1887
Volume 36, Issue 3
  • E-ISSN: 1365-2117

Abstract

[

Conceptual model for the evolution of the study area. The post‐Cretaceous tectonic quiescent phase (a) is interrupted by extensional tectonics during the Miocene (b). A newly discovered graben develops since the Pliocene (c), cuts the seafloor and is related to an offshore migration of the East African Rift System.

, Abstract

The distribution and timing of Neogene extensional structures along the offshore Tanzania margin and their influence on submarine sediment dispersal pathways remain poorly constrained. This knowledge gap limits understanding of the propagation of the East African Rift System (EARS) in the western Indian Ocean. In this study, we use 2D and 3D seismic reflection data to explore a portion of the upper slope region offshore the Rufiji River delta which led to the discovery of a new extensional structure. Horizon maps and seismic sections extracted from the 3D volume reveal that the slope was intersected by W‐E‐oriented turbidite channels during the Cenozoic until the early Pliocene (5.3 Ma). Since then, the opening of this graben, whose timing is also constrained by stratigraphic horizon flattening, has led to a southward reorientation of these channels, a pattern that persists today, as evidenced by the flow direction of the channels at the modern seafloor. 2D seismic profiles reaching depths of 10 s two‐way travel time (TWT) indicate that the formation of this graben is not related to the reactivation of Mesozoic structures. In detail, seismic data show that the acoustic basement is intersected by extensional faults, likely related to the Jurassic rift tectonics, which is reactivated during the middle Cretaceous forming a gentle monocline. The lack of deformation in the post‐Cretaceous suggests a period of tectonic quiescence which persists until the establishment of a new extensional regime responsible for the graben's opening, indicating a decoupling between Mesozoic and Neogene tectonics. Considering the similarity in kinematics, orientation and timing between the graben and other structures along the margin, onshore and offshore, we interpret this graben to be generated by a later tectonic phase of the EARS. These new results may indicate that tectonic stresses associated with the EARS migrated from the Tanzania craton, where the oldest rift structures are dated to ca. 25 Ma, to the western Indian Ocean, where the tectonic activity started during the middle‐late Miocene to Pliocene.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12878
2024-06-14
2024-07-14
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/3/bre12878.html?itemId=/content/journals/10.1111/bre.12878&mimeType=html&fmt=ahah

References

  1. Abreu, V., Sullivan, M., Pirmez, C., & Mohrig, D. (2003). Lateral accretion packages (LAPs): An important reservoir element in deep water sinuous channels. Marine and Petroleum Geology, 20, 631–648.
    [Google Scholar]
  2. Accardo, N. J., Shillington, D. J., Gaherty, J. B., Scholz, C. A., Nyblade, A. A., Chindandali, P. R. N., Kamihanda, G., McCartney, T., Wood, D., & Wambura Ferdinand, R. (2018). Constraints on rift basin structure and border fault growth in the Northern Malawi rift from 3‐D seismic refraction imaging. Journal of Geophysical Research, Solid Earth, 123(11), 10003–10025. https://doi.org/10.1029/2018JB016504
    [Google Scholar]
  3. Allmendinger, R. W. (2020). Modern structural practice: A structural geology laboratory manual for the 21st century. 1.9.1, 2015‐2020. https://www.rickallmendinger.net/download
    [Google Scholar]
  4. Ameen, M. (1988). Folding of layered cover due to dip‐slip basement faulting. Imperial College London (University of London).
    [Google Scholar]
  5. Anderson, E. M. (1905). The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8, 387–402.
    [Google Scholar]
  6. Anderson, J. E., Cartwright, J., Drysdall, S. J., & Vivian, N. (2000). Controls on turbidite sand deposition during gravity‐driven extension of a passive margin: examples from miocene sediments in block 4, Angola. Marine and Petroleum Geology, 17, 1165–1203.
    [Google Scholar]
  7. Bassias, Y. (1992). Petrological and geochemical investigation of rocks from the Davie fracture zone (Mozambique Channel) and some tectonic implications. Journal of African Earth Sciences (and the Middle East), 15(3–4), 321–3311.
    [Google Scholar]
  8. Beloussov, V. V. (1959). Types of fodling and their origin. International Geology Review, 2, 1–21.
    [Google Scholar]
  9. Betzler, C., & Ring, U. (1995). Sedimentology of the Malawi rift: Facies and stratigraphy of the Chiwondo beds, northern Malawi. Journal ofHuman Evolution, 28(1), 23–35.
    [Google Scholar]
  10. Bland, S., Griffiths, P., & Hodge, D. (2004). Restoring the seismic image with a geological rule base. First Break, 22, 51–55.
    [Google Scholar]
  11. Bobe, R., & Behrensmeyer, A. K. (2004). The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeography, Palaeoclimatology, Palaeoecology, 207, 399–420.
    [Google Scholar]
  12. Broucke, O., Temple, F., Rouby, D., Robin, C., Calassou, S., Nalpas, T., & Guillocheau, F. (2004). The role of deformation processes on the geometry of mud‐dominated turbiditic systems, oligocene and lower‐middle Miocene of the lower Congo Basin (West African margin). Marine and Petroleum Geology, 21, 327–348.
    [Google Scholar]
  13. Buitner, S. (2014). How plumes help to break plates. Nature, 513, 36–37. https://doi.org/10.1038/513036a
    [Google Scholar]
  14. Bull, S., Browne, G. H., Arnot, M. J., & Strachan, L. J. (2020). Influence of mass transport deposits (MTD) surface topography on deep‐water deposition: An example from predominantly fine ‐grained continental margin, New Zealand. Geological Society, London, Special Publication, 500, 147–171. https://doi.org/10.1144/SP500‐2019‐192
    [Google Scholar]
  15. Burgess, C. F., Rosendahl, B. R., Sander, S., Burgess, C. A., Lambiase, J., Derksen, S., & Meader, N. (1988). Chapter 35—The structural and stratigraphic evolution of Lake Tan‐ganyika: A case study of continental rifting. Developments in Geotectonics, 22, 859–881. https://doi.org/10.1016/B978‐0‐444‐42903‐2.50040‐3
    [Google Scholar]
  16. Burke, K. (1996). The African Plate. South Africa Journal Geology, 99, 339–409. https://doi.org/10.10520/EJC‐942801f20
    [Google Scholar]
  17. Carter, L., Burnett, D., Drew, S., Hagadorn, L., Marle, G., Bartlett‐McNeil, D., & Irvin, N. (2009). Submarine cables and the oceans: Connecting the world No. 31 The United Nations Environment Programme World Conservation Monitoring Centre Biodiversity Series (p. 64). ICPC/UNEP/UNEP‐WCMC. http://www.iscpc.org/publications/ICPC‐UNEP_Report.pdf
    [Google Scholar]
  18. Carter, L., Milliman, P. J., Talling, R., Gavey, R., & Wynn, R. B. (2012). Near‐synchronous and delayed initiation of long run‐out submarine sediment flows from a record‐breaking river flood, offshore Taiwan. Geophysical Research Letters, 39, L12603. https://doi.org/10.1029/2012GL051172
    [Google Scholar]
  19. Cerling, T. E., Wynn, J. G., Andanje, S. A., Bird, M. I., Korir, D. K., Levin, N. E., Mace, W., Macharia, A. N., Quade, J., & Remien, C. H. (2011). Woody cover and hominin environments in the past 6 million years. Nature, 476, 51–56.
    [Google Scholar]
  20. Chen, Q., & Sidney, S. (1997). Seismic attribute technology for reservoir forecasting and monitoring. The Leading Edge, 16, 445–448. https://doi.org/10.1190/1.1437657
    [Google Scholar]
  21. Chopra, S., & Marfurt, K. J. (2007). Seismic attributes for prospect identification and reservoir characterization. Society of Exploration Geophysicists, Geophysical Developments, 11, 481. https://doi.org/10.1190/1.9781560801900
    [Google Scholar]
  22. Clark, I. R., & Cartwright, J. A. (2009). Interactions between submarine channel systems and deformation in deepwater fold belts: Examples from the Levant Basin, Eastern Mediterranean sea. Marine and Petroleum Geology, 26, 1465–1482.
    [Google Scholar]
  23. Clark, I. R., & Cartwright, J. A. (2011). Key controls on submarine channel development in structurally active settings. Marine and Petroleum Geology, 28(7), 1333–1349.
    [Google Scholar]
  24. Coffin, M. F., & Rabinowitz, P. D. (1992). The Mesozoic east African and Madagascan conjugate continental margins stratigraphy and tectonics. In J. S.Watkins, Z.Feng, & K. J.McMillen (Eds.), Geology and geophysics of continental margins (pp. 2011–2240). AAPG Memoir 53.
    [Google Scholar]
  25. Cohen, A. S., Soreghan, M. J., & Scholz, C. A. (1993). Estimating the age of formation of lakes: An example of Lake Tanganyika, East African Rift System. Geology, 21, 511–514.
    [Google Scholar]
  26. Cohen, H. A., & McClay, K. (1996). Sedimentation and shale tectonics of the northwestern Niger Delta front. Marine and Petroleum Geology, 13(3), 313–328.
    [Google Scholar]
  27. Covault, J. A., Fildani, A., Romans, B. W., & McHargue, T. (2011). The natural range of submarine canyon‐and‐channel longitudinal profiles. Geosphere, 7(2), 313–332.
    [Google Scholar]
  28. Covault, J. A., Shelef, E., Traer, M., Hubbard, S. M., Romans, B. W., & Fildani, A. (2012). Deep‐water channel run‐out length: Insights from seafloor geomorphology. Journal of Sedimentary Research, 82(1), 25–40.
    [Google Scholar]
  29. Craig, T. J., Jackson, J. A., Priestley, K., & McKenzie, D. (2011). Earthquake distribution patterns in Africa: Their relationship to variations in lithospheric and geological structure, and their rheological implications. Geophysical Journal International, 185(1), 403–434.
    [Google Scholar]
  30. Cronin, B. T. (1995). Structurally‐controlled deep sea channel courses: Examples from the miocene of Southeast Spain and the Alboran Sea, Southwest Mediterranean. Geological Society, London, Special Publications, 94, 115–135.
    [Google Scholar]
  31. Delaunay, B. (1934). Sur la sphère vide. A la mémoire de Georges Voronoi. Izvestiya Akademii Nauk SSSR, Otdelenie Matematicheskih i Estestvennyh Nauk, 7, 793800.
    [Google Scholar]
  32. Delvaux, D., & Barth, A. (2010). African stress pattern from formal inversion of focal mechanism data. Tectonophysics, 482(1–4), 105–128.
    [Google Scholar]
  33. deMenocal, P. B. (2004). African climate change and faunal evolution during the Pliocene‐Pleistocene. Earth and Planetary Science Letters, Frontiers, 220, 3–24.
    [Google Scholar]
  34. Deptuck, M. E., Sylvester, Z., Pirmez, C., & O'Byrne, C. (2007). Migration‐aggradation history and 3‐D seismic geomorphology of submarine channels in the Pleistocene Benin‐major Canyon, western Niger Delta slope. Marine and Petroleum Geology, 24, 406–433. https://doi.org/10.1016/j.marpetgeo.2007.01.005
    [Google Scholar]
  35. Dottore Stagna, M., Maselli, V., Grujic, D., Reynolds, P., Reynolds, D., Iacopini, D., Richards, B., Underhill, J. R., & Kroon, D. (2022). Structural controls on slope evolution and sediment dispersal pathways along the northern Tanzania continental margin, western Indian Ocean. Marine Geology, 443, 106662. https://doi.org/10.1016/j.margeo.2021.106662
    [Google Scholar]
  36. Dottore Stagna, M., Maselli, V., & van Vliet, A. (2023). Large‐scale submarine landslide drives long‐lasting regime shift in slope sediment deposition. Geology, 51(2), 167–173. https://doi.org/10.1130/G50463.1
    [Google Scholar]
  37. Ebinger, C. J., Crow, M. J., Rosendahl, B. R., Livingstone, D. A., & LeFournier, J. (1984). Structural evolution of Lake Malaŵi, Africa. Nature, 308, 627–629.
    [Google Scholar]
  38. Ebinger, C. J., Deino, A. L., Tesha, A. L., Becker, T., & Ring, U. (1993). Tectonic controls on rift basin morphology evolution of the Northern Malawi (Nyasa) Rift. Journal of Geo‐Physical Research: Solid Earth, 98(B10), 17821–17836.
    [Google Scholar]
  39. Ebinger, C. J., Reiss, M. C., Bastow, I., & Karanja, M. M. (2024). Shallow sources of upper mantle seismic anisotropy in East Africa. Earth and Planetary Science Letters, 625, 118488.
    [Google Scholar]
  40. Ebinger, C. J., & Sleep, N. (1998). Cenozoic magmatism throughout East Africa resulting from impact of a single plume. Nature, 395, 788–791. https://doi.org/10.1038/27417
    [Google Scholar]
  41. Ekstrom, G., Nettles, M., & Dziewonski, A. M. (2012). The global CMT project 2004–2010:Centroid‐moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9.
    [Google Scholar]
  42. Erslev, E. A. (1991). Trishear Fault‐Propagation Folding. Geolofy, 19(6), 617–620. https://doi.org/10.1130/0091‐7613(1991)019<0617:TFPF>2.3.CO;2
    [Google Scholar]
  43. Fernandes, R. M. S., Miranda, J. M., Delvaux, D., Stamps, D. S., & Saria, E. (2013). Re‐evaluation of the kinematics of Victoria Block using continuous GNSS data. Geophysics Journal International, 193, 1–10. https://doi.org/10.1093/gji/ggs071
    [Google Scholar]
  44. Ferrill, D. A., Morris, A. P., & McGinnis, R. N. (2012). Extensional fault propagation folding in mechanically layered rocks: The case against the frictional drag mechanism. Tectonophysics, 576, 78–85. https://doi.org/10.1016/j.tecto.2012.05.023
    [Google Scholar]
  45. Ferrill, D. A., Morris, A. P., & Smart, K. J. (2007). Stratigraphic control on extensional fault propagation folding: Big Brushy Canyon monocline, Sierra Del Carmen, Texas. Geological Society, London, Special Publications, 292, 203–217. https://doi.org/10.1144/SP292.12
    [Google Scholar]
  46. Ferry, J. N., Mulder, T., Parize, O., & Raillard, S. (2005). Concept of equilibrium profile in deep‐water turbidite systems: Effects of local physiographic changes on the nature of sedimentary process and the geometries of deposits. Geological Society of London, Special Publication London, 244(1), 181–193.
    [Google Scholar]
  47. Flannery, J., & Rosendahl, B. (1990). The seismic stratigraphy of Lake Malawi, Africa: Implications for interpreting geological processes in lacustrine rifts. Journal of African Earth Sciences (and the Middle East), 10(3), 519–548.
    [Google Scholar]
  48. Franke, D., Jokat, W., Ladage, S., Stollhofen, H., Klimke, J., Lutz, R., Mahanjane, E. S., Ehrhardt, A., & Schreckenberger, B. (2015). The offshore East African Rift System: Structural framework at the toe of a juvenile rift. Tectonics, 34, 2086–2104. https://doi.org/10.1002/2015TC003922
    [Google Scholar]
  49. Fuhrmann, A., Kane, I. A., Clare, M. A., Ferguson, R. A., Schomacker, E., Bonamini, E., & Contreras, F. A. (2020). Hybrid turbidite‐drift channel complexes: An integrated multiscale model. Geology, 48, 562–568. https://doi.org/10.1130/G47179.1
    [Google Scholar]
  50. Gamboa, D., Alves, T. M., & Cartwright, J. (2012). A submarine channel confluence classification for topographically confined slopes. Marine and Petroleum Geology, 35, 176–189.
    [Google Scholar]
  51. Gawthorpe, R. L., Jackson, C. A.‐L., Young, M. J., Sharp, I. R., Moustafa, A. R., & Leppard, C. W. (2003). Normal fault growth, displacement localisation and the evolution of normal fault populations: The Hammam Faraun fault block, Suez Rift, Egypt. Journal of Structural Geology, 25, 883–895. https://doi.org/10.1016/S0191‐8141(02)00088‐3
    [Google Scholar]
  52. Gawthorpe, R. L., Sharp, I., Underhill, J. R., & Gupta, S. (1997). Linked sequence stratigraphic and structural evolution of propagating normal faults. Geology, 25, 795–798. https://doi.org/10.1130/0091‐7613(1997)025<0795:LSSASE>2.3.CO;2
    [Google Scholar]
  53. Gee, M., & Gawthorpe, R. L. (2006). Submarine channel controlled by salt tectonics: Examples from 3D seismic data offshore Angola. Marine and Petroleum Geology, 23, 443–458.
    [Google Scholar]
  54. Gee, M., & Gawthorpe, R. L. (2007). Early evolution of submarine channels offshore Angola revealed by three‐dimensional seismic data. Geological Society, London, Special Publications, 277, 223–235.
    [Google Scholar]
  55. Goudie, A. S. (2005). The drainage of Africa since Cretaceous. Geomorphology, 67(3), 437–456. https://doi.org/10.1016/j.geomorph.2004.11.008
    [Google Scholar]
  56. Gunter, W., Bachu, S., & Benson, S. (2004). The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. Geological Society, London, Special Publications, 233, 129–145.
    [Google Scholar]
  57. Hardy, S., & Finch, E. (2006). Discrete element modelling of the influence of cover strength on basement‐involved fault‐propagation folding. Tectonophysics, 415, 225–238. https://doi.org/10.1016/j.tecto.2006.01.002
    [Google Scholar]
  58. Hardy, S., & McClay, K. (1999). Kinematic modelling of extensional fault‐propagation folding. Journal of Structural Geology, 21, 695–702.
    [Google Scholar]
  59. Heijnen, M. S., Clare, M. A., Cartigny, M. J. B., Talling, P. J., Hage, S., Pope, E. L., Bailey, L., Sumner, E., Lintern, D. G., Stacey, C., Parsons, D. R., Simmons, S. M., Chen, Y., Hubbard, S. M., Eggenhuisen, J. T., Kane, I., & Hughes Clarke, J. E. (2022). Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes?Earth and Planetary Science Letters, 584, 117481.
    [Google Scholar]
  60. Heirtzler, J. R., & Burroughs, R. H. (1971). Madagascar's paleoposition: New data from the Mozambique Channel. Science, 174, 488–490. https://doi.org/10.1126/science.174.4008.488
    [Google Scholar]
  61. Howlett, D. M., Gawthorpe, R. L., Ge, Z., Rotevatn, A., & Jackson, C.A.‐L. (2020). Turbidites, topography and tectonics: Evolution of submarine channel‐lobe systems in the salt‐influenced Kwanza Basin, offshore Angola. Basin Research, 33(2), 1076–1110.
    [Google Scholar]
  62. Hudson, F. S. (1955). Folding of unmetamorphosed strata superjacent to massive basement rocks. Bulletin of the American Association of Petroleum Geologists, 39, 2038–2051.
    [Google Scholar]
  63. Huyghe, P., Foata, M., Deville, E., & Mascle, G. (2004). Channel profiles through the active thrust front of the southern Barbados prism. Geology, 32, 429–432.
    [Google Scholar]
  64. Iacopini, D., Tavani, S., Pentagallo, S., Maselli, V., Dottore Stagna, M., Ebinger, C. J., Reynolds, D., & van Vliet, A. (2023). Architecture, structural and tectonic significance of the Seagap fault (offshore Tanzania) in the framework of the East African Rift. Basin Research, 35(1), 387–412. https://doi.org/10.1111/bre.12716
    [Google Scholar]
  65. Jackson, C. A.‐L., Gawthorpe, R. L., & Sharp, I. R. (2006). Style and sequence of deformation during extensional fault‐propagation folding: Examples from the Hammam Faraun and El‐Qaa fault blocks, Suez Rift, Egypt. Journal of Structural Geology, 28, 519–535. https://doi.org/10.1016/j.jsg.2005.11.009
    [Google Scholar]
  66. Janecke, S. U., Vanderburg, C. J., & Blankenau, J. J. (1998). Geometry, mechanism, and significance of extensional folds from examples in the Rocky Mountain Basin and Range province, U.S.A. Journal of Structural Geology, 20, 841–856. https://doi.org/10.1016/S0191‐8141(98)00016‐9
    [Google Scholar]
  67. Jokat, W., Altenbernd, T., Eagles, G., & Geissler, W. H. (2021). The early drift of the Indian plate. Scientific Reports, 11(1), 10796.
    [Google Scholar]
  68. Kane, I. A., McCaffrey, W. D., & Peakall, J. (2008). Controls on sinuosity evolution within submarine channels. Geology, 36, 287–290.
    [Google Scholar]
  69. Keller, J. V. A., & Lynch, G. (1999). Displacement transfer and forced folding in the Maritimes basin of Nova Scotia, eastern Canada. Geological Society of London, Special Publication, 169, 87–101. https://doi.org/10.1144/GSL.SP.2000.169.01.07
    [Google Scholar]
  70. Kent, P. E., Hunt, J. A., & Johnstone, D. W. (1971). The geology and geophysics of coastal Tanzania. Institute of Geological Sciences (UK) Geophysical, 6, 101 p.
    [Google Scholar]
  71. Khalil, S. M., & McClay, K. R. (2002). Extensional fault‐related folding, northwestern Red Sea, Egypt. Journal of Structural Geology, 24, 743–762.
    [Google Scholar]
  72. Klimke, J., & Franke, D. (2016). Gondwana breakup: No evidence for a Davie fracture zone offshore northern Mozambique. Tanzania and Kenya. Terra Nova, 210(4), 233–244. https://doi.org/10.1111/ter.12214
    [Google Scholar]
  73. Kneller, B., Dykstra, M., Fairweather, L., & Milana, J. P. (2016). Mass‐transport and slope accommodation: Implications for turbidite sandstone reservoir. American Association of Petroleum Geologists Bulletin, 100, 213–235. https://doi.org/10.1306/09011514210
    [Google Scholar]
  74. Kolla, V., Kostecki, J. A., Henderson, L., & Hess, L. (1980). Morphology and quaternary sedimentation of the Mozambique fan and environs, southwestern Indian Oceans. Sedimentology, 27, 357–378.
    [Google Scholar]
  75. Kolla, V., Posamentier, H. W., & Wood, L. J. (2007). Deep‐water and fluvial sinuous channels—Characteristics, similarities and dissimilarities, and modes of formation. Marine and Petroleum Geology, 24, 388–405.
    [Google Scholar]
  76. Levin, N. E. (2015). Environment and climate of early human evolution. Annual Review Earth and Planetary Sciences, 43, 405–429.
    [Google Scholar]
  77. Macgregor, D. (2015). History of the development of the East African Rift System: A series of interpreted maps through time. Journal of African Earth Sciences, 101, 232–252. https://doi.org/10.1016/j.jafrearsci.2014.09.016
    [Google Scholar]
  78. Mahanjane, E. S. (2014). The Davie fracture zone and adjacent basins in the offshore Mozambique margin—A new insights for the hydrocarbon potential. Marine and Petroleum Geology, 57, 561–571. https://doi.org/10.1016/j.marpetgeo.2014.06.015
    [Google Scholar]
  79. Martínez‐Doñate, A., Privat, A., Hodgson, D. M., Jackson, C., Kane, I. A., Spychala, Y. T., Duller, R. A., Stevenson, C., Keavney, E., Schwarz, E., & Flint, S. (2021). Substrate entrainment, depositional relief, and sediment capture: Impact of a submarine landslide on flow process and sediment supply. Frontiers in Earth Science, 9, 757617, https://doi.org/10.3389/feart.2021.757617
    [Google Scholar]
  80. Maselli, V., Iacopini, D., Ebinger, C. J., Tewari, S., de Haas, H., Wade, B. S., Pearson, P. N., Francis, M., van Vliet, A., Richards, B., & Kroon, D. (2020). Large‐scale mass wasting in the western Indian Ocean constrains onset of East African rifting. Nature Communications, 11, 3456. https://doi.org/10.1038/s41467‐020‐17267‐5
    [Google Scholar]
  81. Maselli, V., Kroon, D., Iacopini, D., Wade, B. S., Pearson, P. N., & de Haas, H. (2019). Impact of the East African Rift System on the routing of the deep‐water drainage network offshore Tanzania, western Indian Ocean. Basin Research, 32, 1–15. https://doi.org/10.1111/bre.12398
    [Google Scholar]
  82. Mayall, M., Jones, E., & Casey, M. (2006). Turbidite channel reservoirs—Key elements in facies prediction and effective development. Marine and Petroleum Geology, 23(8), 821–841.
    [Google Scholar]
  83. Mayall, M., Lonergan, L., Bowmn, A., James, S., Milles, K., Primmer, T., Pope, D., Rogers, L., & Skeene, R. (2010). The response of turbidite slope channels to growth induced seabed topography. American Association of Petroleum Geologists Bulletin, 94, 1011–1030.
    [Google Scholar]
  84. McCartney, T., & Scholz, C. A. (2016). A 1.3‐million‐year record of synchronous faulting in the hangingwall and border fault of a half‐graben inthe Malawi (Nyasa) Rift. Journal of Structural Geology, 91, 114–129. https://doi.org/10.1016/j.jsg.2016.08.012
    [Google Scholar]
  85. Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., & Wright, J. D. (2020). Cenozoic Sea‐level and cryospheric evolution from deep‐sea geochemical and continental margin records. Science. Advances, 6(20), eaaz1346.
    [Google Scholar]
  86. MitchumJr., R. M., Vail, P. R., & Sangree, J. B. (1977). Seismic stratigraphy and global changes of sea level, part 6: Seismic stratigraphy interpretation of seismic reflection patterns in depositional sequence. C.E.Payton (Ed.), Seismic stratigraphy—Applications to hydrocarbon exploration (Vol. 25, pp. 117–133). AAPG Memoir.
    [Google Scholar]
  87. Morley, C. K., Nelson, R. A., Patton, T. L., & Munn, S. G. (1990). Transfer zones in the east African Rift system and their relevance to hydrocarbon exploration in rifts. American Association of Petroleum Geologists Bulletin, 74, 1234–1253.
    [Google Scholar]
  88. Morley, C. K., Wescott, W. A., Stone, D. M., Harper, R. M., Wigger, S. T., & Karanja, F. M. (1992). Tectonic evolution of the northern Kenyan Rift. Journal of Geological Society, 149, 333–348. https://doi.org/10.1144/gsjgs.149.3.0333
    [Google Scholar]
  89. Mortimer, E., Kirstein, L. A., Stuart, F. M., & Strecker, M. R. (2016). Spatio‐temporal trends in normal‐fault segmentation recorded by low‐temperature thermochronology: Livingstone fault scarp, Malawi Rift, East African Rift System. Earth and Planetary Science Letters, 455, 62–72. https://doi.org/10.1016/j.epsl.2016.08.040
    [Google Scholar]
  90. Mougenot, D., Recq, M., Virlogeux, P., & Lepvrier, C. (1986). Seaward extension of the East African Rift. Nature, 321, 599–603. https://doi.org/10.1038/321599a0
    [Google Scholar]
  91. Muirhead, J. D., Wright, L. J. M., & Scholz, C. A. (2019). Rift evolution in regions of low magma input in East Africa. Earth and Planetary Science Letters, 506, 332–346. https://doi.org/10.1016/j.epsl.2018.11.004
    [Google Scholar]
  92. Mutti, E., Bernoulli, F. R., Lucchi, F. R., & Tinterri, R. (2009). Turbidites and turbidity currents from Alpine ‘flysch’ to the exploration of continental margins. Sedimentology, 56, 267–318.
    [Google Scholar]
  93. Nicholas, C. J., Pearson, P. N., McMillan, I. K., Ditchfield, P. W., & Singano, J. M. (2007). Structural evolution of southern coastal Tanzania since the Jurassic. Journal of African Earth Sciences, 48, 273–297.
    [Google Scholar]
  94. Pascoe, R., Hooper, R., Storhaug, K., & Harper, H. (1999). Evolution of extensional styles at the southern termination of the Nordland Ridge, mid‐Norway: A response to variations in coupling above Triassic salt. Geological Society, London, Petroleum Geology Conference Series, 5, 83–90.
    [Google Scholar]
  95. Patton, T. L. (1984). Normal faulting and fold development in sedimentary rocks above a pre‐existing basement normal fault (PhD thesis). Texas A&M University.
    [Google Scholar]
  96. Phethean, J. J. J., Kalnins, L. M., van Hunen, J., Biffi, P. G., Davies, R. J., & McCaffrey, K. J. W. (2016). Madagascar's escape from Africa: A high‐ resolution plate reconstruction for the Western Somali Basin and implications for supercontinent dis‐persal. Geochemistry, Geophysics, Geosystems, 111, 5036–5055. https://doi.org/10.1002/2016GC006624
    [Google Scholar]
  97. Pigott, J., Kang, M.‐H., & Han, H.‐C. (2013). First order seismic attributes for clastic seismic facies interpretation: Examples from the East China Sea. Journal of Asian Earth Sciences, 66, 34–54. ISSN 1367‐9120. https://doi.org/10.1016/j.jseaes.2012.11.043
    [Google Scholar]
  98. Piper, D. J. W., Cochonat, P., & Morrison, M. (1999). The sequence of events around the epicentre of the 1929 Grand Banks earthquake: Initiation of debris flows and turbidity currents inferred from sidescan sonar. Sedimentology, 46, 79–97.
    [Google Scholar]
  99. Piper, D. J. W., & Normark, W. R. (2001). Sandy fans‐from Amazon to Hueneme and beyond. American Association of Petroleum Geology AAPG Bulletin, 85(8), 1407–1438.
    [Google Scholar]
  100. Piper, D. J. W., & Normark, W. R. (2009). Processes that initiate turbidity currents and their influence on turbidites: A marine geology perspective. Journal of Sedimentary Research, 79, 347–362.
    [Google Scholar]
  101. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sedimentary Research, 73, 367–388. https://doi.org/10.1306/111302730367
    [Google Scholar]
  102. Prather, B. E., Booth, J. R., Steffens, G. S., & Craig, P. A. (1998). Classification, lithologic calibration and stratigraphic succession of seismic facies from intraslope Basins, Deep Water Gulf of Mexico, USA. AAPG Bulletin, 82(5), 701–728.
    [Google Scholar]
  103. Prucha, J. J., Graham, J. A., & Nickelsen, R. P. (1965). Basement‐controlled deformation in Wyoming Province of Rocky Mountains foreland. Bulletin of the American Association of Petroleum Geologists, 49, 966–992.
    [Google Scholar]
  104. Qin, Y. P., Alves, T. M., Constantine, J., & Gamboa, D. (2017). The role of mass wasting in the progressive development of submarine channels (Espírito Santo Basin, SE Brazil). Journal of Sedimentary Research, 87, 500–516. https://doi.org/10.2110/jsr.2017.18
    [Google Scholar]
  105. Reeves, C. V. (2018). The development of the East African margin during Jurassic and Lower Cretaceous times: A perspective from global tectonics. Petroleum Geoscience, 24, 41–56.
    [Google Scholar]
  106. Reeves, C. V., Teasdale, J. P., & Mahanjane, E. S. (2016). Insight into the eastern margin of Africa from a new tectonic model of the Indian Ocean. Geological Society, London, Special Publications, 431, 299–322. https://doi.org/10.1144/SP431.12
    [Google Scholar]
  107. Roberts, E. M., Stevens, N. J., O'Connor, P. M., Dirks, P. H. G. M., Gottfried, M. D., Clyde, W. C., & Hemming, S. (2012). Initiation of the western branch of the East African Rift coeval with the eastern branch. Nature Geoscience, 5, 289–294. https://doi.org/10.1038/ngeo1432
    [Google Scholar]
  108. Roche, V., & Ringenbach, J. C. (2022). The Davie fracture zone: A recorder of continents drifts and kinematic changes. Tectonophysics, 823, 229188. ISSN 0040‐1951. https://doi.org/10.1016/j.tecto.2021.229188
    [Google Scholar]
  109. Rosendahl, B. R., Scholz, C. A., & Woods, L. D. (1988). Seismic Atlas of Lake Tanganyika. Project PROBE (p. 81). Duke University.
    [Google Scholar]
  110. Rouby, D., Fossen, H., & Cobbold, P. R. (1996). Extension, displacement, and block rotation in the larger Gullfaks area, northern North Sea: Determined from map view restoration. Bulletin of the American Association of Petroleum Geologists, 80(6), 875–889.
    [Google Scholar]
  111. Rouby, D., Xiao, H., & Suppe, J. (2000). 3‐D restoration of complexly folded and faulted surfaces using multiple unfolding mechanisms. Bulletin of the American Association of Petroleum Geologists, 84(6), 805–829.
    [Google Scholar]
  112. Rowan, M. G., & Weimer, P. (1998). Salt‐sediment interaction, northern Green canyon and Ewing Bank (offshore Louisiana), northern Gulf of Mexico. AAPG Bulletin, 82, 1055–1082.
    [Google Scholar]
  113. Said, A., Moder, C., Clark, S., & Abdelmalak, M. M. (2015). Sedimentary budgets of the Tanzania coastal basin and implications for uplift history of the East African rift system. Journal of African Earth Sciences, 111, 288–295. https://doi.org/10.1016/j.jafrearsci.2015.08.012
    [Google Scholar]
  114. Sandford, A. R. (1959). Analytical and experimental study of simple geological structures. Geological Society of America Bulletin, 70, 19–52.
    [Google Scholar]
  115. Sansom, P. (2018). Hybrid turbidite‐contourite systems of the Tanzanian margin. Petroleum Geoscience, 24, 258–276. https://doi.org/10.1144/petgeo2018‐044
    [Google Scholar]
  116. Saria, E., Calais, E., Delvaux, D., Hartnady, C. J. H., & Stamps, D. S. (2014). Present‐day kinematics of the east African rift. Journal of Geophysical Research. Solid Earth, 1111, 3584–3600. https://doi.org/10.1002/2013JB0101101
    [Google Scholar]
  117. Sauter, D., Ringenbach, J. C., Cannat, M., Maurin, T., Manatschal, G., & McDermott, K. G. (2018). Intraplate deformation of oceanic crust in the West Somali Basin: Insights from long‐offset reflection seismic data. Tectonics, 37(2), 588–603. https://doi.org/10.1002/2017TC004700
    [Google Scholar]
  118. Scarselli, N. (2022). Exploring the predictive power of seismic geomorphology to assess sedimentary characteristics of gravity‐flow deposits: Examples from offshore East and West Africa reservoirs. Geological Society, London, Special Publications, 525, 163–188. https://doi.org/10.1144/SP525‐2021‐58
    [Google Scholar]
  119. Schlische, R. W. (1995). Geometry and origin of fault‐related folds in extensional settings. American Association of Petroleum Geology AAPG Bulletin, 79, 1661–1678. https://doi.org/10.1306/7834DE4A‐1721‐11D7‐8645000102C1865D
    [Google Scholar]
  120. Scholz, C. A., Shillington, D. J., Wright, L. J. M., Accardo, N., Gaherty, J. B., & Chindandali, P. (2020). Intrarift fault fabric, segmentation,and basin evolution of the Lake Malawi (Nyasa) Rift, East Africa. Geosphere, 16(5), 1293–1311. https://doi.org/10.1130/GES02228.1
    [Google Scholar]
  121. Scrutton, R. A. (1978). Davie fracture zone and the movement of Madagascar. Earth and Planetary Science Letters, 311(1), 104–1010. https://doi.org/10.1016/0012‐1021X(1110)110143‐11
    [Google Scholar]
  122. Shaban, S. N., Scholz, C. A., Muirhead, J. D., & Wood, D. A. (2021). The stratigraphic evolution of the Lake Tanganyika Rift, East Africa: Facies distributions and paleo‐environmental implications. Paleogeography, Paleoclimatology, Palaeoecology, 575, 110474. https://doi.org/10.1016/j.palaeo.2021.110474
    [Google Scholar]
  123. Shepard, F. P. (1936). The underlying causes of submarine canyons. National Academy of Sciences of the USA, 22, 496–502. https://doi.org/10.1073/pnas.22.8.496
    [Google Scholar]
  124. Shillington, D. J., Scholz, C. A., Chindandali, P. R. N., Gaherty, J. B., Accardo, N. J., Onyango, E., Ebinger, C., & Nyblade, A. A. (2020). Controls on intrarift faultingin the North Basin of the Malawi (Nyasa) Rift, East Africa. Tectonics, 39, e2019TC005633. https://doi.org/10.1029/2019TC005633
    [Google Scholar]
  125. Sii, P., & Underhill, J. R. (2015). Role of punctuated subsidence and structural inversion in creating the East African Spice Islands. In 77th EAGE Conference and Exhibition 2015, 2015, 1–5.
  126. Sinclair, H. R., & Tomasso, M. (2002). Depositional evolution of confined Turbidite Basins. Journal of Sedimentary Research, 72, 451–456.
    [Google Scholar]
  127. Sinha, S. T., Saha, S., Longacre, M., Basu, S., Jha, R., & Mondal, T. (2019). Crustal architecture and nature of continental breakup along a transform margin: New insights from Tanzania–Mozambique margin. Tectonics, 38(4), 20110TC005221. https://doi.org/10.10211/20110TC005221
    [Google Scholar]
  128. Smith, R. (2004). Silled sub‐Basins to connected tortuous corridors: Sediment distribution systems on topographically complex sub‐aqueous slopes. Geological Society, London, Special Publications, 222(1), 23–44.
    [Google Scholar]
  129. Specht, T. D., & Rosendahl, B. R. (1989). Architecture of the Lake Malawi Rift, East Africa. Journal of African Earth Sciences, 8, 355–382. https://doi.org/10.1016/S0899‐5362(89)80032‐6
    [Google Scholar]
  130. Stamps, D., Calais, E., Saria, E., Hartnady, C., Nocquet, J., Ebinger, C. J., & Fernandez, R. (2008). A kinematic model for the east African rift. Geophysical Research Letters, 119(6), L05304. https://doi.org/10.10211/20011GL03211101
    [Google Scholar]
  131. Stamps, D., Saria, E., & Kreemer, C. (2018). A geodetic strain rate model for the east African rift system. Scientific Reports, 8, 732. https://doi.org/10.1038/s41598‐017‐19097‐w
    [Google Scholar]
  132. Stamps, D. S., Kreemer, C., Fernandes, R., Rajaonarison, T. A., & Rambolamanana, G. (2021). Redefining East African Rift system kinematics. Geology, 49(2), 150–155.
    [Google Scholar]
  133. Stankiewicz, J., & de Wit, M. J. (2006). A proposed drainage evolution model for Central Africa—Did The Congo flow east?Journal of African Earth Sciences, 44(1), 75–84.
    [Google Scholar]
  134. Stearns, D. W. (1978). Faulting and forced folding in the Rocky Mountain foreland, in: Laramide folding associated with basement block faulting in the Western United States. Geological Society of America Memoir, 151, 1–37. https://doi.org/10.1130/MEM151‐p1
    [Google Scholar]
  135. Suppe, J., & Medwedeff, D. A. (1984). Fault‐propagation folding. Geological Society of American, 16, 670.
    [Google Scholar]
  136. Talling, P. J., Allin, J., Armitage, D. A., Arnott, R. W. C., Cartigny, M. J. B., Clare, M. A., & Felletti, F. (2015). Key future directions for research on turbidity currents and their deposits. Journal of Sedimentary Research, 85(2), 153–169.
    [Google Scholar]
  137. Talling, P. J., Baker, M. L., Pope, E. L., Ruffell, S. C., Jacinto, R. S., Heijnen, M. S., Hage, S., Simmons, S. M., Hasenhündl, M., Heerema, C. J., McGhee, C., Apprioual, R., Ferrant, A., Cartigny, M. J. B., Parsons, D. R., Clare, M. A., Tshimanga, R. M., Trigg, M. A., Cula, C. A., … Hilton, R. J. (2022). Longest sediment flows yet measured show how major rivers connect efficiently to deep sea. Nature Communications, 13, 4193.
    [Google Scholar]
  138. Talling, P. J., Hage, S., Baker, M. L., Bianchi, T. S., Hilton, R. G., & Maier, K. L. (2023). The global turbidity current pump and its implications for organic carbon cycling. Annual Review of Marine Science, 16, 105–133.
    [Google Scholar]
  139. Talling, P. J., Wynn, R. B., Masson, D. G., Frenz, M., Cronin, B. T., Schiebel, R., Akhmetzhanov, A. M., Dallmeier‐Tiessen, S., Benetti, S., Weaver, P. P. E., Georgiopoulou, A., Zühlsdorff, C., & Amy, L. A. (2007). Onset of submarine debris flow deposition far from original giant landslide. Nature, 450, 541–544.
    [Google Scholar]
  140. Tavani, S., Carola, E., Granado, P., Quintà, A., & Muñoz, J. A. (2013). Transpressive inversion of a Mesozoic extensional forced fold system with an intermediate décollement level in the Basque‐Cantabrian Basin (Spain). Tectonics, 32, 146–158.
    [Google Scholar]
  141. Tindall, S. E., & Davis, G. H. (1999). Monocline development by oblique‐slip fault‐propagation folding: The East Kaibab monocline, Colorado Plateau, Utah. Journal of Structural Geology, 21, 1303–1320.
    [Google Scholar]
  142. Trauth, M. H., Maslin, M. A., Deino, A., & Strecker, M. R. (2005). Late Cenozoic moisture history of East Africa. Science, 1, 1126. https://doi.org/10.1126/Science.1112964
    [Google Scholar]
  143. Uno, K. T., Cerling, T. E., Harris, J. M., Kunimatsu, Y., Leakey, M. G., Nakatsukasa, M., & Nakaya, H. (2011). Late Miocene to Pliocene carbon isotope record of differential diet change among east African herbivores. Proceedings of the National Academy of Sciences, 108, 6509–6514.
    [Google Scholar]
  144. Veeken, P. C. H., & van Moerkerken, B. (2013). Seismic stratigraphy and depositional facies models. EAGE Publications.
    [Google Scholar]
  145. Vendeville, B. (1987). Champs de Failles et Tectonique en Extension: Modelization Expdrimentale (PhD thesis). Universite de Rennes.
    [Google Scholar]
  146. Vendeville, B. (1988). Mode1es experimentaux de fracturation de la couverture controlee par des failles normales dans le socle. Comptes Rendus de l'Academie des Sciences, Paris, 307, 1013–1019.
    [Google Scholar]
  147. Vendeville, B. C., Ge, H., & Jackson, M. P. A. (1995). Models of salt tectonics during basement extension. Petroleum Geoscience, 1, 179–183.
    [Google Scholar]
  148. Vormann, M., Franke, D., & Jokat, W. (2020). The crustal structure of the southern Davie ridge offshore northern Mozambique—A wide‐angle seismic and potential field study. Tectonophysics, 778, 228370. https://doi.org/10.1016/j.tecto2020.228370
    [Google Scholar]
  149. Weimer, P., Slatt, R. M., Coleman, J. L., Rosen, N., Nelson, C. H., Bouma, A. H., Styzen, M., & Lawrence, D. T. (2000). Global deep‐water reservoirs, GCS‐SEPM 20th Annual Research Conference, 1104.
  150. White, I. R., & Crider, J. G. (2006). Extensional fault propagation folds: Mechanical models and observations from the Modoc Plateau, northeastern California. Journal of Structural Geology, 28, 1352–1370.
    [Google Scholar]
  151. Willsey, S. P., Umhoefer, P. J., & Hilley, G. E. (2002). Early evolution of an extensional monocline by a propagating normal fault: 3D analysis from combined field study and numerical modelling. Journal of Structural Geology, 24, 651–669.
    [Google Scholar]
  152. Withjack, M. O., Meisling, K. E., & Russel, L. R. (1988). Forced folding and basement‐detached normal faulting in the Haltenbaken area, offshore Norway. AAPG Bulletin, 72, 259.
    [Google Scholar]
  153. Withjack, M. O., Meisling, K. E., & Russel, L. R. (1989). Forced folding and basementnormal faulting in the Haltenbaken area, offshore Norway. American Association of Petroleum Geologists, Memoir, 46, 567–575.
    [Google Scholar]
  154. Withjack, M. O., Olson, J., & Peterson, E. (1990). Experimental models of extensional forced folds. Bulletin of the American Association of Petroleum Geologists, 74, 1038–1054.
    [Google Scholar]
  155. Wright, L. J. M., Muirhead, J. D., & Scholz, C. A. (2020). Spatiotemporal variations in upper crustal extension across the different basement terranes of the Lake Tanganyika Rift, East Africa. Tectonics, 39, e2019TC006019. https://doi.org/10.1029/2019TC006019
    [Google Scholar]
  156. Wu, N., Nugraha, H. D., Zhong, G. F., & Steventon, M. J. (2022). The role of mass‐transport complexes in the initiation and evolution of submarine canyons. Sedimentology, 69, 2181–2202. https://doi.org/10.1111/sed.12987
    [Google Scholar]
  157. Yang, Z., & Chen, W. P. (2010). Earthquakes along the East African Rift system: A multiscale, system‐wide perspective. Journal of Geophysical Research, Solid Earth, 115(B12), B12309. https://doi.org/10.1029/2009JB006779
    [Google Scholar]
/content/journals/10.1111/bre.12878
Loading
/content/journals/10.1111/bre.12878
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error