1887
Volume 36, Issue 3
  • E-ISSN: 1365-2117

Abstract

[

The aeolian sediments were sourced from fluvial sediments with a short transport distance. Controlled by the arid climate, aeolian transport capacity, and the size of aeolian deposits, the evolution of the fluvial‐aeolian system responded to a complete base‐level cycle controlled by tectonics and palaeoclimate.

, Abstract

Aridification of Central Asia in the Late Mesozoic led to drastic environmental changes characterized by widespread aeolian deposits. We systematically investigated fluvial‐aeolian deposits in the Middle Jurassic Toutunhe Formation, Upper Jurassic Kalazha Formation, and Lower Cretaceous Tugulu Group in the Junggar Basin to the north of the Tianshan Orogenic Belt via unmanned aerial vehicle‐based photogrammetry, scanning electron microscope, grain‐size analysis, and detrital zircon geochronology. Paludal and deltaic environments transitioned to a fluvial‐aeolian environment from the late Middle Jurassic to the Late Jurassic. Fan delta and incisive braided river deposits accumulated in the earliest Cretaceous and evolved into a lacustrine environment with aeolian deposits in the lakeshore. Aeolian deposits are characterized by moderate‐ to well‐sorted and subangular to subround sandstones with large‐scale, high‐dip cross‐bedding, inversely graded lamination, dominant saltation grains, crescent‐shaped, and dish‐shaped impact structures. Aeolian deposits contain heavy minerals including more ilmenite, zircon, garnet, and, tourmaline and less magnetite and epidote than the fluvial deposits. The preserved aeolian sediments of the Kalazha Formation extend west–east for more than 100 km, suggesting a wide desert area during the latest Jurassic. The detrital zircon age patterns indicate that the provenance of the aeolian deposits was similar to that of coeval fluvial deposits. The cooccurrence of fluvial and aeolian deposits and the similar provenances but orthogonal flow directions indicate that the aeolian deposits were mainly sourced from the nearby fluvial material within the basin. The evolution of the fluvial‐aeolian system responded to a complete base‐level cycle controlled by the aridification and tectonics. Due to decreased sediment supply caused by aridification, the base level rose, leading to the change from braided rivers to meandering rivers, along with the deposition of aeolian sediments. Due to the tectonic reactivation in the Late Jurassic, the base level fell, causing the occurrence of alluvial fans and the expansion of the aeolian sediments. Previous studies revealed that the Tianshan in the Jurassic exhibited low relief. The fluvial‐aeolian system played an important role in maintaining the limited relief in southern Central Asia.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12879
2024-06-17
2024-07-15
Loading full text...

Full text loading...

References

  1. Allen, J. R. (1965). A review of the origin and characteristics of recent alluvial sediments. Sedimentology, 5, 89–191.
    [Google Scholar]
  2. Allen, J. R. L. (1970). Studies in fluviatile sedimentation: A comparison of fining‐upwards cyclothems, with special reference to coarse‐member composition and interpretation. Journal of Sedimentary Research, 40, 298–323.
    [Google Scholar]
  3. Allmendinger, R. W., Cardozo, N., & Fisher, D. M. (2011). Structural geology algorithms: Vectors and tensors. Cambridge University Press.
    [Google Scholar]
  4. Al‐Masrahy, M. A., & Mountney, N. P. (2015). A classification scheme for fluvial‐aeolian system interaction in desert‐margin settings. Aeolian Research, 17, 67–88.
    [Google Scholar]
  5. Ashraf, A. R., Sun, Y., Sun, G., Uhl, D., Mosbrugger, V., Li, J., & Herrmann, M. (2010). Triassic and Jurassic palaeoclimate development in the Junggar Basin, Xinjiang, Northwest China—A review and additional lithological data. Palaeobiodiversity and Palaeoenvironments, 90, 187–201.
    [Google Scholar]
  6. Bernárdez, S. S., Medina, P. Z., Limarino, C., Bonomo, N., & Osella, A. (2022). Fluvial‐aeolian interaction deposits in the Andean foreland basin (Northwest Argentina): Architecture and facies model. Aeolian Research, 54, 100754.
    [Google Scholar]
  7. Blair, T. C., & McPherson, J. G. (1994). Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. Journal of Sedimentary Research, 64, 450–489.
    [Google Scholar]
  8. Bruner, A., Leier, A. L., Barbeau, D. L., Jr., Pullen, A., Fidler, M. K., & Stubbins, B. (2022). Detrital zircon provenance and transport pathways of Pleistocene‐Holocene eolian sediment in the Pampean Plains, Argentina. Geological Society of America Bulletin, 135, 435–448.
    [Google Scholar]
  9. Buatois, L. A., & Mángano, M. G. (2004). Ichnology of fluvio‐lacustrine environments: Animal‐substrate interactions in freshwater ecosystems. In D.McIlroy (Ed.), The application of ichnology to Palaeoenvironmental and stratigraphic analysis (Vol. 228, pp. 311–333). Geological Society of London.
    [Google Scholar]
  10. Bullard, J. E., & Livingstone, I. (2002). Interactions between aeolian and fluvial systems in dryland environments. Area, 34, 8–16.
    [Google Scholar]
  11. Cain, S. A., Mountney, N. P., Davidson, S., Leleu, S., & North, C. (2011). Downstream changes and associated fluvial‐aeolian interactions in an ancient terminal fluvial fan system: The Permian organ rock formation, SE, Utah. SEPM Special Publication: From River to Rock Record., 97, 165–187.
    [Google Scholar]
  12. Cao, S., Ma, J., & Wang, C. (2023). The sedimentological characteristics of the intermontane desert system in the Jurong Basin, South China, and its relationship with the late cretaceous hot climate. Paleogeography, Palaeoclimatology, Palaeoecology, 623, 111618.
    [Google Scholar]
  13. Chanteloube, C., Barrier, L., Derakhshani, R., Gadal, C., Braucher, R., Payet, V., Léanni, L., & Narteau, C. (2022). Source‐to‐sink aeolian fluxes from arid landscape dynamics in the Lut Desert. Geophysical Research Letters, 49, e2021GL097342.
    [Google Scholar]
  14. Chen, Y., Cogne, J. P., Courtillot, V., Avouac, J. P., Tapponnier, P., Wang, G., Bai, M., You, H., Li, M., Wei, C., & Buffetaut, E. (1991). Paleomagnetic study of Mesozoic continental sediments along the northern Tien Shan (China) and heterogeneous strain in central Asia. Journal of Geophysical Research: Solid Earth, 96, 4065–4082.
    [Google Scholar]
  15. Chesley, J., Leier, A., White, S., & Torres, R. (2017). Using unmanned aerial vehicles and structure‐from‐motion photogrammetry to characterize sedimentary outcrops: An example from the Morrison formation, Utah, USA. Sedimentary Geology, 354, 1–8.
    [Google Scholar]
  16. Clemmensen, L. B., & Abrahamsen, K. (1983). Aeolian stratification and facies association in desert sediments, Arran basin (Permian), Scotland. Sedimentology, 30, 311–339.
    [Google Scholar]
  17. Clifton, H. E., Hunter, R. E., & Phillips, R. L. (1971). Depositional structures and processes in the non‐barred high‐energy nearshore. Journal of Sedimentary Research, 41, 651–670.
    [Google Scholar]
  18. Deng, S., Wang, S., Yang, Z., Lu, Y., Li, X., Hu, Q., An, C., Xi, D., & Wan, X. (2015). A comprehensive study of the middle‐upper Jurassic strata in the Junggar Basin, Xinjiang. Acta Geoscientica Sinica, 36, 559–574. (in Chinese with English abstract).
    [Google Scholar]
  19. Dong, Z. M. (1993). An ankylosaur (Ornithischian dinosaur) from the middle Jurassic of the Junggar Basin, China. Vertebrata PalAsiatica, 31, 257–266.
    [Google Scholar]
  20. Du, J., Zhi, D., Li, J., Yang, D., Tang, Y., Qi, X., & Wei, L. (2019). A major breakthrough of well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar Basin, NW China. Petroleum Exploration and Development, 46, 216–227.
    [Google Scholar]
  21. East, A. E., Clift, P. D., Carter, A., Alizai, A., & VanLaningham, S. (2015). Fluvial‐eolian interactions in sediment routing and sedimentary signal buffering: An example from the Indus Basin and Thar Desert. Journal of Sedimentary Research, 85, 715–728.
    [Google Scholar]
  22. Eberth, D. A., Brinkman, D. B., Chen, P., Yuan, F., Wu, S., Li, G., & Cheng, X. (2001). Sequence stratigraphy, paleoclimate patterns, and vertebrate fossil preservation in Jurassic and cretaceous strata of the Junggar Basin, Xinjiang autonomous region, People's Republic of China. Canadian Journal of Earth Sciences, 38, 1627–1644.
    [Google Scholar]
  23. Elbelrhiti, H., Andreotti, B., & Claudin, P. (2008). Barchan dune corridors: Field characterization and investigation of control parameters. Journal of Geophysical Research: Earth Surface, 113, F2.
    [Google Scholar]
  24. Fang, S., Guo, Z., Zhang, Z., & Wu, C. (2004). Discussion on Mesozoic‐Cenozoic evolution of Tian Shan and its adjacent basins. Acta Scientiarum Naturalium Universitatis Pekinensis, 40, 886–897. (in Chinese with English abstract).
    [Google Scholar]
  25. Fang, Y., Wu, C., Guo, Z., Hou, K., Dong, L., Wang, L., & Li, L. (2015). Provenance of the southern Junggar Basin in the Jurassic: Evidence from detrital zircon geochronology and depositional environments. Sedimentary Geology, 315, 47–63.
    [Google Scholar]
  26. Fang, Y., Wu, C., Wang, Y., Hou, K., & Guo, Z. (2019). Topographic evolution of the Tianshan Mountains and their relation to the Junggar and Turpan basins, Central Asia, from the Permian to the Neogene. Gondwana Research, 75, 47–67.
    [Google Scholar]
  27. Fang, Y., Wu, C., Wang, Y., Wang, L., Guo, Z., & Hu, H. (2016). Stratigraphic and sedimentary characteristics of the upper Jurassic‐lower cretaceous strata in the Junggar Basin, Central Asia: Tectonic and climate implications. Journal of Asian Earth Sciences, 129, 294–308.
    [Google Scholar]
  28. Frey, R. W., Pemberton, S. G., & Fagerstrom, J. A. (1984). Morphological, ethological and environmental significance of the ichnogenera Scoyenia and Ancorichnus. Journal of Paleontology, 58, 511–528.
    [Google Scholar]
  29. Friedman, G. M. (1958). Determination of sieve‐size distribution from thin‐section data for sedimentary petrological studies. The Journal of Geology, 66, 394–416.
    [Google Scholar]
  30. Fryberger, S. G., Ahlbrandt, T. S., & Andrews, S. (1979). Origin, sedimentary features, and significance of low‐angle eolian “sand sheet” deposits, great sand dunes National Monument and vicinity, Colorado. Journal of Sedimentary Research, 49, 733–746.
    [Google Scholar]
  31. Gao, J., Li, M., Xiao, X., Tang, Y., & He, G. (1998). Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China. Tectonophysics, 287, 213–231.
    [Google Scholar]
  32. Gao, Z., Shi, Y., Feng, J., Zhou, C., & Luo, Z. (2022). Lithofacies paleogeography restoration and its significance of Jurassic to lower cretaceous in southern margin of Junggar Basin, NW China. Petroleum Exploration and Development, 49, 68–80.
    [Google Scholar]
  33. Guan, S., Stockmeyer, J. M., Shaw, J. H., Plesch, A., & Zhang, J. (2016). Structural inversion, imbricate wedging, and out‐of‐sequence thrusting in the southern Junggar fold‐and‐thrust belt, northern Tian Shan, China. AAPG Bulletin, 100, 1443–1468.
    [Google Scholar]
  34. Guan, X., Wu, C., Wang, B., Zhou, T., Xu, Y., Tang, X., & Xie, L. (2022). Sediment provenances of a Mesozoic intracontinental basin enclosed by multiple orogenic belts, Junggar Basin, NW China: Insights from detrital ilmenite, Cr‐spinel geochemistry, and zircon U‐Pb geochronology. International Geology Review, 65, 2067–2092. https://doi.org/10.1080/00206814.2022.2119436
    [Google Scholar]
  35. Guan, X., Wu, C., Wu, J., Zhou, J., Jiao, Y., Zhou, R., & Yu, Q. (2020). Sedimentary sequence and depositional environment evolution of upper Jurassic‐lower cretaceous strata in the southern margin of Junggar Basin. Xinjiang Petroleum Geology, 41, 67.
    [Google Scholar]
  36. Guan, X., Wu, C., Zhang, X., Jia, W., & Zhang, W. (2022). Sedimentary and source‐to‐sink evolution of intracontinental basins: Implications for tectonic and climate evolution in the late Mesozoic (southern Junggar Basin, NW China). Frontiers in Earth Science, 9, 785659.
    [Google Scholar]
  37. Guan, X., Wu, C., Zhou, T., Tang, X., Ma, J., & Fang, Y. (2021). Jurassic‐lower cretaceous sequence stratigraphy and allogenic controls in proximal terrestrial environments (southern Junggar Basin, NW China). Geological Journal, 56, 4038–4062.
    [Google Scholar]
  38. Guan, X., Wu, J., Wei, L., Zhao, J., Feng, G., & Li, Y. (2019). Meandering river deposit and sand body architecture in Qigu formation of Jiangong mine section in the southern margin of Junggar Basin. Xinjiang Petroleum Geology, 40, 290–297. (in Chinese with English abstract).
    [Google Scholar]
  39. Guo, Z., Zhang, Z., Wu, C., Fang, S., & Zhang, R. (2006). The Mesozoic and Cenozoic exhumation history of Tianshan and comparative studies to the Junggar and Altai Mountains. Acta Geologica Sinica, 80, 1–15. (in Chinese with English abstract).
    [Google Scholar]
  40. Han, B., He, G., Wang, X., & Guo, Z. (2011). Late carboniferous collision between the Tarim and Kazakhstan‐Yili terranes in the Western segment of the South Tian Shan Orogen, Central Asia, and implications for the northern Xinjiang, Western China. Earth‐Science Reviews, 109, 74–93.
    [Google Scholar]
  41. Han, B. F., Guo, Z. J., Zhang, Z. C., Zhang, L., Chen, J. F., & Song, B. (2010). Age, geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China. Geological Society of America Bulletin, 122, 627–640.
    [Google Scholar]
  42. He, D., Chen, X., Kuang, J., Zhou, L., Tang, Y., & Liu, D. (2008). Development and genetic mechanism of Chepaizi‐Mosuowan uplift in Junggar Basin, China. Earth Science Frontiers, 15, 42–55.
    [Google Scholar]
  43. He, D., Zhang, L., & Wu, S. (2018). Tectonic evolution stages and features of the Junggar Basin. Oil and Gas Geology, 39, 845–861. (in Chinese with English abstract).
    [Google Scholar]
  44. Hendrix, M. S. (1992). Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the North Tarim, south Junggar, and Turpan basins, Northwest China. Geological Society of America Bulletin, 104, 53–79.
    [Google Scholar]
  45. Hendrix, M. S. (2000). Evolution of Mesozoic sandstone compositions, southern Junggar, northern Tarim, and Western Turpan basins, Northwest China: A detrital record of the ancestral Tian Shan. Journal of Sedimentary Research, 70, 520–532.
    [Google Scholar]
  46. Hendrix, M. S., Dumitru, T. A., & Graham, S. A. (1994). Late Oligocene‐early Miocene unroofing in the Chinese Tian Shan: An early effect of the India‐Asia collision. Geology, 22, 487–490.
    [Google Scholar]
  47. Hinz, J. K., Smith, I., Pfretzschner, H.‐U., Wings, O., & Sun, G. (2010). A high‐resolution three‐dimensional reconstruction of a fossil forest (Upper Jurassic Shishugou formation, Junggar Basin, Northwest China). Palaeobiology Palaeoenvironment, 90, 215–240.
    [Google Scholar]
  48. Hoskin, P. W. O., & Black, L. P. (2000). Metamorphic zircon for mation by solid‐state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18, 423–439.
    [Google Scholar]
  49. Huang, D. (2019). Jurassic integrative stratigraphy and timescale of China. Science China Earth Sciences, 49, 227–256. (in Chinese with English abstract).
    [Google Scholar]
  50. Hubert, J. F. (1962). A zircon‐tourmaline‐rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. Journal of Sedimentary Research, 32(3), 440–450.
    [Google Scholar]
  51. Hunter, R. E. (1977). Basic types of stratification in small eolian dunes. Sedimentology, 24, 361–387.
    [Google Scholar]
  52. Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation‐inductively coupled plasma‐mass spectrometry to in situ U‐Pb zircon geochronology. Chemical Geology, 211, 47–69.
    [Google Scholar]
  53. Jolivet, M. (2017). Mesozoic tectonic and topographic evolution of Central Asia and Tibet: A preliminary synthesis. Geological Society, London, Special Publications, 427, 19–55.
    [Google Scholar]
  54. Jolivet, M., Bourquin, S., Heilbronn, G., Robin, C., Barrier, L., Dabard, M., Jia, Y., De Pelsmaeker, E., & Fu, B. (2017). The upper Jurassic‐lower cretaceous alluvial‐fan deposits of the Kalaza formation (Central Asia): Tectonic pulse or increased aridity?Geological Society, London, Special Publications, 427, 491–521.
    [Google Scholar]
  55. Jolivet, M., Braucher, R., Dovchintseren, D., Hocquet, S., Schmitt, J. M., & ASTER Team . (2021). Erosion around a large‐scale topographic high in a semi‐arid sedimentary basin: Interactions between fluvial erosion, aeolian erosion and aeolian transport. Geomorphology, 386, 107747.
    [Google Scholar]
  56. Jolivet, M., Dauteuil, O., & Gaudaré, L. (2022). Blowing the rivers: Regional‐scale control of the drainage network by wind in northern Kalahari (Africa). Geomorphology, 398, 108039.
    [Google Scholar]
  57. Jolivet, M., Dominguez, S., Charreau, J., Chen, Y., Li, Y., & Wang, Q. (2010). Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: Reactivated tectonic structures and active deformation. Tectonics, 29, TC6019.
    [Google Scholar]
  58. Jolivet, M., Heilbronn, G., Robin, C., Barrier, L., Bourquin, S., Guo, Z., Jia, Y., Guerit, L., Yang, W., & Fu, B. (2013). Reconstructing the late Palaeozoic‐Mesozoic topographic evolution of the Chinese Tian Shan: Available data and remaining uncertainties. Advances in Geosciences, 37, 7–18.
    [Google Scholar]
  59. Kocurek, G. (1991). Interpretation of ancient eolian sand dunes. Annual Review of Earth and Planetary Sciences, 19, 43–75.
    [Google Scholar]
  60. Kocurek, G., & Dott, R. H., Jr. (1981). Distinction and uses of stratification types in the interpretation of eolian sand. Journal of Sedimentary Petrology, 51, 579–595.
    [Google Scholar]
  61. Langford, R. P. (1989). Fluvial‐eolian interactions: Part I, modern systems. Sedimentology, 36, 1023–1035.
    [Google Scholar]
  62. Langford, R. P., & Chan, M. A. (1989). Fluvial‐eolian interactions: Part II, ancient systems. Sedimentology, 36, 1037–1051.
    [Google Scholar]
  63. Li, C., Guo, Z., & Dupont‐Nivet, G. (2011). Late Cenozoic tectonic deformation across the northern foreland of the Chinese Tian Shan. Journal of Asian Earth Sciences, 42, 1066–1073.
    [Google Scholar]
  64. Li, J., Zhuang, X., Querol, X., Font, O., Moreno, N., Zhou, J., & Lei, G. (2012). High quality of Jurassic coals in the southern and eastern Junggar coalfields, Xinjiang, NW China: Geochemical and mineralogical characteristics. International Journal of Coal Geology, 99, 1–15.
    [Google Scholar]
  65. Li, S., Yu, X., Tan, C., & Steel, R. (2014). Jurassic sedimentary evolution of southern Junggar Basin: Implication for palaeoclimate changes in northern Xinjiang Uygur autonomous region, China. Journal of Paleogeography, 3, 145–161.
    [Google Scholar]
  66. Li, X., Wang, B., Yu, X., Huo, J., Wang, X., Xie, Z., Yu, H., Zhao, J., Luo, G., Zhu, K., Chang, T., Wu, J., & Yang, X. (2017). Field investigation guide for typical geological outcrops in the Junggar Basin (pp. 167–177). Petroleum Industrial Press.
    [Google Scholar]
  67. Li, Y., Shao, L., Hou, H., Tang, Y., Yuan, Y., & Zhang, J. (2018). Sequence stratigraphy, palaeogeography, and coal accumulation of the fluvio‐lacustrine middle Jurassic Xishanyao formation in central segment of southern Junggar Basin, NW China. International Journal of Coal Geology, 192, 14–38.
    [Google Scholar]
  68. Li, Y., Sun, D., & Zheng, J. (1999). Paleomagnetic study and tectonic evolution of Xinjiang and its neighboring regions. Xinjiang Geology, 17, 193–235. (in Chinese with English abstract).
    [Google Scholar]
  69. Liu, Z., Peng, S., Qin, M., Huang, S., Geng, Y., & He, Z. (2022). Constraints on sandstone‐type uranium deposits by the tectonic uplift and denudation process in the eastern Junggar Basin, Northwest China: Evidence from apatite fission track and detrital zircon U‐Pb ages. Minerals, 12(7), 905.
    [Google Scholar]
  70. Lizzoli, S., Raigemborn, M., & Varela, A. (2021). Ls of pedogenesis in a fluvial‐eolian succession of Cenomanian age in northern Patagonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 577, 110549.
    [Google Scholar]
  71. Ludwig, K. R. (2003). ISOPLOT 3: A geochronological toolkit for Microsoft excel (pp. 1–74). Berkeley Geochronology Centre.
    [Google Scholar]
  72. Ma, D., Yuan, J., Sun, Y., Wang, H., He, D., Wang, Y., Pan, S., & Cui, J. (2021). Late Jurassic structural deformation and late Cenozoic reactivation of the southern Junggar fold‐and‐thrust belt, NW China. Frontiers in Earth Science, 9, 664092.
    [Google Scholar]
  73. Maisch, M. W., & Matzke, A. T. (2019). First record of a eusauropod (Dinosauria: Sauropoda) from the upper Jurassic Qigu‐formation (southern Junggar Basin, China), and a reconsideration of late Jurassic sauropod diversity in Xinjiang. Neues Jahrbuch für Geologie und Paläontologie (Abhandlungen), 291, 109–117.
    [Google Scholar]
  74. Mange, M. A., & Maurer, H. (2012). Heavy minerals in colour. Springer Science & Business Media.
    [Google Scholar]
  75. McKnight, C. L., Graham, S. A., Carroll, A. R., Gan, Q., Dilcher, D. L., Zhao, M., & Liang, Y. H. (1990). Fluvial sedimentology of an upper Jurassic petrified forest assemblage, Shishu formation, Junggar Basin, Xinjiang, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 79, 1–9.
    [Google Scholar]
  76. Miall, A. D. (1996). The geology of fluvial deposits: Sedimentary facies, basin analysis, and petroleum geology (Vol. 582). Springer‐Verlag.
    [Google Scholar]
  77. Morin, J., Jolivet, M., Barrier, L., Laborde, A., Li, H., & Dauteuil, O. (2019). Planation surfaces of the Tian Shan range (Central Asia): Insight on several 100 million years of topographic evolution. Journal of Asian Earth Sciences, 177, 52–65.
    [Google Scholar]
  78. Morin, J., Jolivet, M., Robin, C., Heilbronn, G., Barrier, L., Bourquin, S., & Jia, Y. (2018). Jurassic paleogeography of the Tian Shan: An evolution driven by far‐field tectonics and climate. Earth‐Science Reviews, 187, 286–313.
    [Google Scholar]
  79. Mountney, N. P. (2006). Eolian facies models. In H. W.Posamentier & R. G.Walker (Eds.), Facies model revised (pp. 19–83). SEPM Special Publication.
    [Google Scholar]
  80. Nemec, W., & Steel, R. J. (1984). Alluvial and coastal conglomerates: Their significant features and some comments on gravelly‐massflow deposits. In E. H.Koster & R. J.Steel (Eds.), Canadian society of petroleum geologists: Calgary, Canada, sedimentology of gravels and conglomerates (pp. 1–31). Canadian Society of Petroleum Geologists.
    [Google Scholar]
  81. Nieminski, N. M., & Graham, S. A. (2017). Modeling stratigraphic architecture using small unmanned aerial vehicles and photogrammetry: Examples from the Miocene East Coast Basin, New Zealand. Journal of Sedimentary Research, 87, 126–132.
    [Google Scholar]
  82. Olariu, C., & Bhattacharya, J. P. (2006). Terminal distributary channels and delta front architecture of river‐dominated delta systems. Journal of Sedimentary Research, 76, 212–233.
    [Google Scholar]
  83. Olsen, P., Sha, J., Fang, Y., Chang, C., Whiteside, J. H., Kinney, S., Sues, H., Kent, D., Schaller, M., & Vajda, V. (2022). Arctic ice and the ecological rise of the dinosaurs. Science. Advances, 8, eabo6342.
    [Google Scholar]
  84. Olsen, P. E., Sha, J., Fang, Y., Chang, C., Kent, D. V., Vajda, V., Whiteside, J., Kinney, S., Lampert, A., & MacLennan, S. A. (2024). Empirical record, geochronology and theoretical determinates of Mesozoic climate in the Junggar Basin, NW China, in relation to other basins in NE China. Geological Society, London, Special Publications, 538, 235–260.
    [Google Scholar]
  85. Ramsey, M., Christensen, P., Lancaster, N., & Howard, D. (1999). Identification of sand sources and transport pathways at the Kelso Dunes, California, using thermal infrared remote sensing. Geological Society of America Bulletin, 111, 646–662.
    [Google Scholar]
  86. Rodríguez‐López, J. P., Melendez, N., De Boer, P. L., & Soria, A. R. (2008). Aeolian sand sea development along the mid‐cretaceous western Tethyan margin (Spain): Erg sedimentology and palaeoclimate implications. Sedimentology, 55(5), 1253–1292.
    [Google Scholar]
  87. Roskin, J., Katra, I., Agha, N., Goring‐Morris, A., Porat, N., & Barzilai, O. (2014). Rapid anthropogenic response to short‐term aeolian‐fluvial palaeoenvironmental changes during the late Pleistocene‐Holocene transition in the northern Negev Desert, Israel. Quaternary Science Reviews, 99, 176–192.
    [Google Scholar]
  88. Saylor, J. E., & Sundell, K. E. (2016). Quantifying comparison of large detrital geochronology data sets. Geosphere, 12, 203–220.
    [Google Scholar]
  89. Scherer, C. M., Lavina, E. L., Dias Filho, D. C., Oliveira, F. M., Bongiolo, D. E., & Aguiar, E. S. (2007). Stratigraphy and facies architecture of the fluvial‐aeolian‐lacustrine Sergi formation (upper Jurassic), Recôncavo Basin, Brazil. Sedimentary Geology, 194, 169–193.
    [Google Scholar]
  90. Schneider, N., Zhao, X., Long, N., Zhao, Y., & Martin, F. (1992). Sedimentary environment and tectonic implication of Jurassic in Toutunhe area, Junggar Basin. Xinjiang Geology, 10, 191–202.
    [Google Scholar]
  91. Sha, J., Fang, Y., Cheng, J., Wang, Y., Li, S., Yang, X., Li, J., & Zhang, H. (2023). Geologic and chronostratigraphic overview of the upper Triassic and Jurassic successions of the Junggar Basin, NW China. Geological Society, London, Special Publications, 538, 9–39.
    [Google Scholar]
  92. Sha, J., Olsen, P., Pan, Y., Xu, D., Wang, Y., Zhang, X., Yao, X., & Vajda, V. (2015). Triassic‐Jurassic climate in continental high‐latitude Asia was dominated by obliquity‐paced variations (Junggar Basin, Ürümqi, China). Proceedings of the National Academy of Sciences of the United States of America, 112, 3624–3629.
    [Google Scholar]
  93. Shao, L., Stattegger, K., Li, W., & Haupt, B. J. (1999). Depositional style and subsidence history of the Turpan Basin (NW China). Sedimentary Geology, 128, 155–169.
    [Google Scholar]
  94. Shen, T., Chen, Y., Wang, G., Ji, J., Wang, Y., Zhang, P., Sotiriou, P., Guo, R., & Xu, Z. (2020). Detrital zircon geochronology analysis of the late Mesozoic deposition in the Turpan‐Hami basin: Implications for the uplift history of the eastern Tian Shan, north‐western China. Terra Nova, 32, 166–178.
    [Google Scholar]
  95. Si, X., Yuan, B., Peng, B., Ji, D., Guo, H., Tang, X., Dou, Y., & Li, Y. (2021). Sedimentary characteristics of Jurassic Kalazha formation in the Thrust Belt on the southern margin of Junggar Basin. Xinjiang Petroleum Geology, 42, 389–398.
    [Google Scholar]
  96. Simplicio, F., & Basilici, G. (2015). Unusual thick eolian sand sheet sedimentary succession: Paleoproterozoic Bandeirinha formation, Minas Gerais. Brazalian Journal of Geology, 45, 3–11.
    [Google Scholar]
  97. Tan, C., Yu, X., Li, S., Chen, B., Shan, X., & Wang, Z. (2014). Discussion on the model of braided river transform to meandering river: As an example of Toutunhe formation in southern Junggar Basin. Acta Sedimentologica Sinica, 32, 450–458.
    [Google Scholar]
  98. Tang, W., Zhang, Z., Li, J., Li, K., Luo, Z., & Chen, Y. (2015). Mesozoic and Cenozoic uplift and exhumation of the Bogda Mountain, NW China: Evidence from apatite fission‐track analysis. Geoscience Frontiers, 6, 617–625.
    [Google Scholar]
  99. Tian, Y. (2017). Study on Jurassic Palynological assemblages and paleoclimate of the mid‐western area of the Junggar Basin (Ph.D thesis). China University of Geosciences (Beijing).
    [Google Scholar]
  100. Tooth, S. (2000). Process, form and change in dryland rivers: A review of recent research. Earth‐Science Reviews, 51, 67–107.
    [Google Scholar]
  101. Tye, R. S., & Hickey, J. J. (2001). Permeability characterization of distributary mouth bar sandstones in Prudhoe Bay field, Alaska: How horizontal cores reduce risk in developing deltaic reservoirs. AAPG Bulletin, 85, 459–475.
    [Google Scholar]
  102. Vincent, S. J., & Allen, M. B. (2001). Sedimentary record of Mesozoic intracontinental deformation in the eastern Junggar Basin, northwest China: Response to orogeny at the Asian margin. Geological Society of America Memoirs, 194, 341–360.
    [Google Scholar]
  103. Wang, F., Luo, M., He, Z., Ge, R., Cao, Y., De Grave, J., & Zhu, W. (2022). Late Mesozoic intracontinental deformation and magmatism in the Chinese Tianshan and adjacent areas, Central Asia. Geological Society of America Bulletin, 134, 3003–3021.
    [Google Scholar]
  104. Wang, Y. (2013). Research on the sequence stratigraphy of Jurassic and cretaceous in the southern margin of Hashan (master's thesis). China University of Petroleum.
    [Google Scholar]
  105. Wang, Y., Jia, D., Pan, J., Wei, D., Tang, Y., Wang, G., Wei, C., & Ma, D. (2018). Multiple‐phase tectonic superposition and reworking in the Junggar Basin of northwestern China: Implications for deep‐seated petroleum exploration. AAPG Bulletin, 102, 1489–1521.
    [Google Scholar]
  106. Wang, Y., Wu, C., Ma, J., Fang, Y., Xu, Z., & Zhou, Y. (2019). Strata color rhythm of the cretaceous‐Neogene and evolution of palaeoenvironment and palaeoclimate in Junggar Basin. Journal of Palaeogeography, 21, 451–468.
    [Google Scholar]
  107. Wang, Y., Yan, P., Han, G., Wu, W., & Zhang, R. (2019). Sand source and formation mechanism of riverine sand dunes: A case study in Xiangshui River, China. Journal of Arid Land, 11, 525–536.
    [Google Scholar]
  108. Wescott, W. A., & Ethridge, F. G. (1980). Fan‐delta sedimentology and tectonic setting‐Yallahs fan delta, southeast Jamaica. AAPG Bulletin, 64, 374–399.
    [Google Scholar]
  109. Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). “Structure‐from‐motion” photogrammetry: A low‐cost, effective tool for geoscience applications. Geomorphology, 179, 300–314.
    [Google Scholar]
  110. Williams, M. (2015). Interactions between fluvial and eolian geomorphic systems and processes: Examples from the Sahara and Australia. Catena, 134, 4–13.
    [Google Scholar]
  111. Wings, O., Tütken, T., Fowler, D. W., Martin, T., Pfretzschner, H. U., & Sun, G. (2015). Dinosaur teeth from the Jurassic Qigu and Shishugou formations of the Junggar Basin (Xinjiang/China) and their paleoecologic implications. Paläontologische Zeitschrift, 89, 485–502.
    [Google Scholar]
  112. Wunderlich, F. (1972). Georgia coastal region, Sapelo Island, USA: Sedimentology and biology. III. Beach dynamics and beach development. Senckenbergiana Maritima, 4, 47–79.
    [Google Scholar]
  113. Xiao, W. J., Windley, B. F., Allen, M. B., & Han, C. M. (2013). Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Research, 23, 1316–1341.
    [Google Scholar]
  114. Xing, L. D., Lockley, M. G., Klein, H., Zhang, J. P., He, Q., Divay, J. D., Qi, L., & Jia, C. (2013). Dinosaur, bird, and pterosaur footprints from the lower cretaceous of Wuerhe asphaltite area, Xinjiang, China, with notes on overlapping track relationships. Palaeoworld, 22, 42–51.
    [Google Scholar]
  115. Xu, H., Liu, Y., Kuang, H., & Peng, N. (2016). Sedimentary response to the intracontinental orogenic process: Insight from the anatomy of a small Mesozoic basin in western Yanshan, northern North China. International Geology Review, 58, 1528–1556.
    [Google Scholar]
  116. Xu, H., Liu, Y., Kuang, H., & Peng, N. (2019). Late Jurassic fluvial–eolian deposits from the Tianchihe formation, Ningwu–Jingle Basin, Shanxi Province, China. Journal of Asian Earth Sciences, 174, 245–262.
    [Google Scholar]
  117. Xu, H., Liu, Y. Q., Kuang, H. W., Liu, Y. X., Peng, N., Dong, C., Xue, P., Xu, J., Chen, J., & Liu, H. (2013). Sedimentology, palaeogeography, and palaeoecology of the late Jurassic‐early cretaceous eolian sands in North China. Journal of Palaeogeography, 15, 11–30.
    [Google Scholar]
  118. Xu, X., Clark, J. M., Eberth, D. A., & Currie, P. J. (2022). The Shishugou Fauna of the middle‐late Jurassic transition period in the Junggar Basin of Western China. Acta Geologica Sinica, 96, 1115–1135.
    [Google Scholar]
  119. Yang, W., Jolivet, M., Dupont‐Nivet, G., Guo, Z., Zhang, Z., & Wu, C. (2013). Source to sink relations between the Tian Shan and Junggar Basin (Northwest China) from late Palaeozoic to quaternary: Evidence from detrital U‐Pb zircon geochronology. Basin Research, 25, 219–240.
    [Google Scholar]
  120. Yang, Y., & He, Z. (2016). Characteristics of Mesozoic‐Cenozoic paleoclimate evolution and its constraint on mineralization of sandstone type uranium deposit in Junggar Basin, Xinjiang, China. World Nuclear Geoscience, 33, 140–145.
    [Google Scholar]
  121. Yang, Y., Song, C., & He, S. (2015). Jurassic tectonostratigraphic evolution of the Junggar Basin, NW China: A record of Mesozoic intraplate deformation in Central Asia. Tectonics, 34, 86–115.
    [Google Scholar]
  122. Yi, Z., Liu, Y., & Meert, J. G. (2019). A true polar wander trigger for the great Jurassic East Asian Aridification. Geology, 47, 1112–1116.
    [Google Scholar]
  123. Yu, J., Liu, N., Wen, H., Zhu, Y., & Zhang, Z. (2016). Analysis of high‐resolution sequence stratigraphy and prediction of favorable sandbodies in the upper Jurassic Qigu formation in Fudong slope area, Junggar Basin. Journal of Palaeogeography, 18, 265–274.
    [Google Scholar]
  124. Yu, Y., Wang, X., Rao, G., & Wang, R. (2016). Mesozoic reactivated transpressional structures and multi‐stage tectonic deformation along the Hong‐Che fault zone in the northwestern Junggar Basin, NW China. Tectonophysics, 679, 156–168.
    [Google Scholar]
  125. Yuan, H., Gao, S., Liu, X., Li, H., Günther, D., & Wu, F. Z. (2004). Accurate U–Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma mass spectrometry. Geostandards Newsletter, 28, 353–370.
    [Google Scholar]
  126. Zhang, C., Yu, X., Yao, Z., Li, S., Shan, X., Xiang, M., & Li, Y. (2021). Sedimentary evolution and controlling factors of the middle‐upper Jurassic in the western part of the southern Junggar Basin. Geology in China, 48, 284–296. (in Chinese with English abstract).
    [Google Scholar]
  127. Zhang, H., Zhang, Z., Tang, W., Li, K., Li, J., Wang, Q., & Ding, C. (2022). Burial and exhumation history of Jurassic sedimentary rocks in the southern margin of the Junggar Basin: Implications for the growth of the northern Tianshan Mountains. Journal of Asian Earth Sciences, 236, 105339.
    [Google Scholar]
  128. Zhang, Z., Guo, Z., Wu, C., & Fang, S. (2007). Thermal history of the Jurassic strata in the northern Tianshan and its geological significance, revealed by apatite fission‐track and vitrinite‐reflectance analysis. Acta Petrologica Sinica, 23, 1683–1695.
    [Google Scholar]
  129. Zhou, T., Wu, C., Yuan, B., Shi, Z., Wang, J., Zhu, W., Zhou, Y., Jiang, X., Zhao, J., Wang, J., & Ma, J. (2019). New insights into multiple provenances evolution of the Jurassic from heavy minerals characteristics in southern Junggar Basin, NW China. Petroleum Exploration and Development, 46(1), 67–81.
    [Google Scholar]
  130. Zhu, Z., Kuang, H., Liu, Y., Benton, M. J., Newell, A. J., Xu, H., An, W., Ji, S., Xu, S., Peng, N., & Zhai, Q. (2020). Intensifying aeolian activity following the end‐Permian mass extinction: Evidence from the late Permian‐early Triassic terrestrial sedimentary record of the Ordos Basin, North China. Sedimentology, 67, 2691–2720.
    [Google Scholar]
/content/journals/10.1111/bre.12879
Loading
/content/journals/10.1111/bre.12879
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error