithostratigraphy of the Clarens Formation (Stormberg Group, Karoo supergroup), South Africa. South African Journal of Geology, 121(1), 119–130. https://doi.org/10.25131/sajg.121.0009
    [Google Scholar]
  23. Bordy, E. M., Lockley, M. G., Rampersadh, A., Mukaddam, R., & Head, H. V. (2022). Life and land engulfed in the late Early Jurassic Karoo lavas of southern Gondwana. Geological Magazine, 160(4), 645–666. https://doi.org/10.1017/S0016756822001169
    [Google Scholar]
  24. Bordy, E. M., & Prevec, R. (2008). Sedimentology, palaeontology and palaeo‐environments of the Middle (?) to Upper Permian Emakwezini Formation (Karoo Supergroup, South Africa). South African Journal of Geology, 111, 429–458.
    [Google Scholar]
  25. Bordy, E. M., Rampersadh, A., Abrahams, M., Lockley, M. G., & Head, H. V. (2020). Tracking the Pliensbachian–Toarcian Karoo firewalkers: Trackways of quadruped and biped dinosaurs and mammaliaforms. PLoS One, 15(1), e0226847. https://doi.org/10.1371/journal.pone.0226847
    [Google Scholar]
  26. Bowden, L. L. (2014). A comparative study of detrital zircon ages from river sediment and rocks of the Karoo Supergroup (Late Carboniferous to Jurassic), Eastern Cape Province, South Africa: Implications for the tectono‐sedimentary evolution of Gondwanaland's southern continental margin. Unpublished doctoral thesis, University of Johannesburg.
  27. Casquet, C., Pankhurst, R. J., Fanning, C. M., Baldo, E., Galindo, C., Rapela, C. W., González‐Casado, J. M., & Dahlquist, J. A. (2006). U–Pb SHRIMP zircon dating of Grenvillian metamorphism in Western Sierras Pampeanas (Argentina): Correlation with the Arequipa‐Antofalla craton and constraints on the extent of the Precordillera Terrane. Gondwana Research, 9(4), 524–529.
    [Google Scholar]
  28. Casquet, C., Pankhurst, R. J., Rapela, C. W., Galindo, C., Fanning, C. M., Chiaradia, M., Baldo, E., González‐Casado, J. M., & Dahlquist, J. A. (2008). The Mesoproterozoic Maz terrane in the Western Sierras Pampeanas, Argentina, equivalent to the Arequipa–Antofalla block of southern Peru? Implications for West Gondwana margin evolution. Gondwana Research, 13(2), 163–175.
    [Google Scholar]
  29. Catuneanu, O., Hancox, P. J., & Rubidge, B. S. (1998). Reciprocal flexural behaviour and contrasting stratigraphies: A new basin development model for the Karoo retroarc foreland system, South Africa. Basin Research, 10, 417–440. https://doi.org/10.1046/j.1365‐2117.1998.00078.x
    [Google Scholar]
  30. Catuneanu, O., Wopfner, H., Eriksson, P. G., Cairncross, B., Rubidge, B. S., Smith, R. M. H., & Hancox, P. J. (2005). The Karoo basins of south‐Central Africa. Journal of African Earth Sciences, 43, 211–253. https://doi.org/10.1016/j.jafrearsci.2005.07.007
    [Google Scholar]
  31. Corfu, F., Hanchar, J. M., Hoskin, P. W., & Kinny, P. (2003). Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1), 469–500. https://doi.org/10.2113/0530469
    [Google Scholar]
  32. Coutts, D. S., Matthews, W. A., & Hubbard, S. M. (2019). Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geoscience Frontiers, 10(4), 1421–1435. https://doi.org/10.1016/j.gsf.2018.11.002
    [Google Scholar]
  33. Crook, K. A. (1960). Classification of arenites. American Journal of Science, 258(6), 419–428.
    [Google Scholar]
  34. Cúneo, R., Ramezani, J., Scasso, R., Pol, D., Escapa, I., Zavattieri, A. M., & Bowring, S. A. (2013). High‐precision U–Pb geochronology and a new chronostratigraphy for the Cañadón Asfalto Basin, Chubut, central Patagonia: Implications for terrestrial faunal and floral evolution in Jurassic. Gondwana Research, 24(3–4), 1267–1275.
    [Google Scholar]
  35. Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. In Provenance of arenites (pp. 333–361). Springer Netherlands.
    [Google Scholar]
  36. Dickinson, W. R., & Gehrels, G. E. (2003). U–Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA: Paleogeographic implications. Sedimentary Geology, 163, 29–66.
    [Google Scholar]
  37. Dickinson, W. R., & Gehrels, G. E. (2009). Use of U‐Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado plateau Mesozoic database. Earth and Planetary Science Letters, 288(1), 115–125. https://doi.org/10.1016/j.epsl.2009.09.013
    [Google Scholar]
  38. du Toit, A. L. (1905). Geological survey of the division of Aliwal North, Herschel, Barkly East and part of Wodehouse. Annual Report of the Geological Commission of the Cape of Good Hope, 71–181.
  39. du Toit, A. L. (1918). The zones of the Karroo system and their distribution. Proceedings of the Geological Society of South Africa, 21, 17–36.
    [Google Scholar]
  40. Duncan, R. A., Hooper, P. R., Rehacek, J., Marsh, J., & Duncan, A. R. (1997). The timing and duration of the Karoo igneous event, southern Gondwana. Journal of Geophysical Research ‐ Solid Earth, 102(B8), 18127–18138. https://doi.org/10.1029/97JB00972
    [Google Scholar]
  41. Eriksson, P. G. (1979). Mesozoic sheetflow and playa sediments of the Clarens Formation in the Kamberg area of the Natal Drakensberg. South African Journal of Geology, 82(2), 257–258.
    [Google Scholar]
  42. Eriksson, P. G. (1981). A palaeoenvironmental analysis of the Clarens formation in the Natal Drakensberg. Transactions Geological Society of South Africa, 84, 7–17.
    [Google Scholar]
  43. Eriksson, P. G. (1986). Aeolian dune and alluvial fan deposits in the Clarens formation of the Natal Drakensberg. Transactions Geological Society of South Africa, 89, 389–393.
    [Google Scholar]
  44. Eriksson, P. G., McCourt, S., & Snyman, C. P. (1994). A note on the petrography of upper Karoo sandstones in the Natal Drakensberg: implications for the Clarens Formation palaeoenvironment. South African Journal of Geology, 97(1), 101–106.
    [Google Scholar]
  45. Féraud, G., Alric, V., Fornari, M., Bertrand, H., & Haller, M. (1999). 40Ar/39Ar dating of the Jurassic volcanic province of Patagonia: Migrating magmatism related to Gondwana break‐up and subduction. Earth and Planetary Science Letters, 172(1–2), 83–96. https://doi.org/10.1016/S0012‐821X(99)00190‐9
    [Google Scholar]
  46. Folk, R. L. (1980). Petrology of sedimentary rocks (p. 182). Hemphill Publishing Company.
    [Google Scholar]
  47. Foster, D. A., Goscombe, B. D., Newstead, B., Mapani, B., Mueller, P. A., Gregory, L. C., & Muvangua, E. (2015). U–Pb age and Lu–Hf isotopic data of detrital zircons from the neoproterozoic Damara Sequence: Implications for Congo and Kalahari before Gondwana. Gondwana Research, 28(1), 179–190. https://doi.org/10.1016/j.gr.2014.04.011
    [Google Scholar]
  48. Frimmel, H. E., Basei, M. A., Correa, V. X., & Mbangula, N. (2013). A new lithostratigraphic subdivision and geodynamic model for the pan‐African western Saldania Belt, South Africa. Precambrian Research, 231, 218–235. https://doi.org/10.1016/j.precamres.2013.03.014
    [Google Scholar]
  49. Gärtner, A., Linnemann, U., Sagawe, A., Hofmann, M. U., & Kleber, A. (2013). Morphology of zircon crystal grains in sediments—Characteristics, classifications, definitions. Geologica Saxonica, 59, 65–73.
    [Google Scholar]
  50. Garzanti, E. (2016). From static to dynamic provenance analysis—Sedimentary petrology upgraded. Sedimentary Geology, 336, 3–13.
    [Google Scholar]
  51. Garzanti, E. (2017). The maturity myth in sedimentology and provenance analysis. Journal of Sedimentary Research, 87(4), 353–365. https://doi.org/10.2110/jsr.2017.17
    [Google Scholar]
  52. Garzanti, E. (2019). Petrographic classification of sand and sandstone. Earth‐Science Reviews, 192, 545–563. https://doi.org/10.1016/j.earscirev.2018.12.014
    [Google Scholar]
  53. Garzanti, E., Andò, S., Limonta, M., Fielding, L., & Najman, Y. (2018). Diagenetic control on mineralogical suites in sand, silt, and mud (Cenozoic Nile Delta): Implications for provenance reconstructions. Earth‐Science Reviews, 185, 122–139. https://doi.org/10.1016/j.earscirev.2018.05.010
    [Google Scholar]
  54. Garzanti, E., Ando, S., & Vezzoli, G. (2006). The continental crust as a source of sand (southern Alps cross section, northern Italy). The Journal of Geology, 114(5), 533–554. https://doi.org/10.1086/506159
    [Google Scholar]
  55. Garzanti, E., Dinis, P., Vermeesch, P., Andò, S., Hahn, A., Huvi, J., Limonta, M., Padoan, M., Resentini, A., Rittner, M., & Vezzoli, G. (2018). Dynamic uplift, recycling, and climate control on the petrology of passive‐margin sand (Angola). Sedimentary Geology, 375, 86–104. https://doi.org/10.1016/j.sedgeo.2017.12.009
    [Google Scholar]
  56. Garzanti, E., Doglioni, C., Vezzoli, G., & Ando, S. (2007). Orogenic belts and orogenic sediment provenance. The Journal of Geology, 115(3), 315–334. https://doi.org/10.1086/512755
    [Google Scholar]
  57. Garzanti, E., Vermeesch, P., Andò, S., Vezzoli, G., Valagussa, M., Allen, K., Kadi, K. A., & Al‐Juboury, A. I. (2013). Provenance and recycling of Arabian desert sand. Earth‐Science Reviews, 120, 1–19. https://doi.org/10.1016/j.earscirev.2013.01.005
    [Google Scholar]
  58. Garzanti, E., Vermeesch, P., Padoan, M., Resentini, A., Vezzoli, G., & Andò, S. (2014). Provenance of passive‐margin sand (Southern Africa). The Journal of Geology, 122(1), 17–42. https://doi.org/10.1086/674803
    [Google Scholar]
  59. Gazzi, P. (1966). Le arenarie del flysch sopracretaceo dell'Appennino modenese; Correlazioni coni flysch di Monghidoro. Minerelogica et Petrographica Acta, 12, 69–97.
    [Google Scholar]
  60. Gehrels, G., Giesler, D., Olsen, P., Kent, D., Marsh, A., Parker, W., Rasmussen, C., Mundil, R., Irmis, R., Geissman, J., & Lepre, C. (2020). LA‐ICPMS U–Pb geochronology of detrital zircon grains from the Coconino, Moenkopi, and Chinle formations in the Petrified Forest National Park (Arizona). Geochronology, 2(2), 257–282. https://doi.org/10.5194/gchron‐2‐257‐2020
    [Google Scholar]
  61. Hanson, E. K., Moore, J. M., Bordy, E. M., Marsh, J. S., Howarth, G., & Robey, J. V. A. (2009). Cretaceous erosion in central South Africa: Evidence from upper‐crustal xenoliths in kimberlite diatremes. South African Journal of Geology, 112(2), 125–140.
    [Google Scholar]
  62. Hasiotis, S. T., Chan, M. A., & Parrish, J. T. (2021). Defining bounding surfaces within and between eolian and non‐eolian deposits, Lower Jurassic Navajo Sandstone, Moab Area, Utah, USA: Implications for subdividing erg system strata. Journal of Sedimentary Research, 91(12), 1275–1304.
    [Google Scholar]
  63. Haughton, P. D. W., Todd, S. P., & Morton, A. C. (1991). Sedimentary provenance studies. Geological Society, London, Special Publications, 57, 1–11.
    [Google Scholar]
  64. Haughton, S. H. (1924). The Fauna and stratigraphy of the Stormberg Series. Annals of the South African Museum, 8, 1–517.
    [Google Scholar]
  65. Head, H. V. (2022). The Karoo sand sea in changing climates: Early Jurassic interdune lakes and erg dynamics in southern Africa. Unpublished PhD thesis (205 pp.). University of Cape Town http://hdl.handle.net/11427/36918
  66. Head, H. V., & Bordy, E. M. (2023a). Lake dynamics in an early Jurassic desert: Evidence from the Clarens formation in southern Africa. Sedimentology, 70(3), 865–894. https://doi.org/10.1111/sed.13066
    [Google Scholar]
  67. Head, H. V., & Bordy, E. M. (2023b). Loess or lake sediments: Resolving the origin of massive beds in the lower Jurassic of southern Africa. Geological Journal, 58(5), 1822–1843. https://doi.org/10.1002/gj.4695
    [Google Scholar]
  68. Herriott, T. M., Crowley, J. L., Schmitz, M. D., Wartes, M. A., & Gillis, R. J. (2019). Exploring the law of detrital zircon: LA‐ICP‐MS and CA‐TIMS geochronology of Jurassic forearc strata, Cook Inlet, Alaska, USA. Geology, 47(11), 1044–1048. https://doi.org/10.1130/G46312.1
    [Google Scholar]
  69. Hofmann, M., Linnemann, U., Hoffmann, K. H., Gerdes, A., Eckelmann, K., & Gärtner, A. (2014). The Namuskluft and Dreigratberg sections in southern Namibia (Kalahari craton, Gariep Belt): A geological history of Neoproterozoic rifting and recycling of cratonic crust during the dispersal of Rodinia until the amalgamation of Gondwana. International Journal of Earth Sciences, 103(5), 1187–1202. https://doi.org/10.1007/s00531‐013‐0949‐6
    [Google Scholar]
  70. Holzförster, F., Stollhofen, H., & Stanistreet, I. G. (1999). Lithostratigraphy and depositional environments in the Waterberg‐Erongo area, central Namibia, and correlation with the main Karoo Basin, South Africa. Journal of African Earth Sciences, 29(1), 105–123. https://doi.org/10.1016/S0899‐5362(99)00083‐4
    [Google Scholar]
  71. Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi‐Dickinson point‐counting method. Journal of Sedimentary Research, 54(1), 103–116. https://doi.org/10.1306/212F83B9‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  72. Jacobs, J., Pisarevsky, S., Thomas, R. J., & Becker, T. (2008). The Kalahari Craton during the assembly and dispersal of Rodinia. Precambrian Research, 160(1–2), 142–158. https://doi.org/10.1016/j.precamres.2007.04.022
    [Google Scholar]
  73. Jay, A. E., Marsh, J. S., Fluteau, F., & Courtillot, V. (2018). Emplacement of inflated P¯ahoehoe flows in the Naude's Nek pass, Lesotho remnant, Karoo continental flood basalt province: Use of flow‐lobe tumuli in understanding flood basalt emplacement. Bulletin of Volcanology, 80, 1–16. https://doi.org/10.1007/s00445‐017‐1189‐6
    [Google Scholar]
  74. Johnson, M. R. (1976). Stratigraphy and sedimentology of the cape and Karoo sequences in the eastern Cape Province. Unpublished doctoral thesis, Rhodes University, Grahamstown, South Africa, 336 pp. http://hdl.handle.net/10962/d1005617
  75. Johnsson, M. J., & Basu, A. (1993). Processes controlling the composition of clastic sediments. GSA Special Paper 284. Geological Society of America.
    [Google Scholar]
  76. Johnsson, M. R., Anhaeusser, C. R., & Thomas, R. J. (2006). The geology of South Africa (p. 691). Geologicla Society of South Africa and Council for Geoscience.
    [Google Scholar]
  77. Jordan, T. A., Riley, T. R., & Siddoway, C. S. (2020). The geological history and evolution of West Antarctica. Nature Reviews Earth and Environment, 1(2), 117–133. https://doi.org/10.1038/s43017‐019‐0013‐6
    [Google Scholar]
  78. Knoll, F. (2005). The tetrapod fauna of the upper Elliot and Clarens formations in the main Karoo Basin (South Africa and Lesotho). Bulletin de la Société géologique de France, 176(1), 81–91. https://doi.org/10.2113/176.1.81
    [Google Scholar]
  79. Kocurek, G., & Dott, R. H., Jr. (1983). Jurassic paleogeography and paleoclimate of the central and southern Rocky Mountains region. Mesozoic Paleogeography of the West‐Central United States: Rocky Mountain Symposium, 2, 101–116.
    [Google Scholar]
  80. Koen, G. M. (1955). Heavy minerals as an aid to the correlation of sediments of the Karroo system in the northern part of the Union of South Africa. South African Journal of Geology, 58(1), 265–366.
    [Google Scholar]
  81. Konopásek, J., Hoffmann, K. H., Sláma, J., & Košler, J. (2017). The onset of flysch sedimentation in the Kaoko Belt (NW Namibia)—Implications for the pre‐collisional evolution of the Kaoko–Dom Feliciano–Gariep orogen. Precambrian Research, 298, 220–234.
    [Google Scholar]
  82. Kortyna, C., Stockli, D. F., Lawton, T. F., Covault, J. A., & Sharman, G. R. (2023). Impact of Mexican Border rift structural inheritance on Laramide rivers of the Tornillo basin, west Texas (USA): Insights from detrital zircon provenance. Geosphere, 19(6), 1747–1787.
    [Google Scholar]
  83. Krynine, P. D. (1948). The megascopic study and field classification of sedimentary rocks. The Journal of Geology, 56(2), 130–165.
    [Google Scholar]
  84. Linol, B., de Wit, M. J., Barton, E., de Wit, M. M. J., & Guillocheau, F. (2016). U–Pb detrital zircon dates and source provenance analysis of phanerozoic sequences of The Congo Basin, central Gondwana. Gondwana Research, 29(1), 208–219. https://doi.org/10.1016/j.gr.2014.11.009
    [Google Scholar]
  85. Loope, D. B., Steiner, M. B., Rowe, C. M., & Lancaster, N. (2004). Tropical westerlies over Pangaean sand seas. Sedimentology, 51(2), 315–322.
    [Google Scholar]
  86. Macey, P. H., Thomas, R. J., Minnaar, H. M., Gresse, P. G., Lambert, C. W., Groenewald, C. A., Miller, J. A., Indongo, J., Angombe, M., Shifotoka, G., Frei, D., Diener, J. F. A., Kisters, A. F. M., Dhansay, T., Smith, H., Doggart, S., Le Roux, P., Hartnady, M. I., & Tinguely, C. (2017). Origin and evolution of the ∼1.9Ga Richtersveld magmatic arc, southwest Africa. Precambrian Research, 292, 417–451. https://doi.org/10.1016/j.precamres.2017.01.013
    [Google Scholar]
  87. Marsh, J. S., Hooper, P. R., Rehacek, J., Duncan, R. A., & Duncan, A. R. (1997). Stratigraphy and age of Karoo basalts of Lesotho and implications for correlations within the Karoo igneous province. Geophysical Monograph Series, 100, 247–272.
    [Google Scholar]
  88. McPhee, B., Bordy, E. M., Sciscio, L., & Choiniere, J. (2017). The sauropodomorph biostratigraphy of the Elliot formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary. Acta Palaeontologica Polonica, 62(3), 441–465.
    [Google Scholar]
  89. Milliken, K. L. (1988). Loss of provenance information through subsurface diagenesis in Plio‐Pleistocene sandstones, northern Gulf of Mexico. Journal of Sedimentary Research, 58, 992–1002.
    [Google Scholar]
  90. Minnaar, H. (2011). Composition and evolution of the Proterozoic Vioolsdrif batholith (including the Orange River Group), Northern Cape Province, South Africa. Unpublished doctoral thesis, University of the Free State, p. 184 http://hdl.handle.net/11660/2169
  91. Morton, A. C. (1984). Stability of detrital heavy minerals in Tertiary sandstones from the North Sea Basin. Clay Minerals, 19, 287–308.
    [Google Scholar]
  92. Morton, A. C. (1985). Heavy minerals in provenance studies. Provenance of Arenites, NATO ASI Series 148, 249–277.
    [Google Scholar]
  93. Morton, A. C., & Hallsworth, C. (2007). Stability of detrital heavy minerals during burial diagenesis. Developments in Sedimentology, 58, 215–245. https://doi.org/10.1016/S0070‐4571(07)58007‐6
    [Google Scholar]
  94. Moulin, M., Fluteau, F., Courtillot, V., Marsh, J., Delpech, G., Quidelleur, X., & Gérard, M. (2017). Eruptive history of the Karoo lava flows and their impact on Early Jurassic environmental change. Journal of Geophysical Research: Solid Earth, 122(2), 738–772. https://doi.org/10.1002/2016JB013354
    [Google Scholar]
  95. Moulin, M., Fluteau, F., Courtillot, V., Marsh, J., Delpech, G., Quidelleur, X., Gérard, M., & Jay, A. E. (2011). An attempt to constrain the age, duration, and eruptive history of the Karoo flood basalt: Naudes Nek section (South Africa). Journal of Geophysical Research: Solid Earth, 116(B7), 1–27. https://doi.org/10.1029/2011JB008210
    [Google Scholar]
  96. Muhs, D. R. (2004). Mineralogical maturity in dune fields of North America, Africa and Australia. Geomorphology, 59(1–4), 247–269. https://doi.org/10.1016/j.geomorph.2003.07.020
    [Google Scholar]
  97. Muir, R. A., Bordy, E. M., Mundil, R., & Frei, D. (2020). Recalibrating the breakup history of SW Gondwana: U–Pb radio‐isotopic age constraints from the southern Cape of South Africa. Gondwana Research, 84, 177–193. https://doi.org/10.1016/j.gr.2020.02.011
    [Google Scholar]
  98. Nxumalo, V. (2020). Uranium mineralisation and provenance analyses of the Karoo Supergroup in the Springbok Flats coalfield, South Africa. Unpublished doctoral thesis, University of Johannesburg.
  99. Pankhurst, R. J., Leat, P. T., Sruoga, P., Rapela, C. W., Márquez, M., Storey, B. C., & Riley, T. R. (1998). The Chon Aike province of Patagonia and related rocks in West Antarctica: A silicic large igneous province. Journal of Volcanology and Geothermal Research, 81(1–2), 113–136.
    [Google Scholar]
  100. Pankhurst, R. J., Rapela, C. W., Fanning, C. M., & Márquez, M. (2006). Gondwanide continental collision and the origin of Patagonia. Earth‐Science Reviews, 76(3–4), 235–257. https://doi.org/10.1016/j.earscirev.2006.02.001
    [Google Scholar]
  101. Pankhurst, R. J., Riley, T. R., Fanning, C. M., & Kelley, S. P. (2000). Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: Chronology of magmatism associated with the break‐up of Gondwana. Journal of Petrology, 41(5), 605–625. https://doi.org/10.1093/petrology/41.5.605
    [Google Scholar]
  102. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508–2518.
    [Google Scholar]
  103. Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A., & Maas, R. (2010). Improved laser ablation U‐Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 11(3), QOAA06.
    [Google Scholar]
  104. Petrus, J. A., & Kamber, B. S. (2012). VizualAge: A novel approach to laser ablation ICP‐MS U‐Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36(3), 247–270. https://doi.org/10.1111/j.1751‐908X.2012.00158.x
    [Google Scholar]
  105. Pinto, V. M., Hartmann, L. A., Santos, J. O., & Mcnaughton, N. J. (2015). Zircon ages delimit the provenance of a sand extrudite from the Botucatu formation in the Paraná volcanic province, Iraí, Brazil. Anais da Academia Brasileira de Ciências, 87, 1611–1622.
    [Google Scholar]
  106. Pol, D., Ramezani, J., Gomez, K., Carballido, J. L., Carabajal, A. P., Rauhut, O. W. M., Escapa, I. H., & Cúneo, N. R. (2020). Extinction of herbivorous dinosaurs linked to Early Jurassic global warming event. Proceedings of the Royal Society B, 287(1939), 20202310. https://doi.org/10.1098/rspb.2020.2310
    [Google Scholar]
  107. Rademan, Z. (2018). Radiometric dating and stratigraphic reassessment of the Elliot and Clarens formations; near Maphutseng and Moyeni, Kingdom of Lesotho, Southern Africa. Unpublished Masters thesis, Stellenbosch University.
  108. Rapela, C. W., Pankhurst, R. J., Casquet, C., Baldo, E., Galindo, C., Fanning, C. M., & Dahlquist, J. M. (2010). The Western Sierras Pampeanas: Protracted Grenville‐age history (1330–1030 Ma) of intra‐oceanic arcs, subduction–accretion at continental‐edge and AMCG intraplate magmatism. Journal of South American Earth Sciences, 29(1), 105–127. https://doi.org/10.1016/j.jsames.2009.08.004
    [Google Scholar]
  109. Rino, S., Kon, Y., Sato, W., Maruyama, S., Santosh, M., & Zhao, D. (2008). The Grenvillian and Pan‐African orogens: world's largest orogenies through geologic time, and their implications on the origin of superplume. Gondwana Research, 14(1–2), 51–72. https://doi.org/10.1016/j.gr.2008.01.001
    [Google Scholar]
  110. Rodríguez‐López, J. P., Clemmensen, L. B., Lancaster, N., Mountney, N. P., & Veiga, G. D. (2014). Archean to Recent aeolian sand systems and their sedimentary record: current understanding and future prospects. Sedimentology, 61(6), 1487–1534.
    [Google Scholar]
  111. Rust, I. C. (1967). On the sedimentation of the Table Mountain Group in the western Cape Province (Doctoral dissertation, Stellenbosch: Stellenbosch University).
  112. Ryan, P. J., & Whitfield, G. G. (1979). Basinal analysis of the Ecca and lowermost Beaufort beds and associated coal, uranium and heavy mineral beach sand occurrences. In some sedimentary basins and associated ore deposits of South Africa. Special Publication Geological Society of South Africa, 6, 91–101.
    [Google Scholar]
  113. Scherer, C. M., & Goldberg, K. (2010). Cyclic cross‐bedding in the eolian dunes of the Sergi Formation (Upper Jurassic), Recôncavo Basin: Inferences about the wind regime. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(1‐2), 103–110.
    [Google Scholar]
  114. Scherer, C. M., & Lavina, E. L. (2005). Sedimentary cycles and facies architecture of aeolian–fluvial strata of the Upper Jurassic Guará Formation, Southern Brazil. Sedimentology, 52(6), 1323–1341.
    [Google Scholar]
  115. Scherer, C. M., Lavina, E. L., Dias Filho, D. C., Oliveira, F. M., Bongiolo, D. E., & Aguiar, E. S. (2007). Stratigraphy and facies architecture of the fluvial–aeolian–lacustrine Sergi Formation (Upper Jurassic), Recôncavo Basin, Brazil. Sedimentary Geology, 194(3‐4), 169–193.
    [Google Scholar]
  116. Schneider, S., Hornung, J., Hinderer, M., & Garzanti, E. (2016). Petrography and geochemistry of modern river sediments in an equatorial environment (Rwenzori Mountains and Albertine rift, Uganda)—Implications for weathering and provenance. Sedimentary Geology, 336, 106–119. https://doi.org/10.1016/j.sedgeo.2016.02.006
    [Google Scholar]
  117. Schwartz, T. M., Souders, A. K., Lundstern, J. E., Gilmer, A. K., & Thompson, R. A. (2023). Revised age and regional correlations of Cenozoic strata on Bat Mountain, Death Valley region, California, USA, from zircon U‐Pb geochronology of sandstones and ash‐fall tuffs. Geosphere, 19(1), 235–257. https://doi.org/10.1130/GES02543.1
    [Google Scholar]
  118. Scotese, C. R. (2014). Atlas of Jurassic paleogeographic maps (Mollweide projection), map 45, volume 4 of the PALEOMAP atlas for ArcGIS, PALEOMAP Project, Evanston, IL.
  119. Sharman, G. R., & Malkowski, M. A. (2020). Needles in a haystack: Detrital zircon U‐Pb ages and the maximum depositional age of modern global sediment. Earth‐Science Reviews, 203, 103109.
    [Google Scholar]
  120. Smith, R. M. H., Eriksson, P. G., & Botha, W. J. (1993). A review of the stratigraphy and sedimentary environments of the Karoo‐aged basins of Southern Africa. Journal of African Earth Sciences, 16(1–2), 143–169.
    [Google Scholar]
  121. Stagman, J. G. (1978). An outline of the geology of Rhodesia with contributions from N.M. Harrison, T.J. Broderick and V.R. Stocklmayer. Bulletin—Geological Survey of Rhodesia, 80, 126.
    [Google Scholar]
  122. Stockley, G. M. (1947). Report on the geology of Basutoland (p. 114). Morija Printing Works.
    [Google Scholar]
  123. Svensen, H., Bebout, G., Kronz, A., Li, L., Planke, S., Chevallier, L., & Jamtveit, B. (2008). Nitrogen geochemistry as a tracer of fluid flow in a hydrothermal vent complex in the Karoo Basin, South Africa. Geochimica et Cosmochimica Acta, 72, 4929–4947. https://doi.org/10.1016/j.gca.2008.07.023
    [Google Scholar]
  124. Svensen, H., Corfu, F., Polteau, S., Hammer, Ø., & Planke, S. (2012). Rapid magma emplacement in the Karoo large Igneous Province. Earth and Planetary Science Letters, 325–326, 1–9. https://doi.org/10.1016/j.epsl.2012.01.015
    [Google Scholar]
  125. Svensen, H., Jamtveit, B., Planke, S., & Chevallier, L. (2006). Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. Journal of the Geological Society, 163, 671–682. https://doi.org/10.1144/1144‐764905‐037
    [Google Scholar]
  126. Thompson, A. O. (1975). The Karoo Rocks in the Mazunga Area, Beitbridge District. Short Report, Geological Survey of Rhodesia, 40, 79.
    [Google Scholar]
  127. Van Dijk, D. E., & Eriksson, P. G. (2021). Bipedal leaping Jurassic vertebrates in Southern Africa: Proposed new ichnotaxon and inferred palaeoenvironment. Transactions of the Royal Society of South Africa, 76(3), 235–245. https://doi.org/10.1080/0035919X.2021.1964104
    [Google Scholar]
  128. Van Kranendonk, M. J., & Kirkland, C. L. (2013). Orogenic climax of earth: The 1.2–1.1 Ga Grenvillian superevent. Geology, 41(7), 735–738.
    [Google Scholar]
  129. Van Niekerk, H. S. (2006). The origin of the Kheis terrane and its relationship with the Archean Kaapvaal Craton and the Grenvillian Namaqua Province in southern Africa. Unpublished doctoral thesis, University of Johannesburg.
  130. Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
    [Google Scholar]
  131. Viglietti, P. A., Frei, D., Rubidge, B. S., & Smith, R. M. (2018). U‐Pb detrital zircon dates and provenance data from the Beaufort Group (Karoo Supergroup) reflect sedimentary recycling and air‐fall tuff deposition in the Permo‐Triassic Karoo foreland basin. Journal of African Earth Science, 143, 59–66. https://doi.org/10.1016/j.jafrearsci.2017.11.006
    [Google Scholar]
  132. Viglietti, P. A., McPhee, B. W., Bordy, E. M., Sciscio, L., Barrett, P. M., Benson, R. B. J., Wills, S., Chapelle, K. E. J., Dollman, K. N., Mdekazi, C., & Choiniere, J. N. (2020). Biostratigraphy of the Massospondylus assemblage zone (Stormberg group, Karoo supergroup), South Africa. South African Journal of Geology, 123, 249–262. https://doi.org/10.25131/sajg.123.0018
    [Google Scholar]
  133. Visser, J. N. J. (1984). A review of the Stormberg group and Drakensberg volcanics in southern Africa. Palaeontologia Africana, 25, 5–27.
    [Google Scholar]
  134. Vorster, C. (2014). Laser ablation ICP‐MS age determination of detrital zircon populations in the phanerozoic cape and Lower Karoo Supergroups (South Africa) and correlatives in Argentina. Unpublished doctoral thesis, University of Johannesburg.
  135. Weltje, G. J., & von Eynatten, H. (2004). Quantitative provenance analysis of sediments: Review and outlook. Sedimentary Geology, 171(1–4): 1–11. https://doi.org/10.1016/j.sedgeo.2004.05.007
    [Google Scholar]
  136. Zieger, J., Harazim, S., Hofmann, M., Gärtner, A., Gerdes, A., Marko, L., & Linnemann, U. (2020). Mesozoic deposits of SW Gondwana (Namibia): Unravelling Gondwanan sedimentary dispersion drivers by detrital zircon. International Journal of Earth Sciences, 109(5), 1683–1704. https://doi.org/10.1007/s00531‐020‐01864‐2
    [Google Scholar]
/content/journals/10.1111/bre.12877
Loading
/content/journals/10.1111/bre.12877
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error