1887
Volume 36, Issue 4
  • E-ISSN: 1365-2117
PDF

Abstract

[

The depositional evolution of the ?Pennsylvanian – ?lower Permian Treskelodden Formation (Spitsbergen) is illustrated in the four conceptual block diagrams representing evolution from an alluvial/fluvial dominated environment in phase 1a and 1b (A, B), through a nearshore storm/tide dominated depositional environment in phase 2a + 2b (C), to a marine, carbonate dominated environment in phase 3 (D).

, Abstract

The transition from syn‐rift to post‐rift sedimentation in rift basins is difficult to characterize in terms of stratigraphic architecture and dominating control on sedimentation, due to decreasing tectonic activity interplaying with regional subsidence, eustatic sea level changes, and differential compaction of underlying syn‐rift sediments. Our case study of the Late Palaeozoic Inner Hornsund Fault Zone targets late syn‐rift strata recorded in the (?Pennsylvanian – ?lower Permian) Treskelodden Formation in Hornsund, southern Spitsbergen, representing a mixed siliciclastic‐carbonate succession, with siliciclastics primarily sourced from the adjacent Sørkapp‐Hornsund High. We document local scale (<10 km) facies variability, sequence stratigraphy, and evolution of a succession deposited along a flank of the structural high during the late syn‐rift stage. We observe that during the transition towards rift termination (glacio‐)eustatic sea level changes and overall regional flooding became a more prominent forcing factor controlling sedimentation. Our dataset includes sedimentary logs, microfacies analysis, and high‐resolution digital outcrop models. We identify four progressively backstepping stratigraphic sequences, reflecting an evolution from (1) terrestrial siliciclastics through (2–3) nearshore mixed siliciclastic–carbonates, to (4) carbonate ramp deposits. On the small scale (<5 m) the internal sediment cyclicity of the succession was formed by autogenic processes, particularly the changing rate of sediment input from the southwestern source area (the uplifted Sørkapp‐Hornsund basement high). On the larger scale (10s of m), the importance of glacio‐eustatic sea‐level changes, driven by waxing and waning of ice caps in the southern hemisphere (Gondwana), increased as the rift‐related tectonics decreased. The interdisciplinary methods used in this study provide new knowledge of the Middle Pennsylvanian to Permian depositional evolution in southern Spitsbergen, besides a novel framework for comparison to adjacent basins in the region and similar basins elsewhere.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12880
2024-07-02
2024-09-16
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/4/bre12880.html?itemId=/content/journals/10.1111/bre.12880&mimeType=html&fmt=ahah

References

  1. Agisoft . (2021). Agisoft metashape professional. (Version 1.7.1). https://www.agisoft.com/downloads/installer/
  2. Ahlborn, M., & Stemmerik, L. (2015). Depositional evolution of the Upper Carboniferous–Lower Permian Wordiekammen carbonate platform, Nordfjorden High, central Spitsbergen, Arctic Norway. Norwegian Journal of Geology, 95, 91–126. https://doi.org/10.17850/njg95‐1‐03
    [Google Scholar]
  3. Alonso‐Zarza, A. M., & Wright, V. (2010). Calcretes. In A. M.Alonso‐Zarza & L. H.Tanner (Eds.), Carbonates in continental settings: Facies, environments and processes, developments in sedimentology (Vol. 61, pp. 225–267). Elsevier.
    [Google Scholar]
  4. Bælum, K., & Braathen, A. (2012). Along‐strike changes in fault array and rift basin geometry of the carboniferous Billefjorden Trough, Svalbard, Norway. Tectonophysics, 546, 38–55. https://doi.org/10.1016/j.tecto.2012.04.009
    [Google Scholar]
  5. Bayet‐Goll, A., Geyer, G., & Daraei, M. (2018). Tectonic and eustatic controls on the spatial distribution and stratigraphic architecture of late early Cambrian successions at the northern Gondwana margin: The siliciclastic‐carbonate successions of the Lalun formation in central Iran. Marine and Petroleum Geology, 98, 199–228. https://doi.org/10.1016/j.marpetgeo.2018.08.002
    [Google Scholar]
  6. Bergh, S., Maher, H., & Braathen, A. (2011). Late Devonian transpressional tectonics in Spitsbergen, Svalbard, and implications for basement uplift of the Sørkapp–Hornsund High. Journal of the Geological Society of London, 168, 441–456. https://doi.org/10.1144/0016‐76492010‐046
    [Google Scholar]
  7. Bergh, S. G., Braathen, A., & Andresen, A. (1997). Interaction of basement‐involved and thin‐skinned tectonism in the Tertiary fold‐thrust belt of central Spitsbergen, Svalbard. AAPG Bulletin, 81(4), 637–661. https://doi.org/10.1306/522B43F7‐1727‐11D7‐8645000102C1865D
    [Google Scholar]
  8. Betlem, P., Rodes, N., Birchall, T., Dahlin, A., Smyrak‐Sikora, A., & Senger, K. (2023). Svalbox digital model database: A geoscientific window to the high Arctic. Geosphere, 19, 1640–1666. https://doi.org/10.1130/GES02606.1
    [Google Scholar]
  9. Birkenmajer, K. (1964). Devonian, carboniferous and Permian Formations of Hornsund, Vestspitsbergen. Studia Geologica Polonica, 11, 47–123.
    [Google Scholar]
  10. Birkenmajer, K. (1984a). Cyclic sedimentation in mixed alluvial to marginal‐marine conditions: the Treskelodden Formation (?Upper Carboniferous and Lower Permian) at Hornsund, south Spitsbergen. Studia Geologica Polonica, 80, 25–46.
    [Google Scholar]
  11. Birkenmajer, K. (1984b). Mid‐Carboniferous red beds at Hornsund, south Spitsbergen: Their sedimentary environment and source area. Studia Geologica Polonica, 80, 7–23.
    [Google Scholar]
  12. Birkenmajer, K., Mørk, A., Siedlecka, S., & Wendorff, M. (1990). Geological map of the Hornsund area. Polish Academy of Sciences.
    [Google Scholar]
  13. Błażejowski, B. (2009). Foraminifers from the Treskelodden formation (Carboniferous‐Permian) of south Spitsbergen. Polish Polar Research, 30, 193–230.
    [Google Scholar]
  14. Błażejowski, B., Hołda‐Michalska, A., & Michalski, K. (2006). Schellwienia arctica (Fusulinidae) from the Carboniferous‐?Permian strata of the Treskelodden Formation, south Spitsbergen. Polish Polar Research, 27, 91–103.
    [Google Scholar]
  15. Blomeier, D., Dustira, A., Forke, H., & Scheibner, C. (2011). Environmental change in the early Permian of NE Svalbard: From a warm‐water carbonate platform (Gipshuken Formation) to a temperate, mixed siliciclastic‐carbonate ramp (Kapp Starostin formation). Facies, 57(3), 493–523. https://doi.org/10.1007/s10347‐010‐0243‐z
    [Google Scholar]
  16. Braathen, A., Bælum, K., Maher, H., Jr., & Buckley, S. J. (2011). Growth of extensional faults and folds during deposition of an evaporite‐dominated half‐graben basin; the Carboniferous Billefjorden trough, Svalbard. Norwegian Journal of Geology, 91(3), 137.
    [Google Scholar]
  17. Braathen, A., Bergh, S., & Maher, H., Jr. (1995). Structural outline of a Tertiary basement‐cored uplift/inversion structure in western Spitsbergen, Svalbard: Kinematics and controlling factors. Tectonics, 14(1), 95–119. https://doi.org/10.1029/94TC01677
    [Google Scholar]
  18. Braathen, A., Bergh, S. G., & Maher, H. D., Jr. (1999). Application of a critical wedge taper model to the Tertiary transpressional fold‐thrust belt on Spitsbergen, Svalbard. Geological Society of America Bulletin, 111(10), 1468–1485. https://doi.org/10.1130/0016‐7606(1999)111%3C1468:AOACWT%3E2.3.CO;2
    [Google Scholar]
  19. Burchette, T. P., & Wright, V. P. (1992). Carbonate ramp depositional systems. Sedimentary Geology, 79(1–4), 3–57. https://doi.org/10.1016/0037‐0738(92)90003‐A
    [Google Scholar]
  20. Carlisle, D. (1983). Concentration of uranium and vanadium in calcretes and gypcretes. Geological Society, London, Special Publications, 11(1), 185–195. https://doi.org/10.1144/GSL.SP.1983.011.01.19
    [Google Scholar]
  21. Cattaneo, A., & Steel, R. J. (2003). Transgressive deposits: A review of their variability. Earth‐Science Reviews, 62(3–4), 187–228. https://doi.org/10.1016/S0012‐8252(02)00134‐4
    [Google Scholar]
  22. Chandler, J. H., & Buckley, S. (2016). Structure from motion (SFM) photogrammetry vs terrestrial laser scanning.
  23. Cheel, R. J., & Leckie, D. A. (1993). Hummocky cross‐stratification. Sedimentology Review, 1, 103–122.
    [Google Scholar]
  24. Chiarella, D., Longhitano, S. G., & Tropeano, M. (2017). Types of mixing and heterogeneities in siliciclastic‐carbonate sediments. Marine and Petroleum Geology, 88, 617–627. https://doi.org/10.1016/j.marpetgeo.2017.09.010
    [Google Scholar]
  25. Clifton, H. E. (2006). A reexamination of facies models for clastic shorelines. In H. W.Posamentier & R. G.Walker (Eds.), Facies models revisited (Vol. 84, pp. 293–337). SEPM Special Publication.
    [Google Scholar]
  26. Collier, R. E. L. (1990). Eustatic and tectonic controls upon quaternary coastal sedimentation in the Corinth Basin, Greece. Journal of the Geological Society, 147(2), 301–314. https://doi.org/10.1144/gsjgs.147.2.0301
    [Google Scholar]
  27. Collinson, J. (2019). Sedimentary structures. Dunedin Academic Press Ltd.
    [Google Scholar]
  28. Crowell, J. (1978). Gondwanan glaciation, cyclothems, continental positioning, and climate change. American Journal of Science, 278(10), 1345–1372. https://doi.org/10.2475/ajs.278.10.1345
    [Google Scholar]
  29. Cutbill, J., & Challinor, A. (1965). Revision of the stratigraphical scheme for the Carboniferous and Permian rocks of Spitsbergen and Bjørnøya. Geological Magazine, 102(5), 418–439. https://doi.org/10.1017/S0016756800053693
    [Google Scholar]
  30. Czarniecki, S. (1966). Upper Palaeozoic deposits of north‐eastern coast of Hornsund (Vest‐Spitsbergen). Bulletin Polish Academy of Sciences, Series Geological and Geographical Sciences, 14(1), 27–35.
    [Google Scholar]
  31. Czarnieski, S. (1969). Sedimentary environment and stratigraphical position of the Treskelodden Beds, Vestspitsbergen. Prace Muzeum Ziemi, 16, 201–336.
    [Google Scholar]
  32. Dahlin, A., Janocha, J., Smyrak‐Sikora, A., & Svalbox, T. (2021). Svalbox‐DOM_2021‐0054 Adriabukta [Data Set]. https://doi.org/10.5281/zenodo.7271603
  33. Dahlin, A., Senger, K., Smyrak‐Sikora, A., Olaussen, S., & Svalbox, T. (2020a). Svalbox_DOM_2020‐0041_Treskelodden_Creek4 [Data Set]. https://doi.org/10.5281/zenodo.7273646
  34. Dahlin, A., Senger, K., Smyrak‐Sikora, A., Olaussen, S., & Svalbox, T. (2020b). Svalbox_DOM_2020‐0042_Treskelodden [Data Set]. https://doi.org/10.5281/zenodo.8279292
  35. Dahlin, A., Senger, K., Smyrak‐Sikora, A., Olaussen, S., & Svalbox, T. (2020c). Svalbox_DOM_2020‐0032_Burgerbukta [Data Set]. https://doi.org/10.5281/zenodo.6320818
  36. Dallmann, W., Elvevold, S., Majka, J., & Piepjohn, K. (2015). Tectonics and tectonothermal events. In W. K.Dallmann (Ed.), Geoscience atlas of Svalbard (pp. 175–223). Norsk Polarinstitutt.
    [Google Scholar]
  37. Dallmann, W., Gjelberg, J., Harland, W., Johannessen, E., Keilen, H., Lønøy, A., Nilsson, I., & Worsley, D. (1999). Upper Palaeozoic lithostratigraphy. In W. K.Dallmann (Ed.), Lithostratigraphic lexicon of Svalbard (pp. 127–214). Norsk Polarinstitutt.
    [Google Scholar]
  38. Dallmann, W. K. (1992). Multiphase tectonic evolution of the Sørkapp‐Hornsund mobile zone (Devonian, Carboniferous, Tertiary), Svalbard. Norsk Geologisk Tidsskrift, 72, 49–66.
    [Google Scholar]
  39. Dallmann, W. K. (1999). Lithostratigraphic lexicon of Svalbard: Upper Palaeozoic to quaternary bedrock. Review and recommendations for nomenclature use.
  40. Dalrymple, R. (1992). Tidal depositional systems. In R. G.Walker & N. P.James (Eds.), Facies models – Response to sea level change (pp. 195–218). Geological Associationof Canada.
    [Google Scholar]
  41. Dalrymple, R. W., Zaitlin, B. A., & Boyd, R. (1992). Estuarine facies models; conceptual basis and stratigraphic implications. Journal of Sedimentary Research, 62(6), 1130–1146. https://doi.org/10.1306/D4267A69‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  42. Davis, R. A., & Dalrymple, R. W. (2012). Principles of tidal sedimentology (Vol. 625). Springer.
    [Google Scholar]
  43. Dumas, S., & Arnott, R. (2006). Origin of hummocky and swaley cross‐stratification—The controlling influence of unidirectional current strength and aggradation rate. Geology, 34(12), 1073–1076. https://doi.org/10.1130/G22930A.1
    [Google Scholar]
  44. Dunham, R. J. (1962). Classification of carbonate rocks according to depositional textures. In Classification of Carbonate Rocks—A symposium (pp. 108–121). American Association of Petroleum Geologists, AAPG Memoirs, 1. https://doi.org/10.1306/M1357
    [Google Scholar]
  45. Embry, A. F. (1997). Global sequence boundaries of the Triassic and their identification in the Western Canada Sedimentary Basin. Bulletin of Canadian Petroleum Geology, 45(4), 415–433. https://doi.org/10.35767/gscpgbull.45.4.415
    [Google Scholar]
  46. Embry, A. F. (2010). Correlating siliciclastic successions with sequence stratigraphy. In K. T.Ratcliffe & B. A.Zaitlin (Eds.), Application of modern stratigraphic techniques: Theory and case histories (Vol. 94, pp. 35–53). SEPM Special Publication.
    [Google Scholar]
  47. Embry, A. F., & Johannessen, E. P. (2017). Two approaches to sequence stratigraphy. In M.Montenary (Ed.), Stratigraphy & timescales, advances in sequence stratigraphy (Vol. 2, pp. 85–118). Elsevier.
    [Google Scholar]
  48. Esteban, M., & Klappa, C. F. (1983). Subaerial exposure environment: chapter 1: Part 2. In P. A.Scholle, D. G.Bebout, & C. H.Moore (Eds.), Carbonate depositional environments (Vol. 33). AAPG.
    [Google Scholar]
  49. Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, O., Wilson, J., & Eldholm, O. (2008). Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 3, 82–91. https://doi.org/10.18814/epiiugs/2008/v31i1/012
    [Google Scholar]
  50. Fedorowski, J. (1982). Coral thanatocoenoses and depositional environments in the upper Treskelodden beds of the Hornsund area, Spitsbergen. Palaeontologia Polonica, 43(1), 17–68.
    [Google Scholar]
  51. Galloway, W. E. (1975). Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In M. L.Broussard (Ed.), Deltas: Models for exploration (pp. 87–88). Houston Geological Society.
    [Google Scholar]
  52. Gastaldo, R. A., DiMichele, W. A., & Pfefferkorn, H. W. (1996). Out of the icehouse into the greenhouse: A late Paleozoic analogue for modern global vegetational change. GSA Today, 6, 1–7.
    [Google Scholar]
  53. Gawthorpe, R., & Leeder, M. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12(3–4), 195–218. https://doi.org/10.1111/j.1365‐2117.2000.00121.x
    [Google Scholar]
  54. Gjelberg, J. (1984). Early‐middle carboniferous sedimentation on Svalbard. A study of ancient alluvial and coastal marine sedimentation in rift and strike‐slip basins (PhD). University of Bergen.
    [Google Scholar]
  55. Gjelberg, J., & Steel, R. (1981). An outline of lower‐middle carboniferous sedimentation on Svalbard: Effects of tectonic, climatic and sea level changes in rift basin sequences. In J. W.Kerr (Ed.), Geology of the North Atlantic borderlands (pp. 543–561). Canadian Society of Petroleum Geology.
    [Google Scholar]
  56. Gjelberg, J., & Steel, R. (1983). Middle Carboniferous marine transgression, Bjørnøya, Svalbard: Facies sequences from an interplay of sea level changes and tectonics. Geological Journal, 18(1), 1–19. https://doi.org/10.1002/gj.3350180102
    [Google Scholar]
  57. Golonka, J., & Ford, D. (2000). Pangean (late Carboniferous–Middle Jurassic) paleoenvironment and lithofacies. Palaeogeography, Palaeoclimatology, Palaeoecology, 161(1–2), 1–34. https://doi.org/10.1016/S0031‐0182(00)00115‐2
    [Google Scholar]
  58. Grundvåg, S.‐A., Strand, M., Paulsen, C. O., Simonsen, B., Røstad, J., Mørk, A., & Mørk, M. B. E. (2023). The Hambergfjellet formation on Bjørnøya–sedimentary response to early Permian tectonics on the Stappen high. Norwegian Journal of Geology, 103, 202302. https://doi.org/10.17850/njg103‐1‐2
    [Google Scholar]
  59. Hanken, N.‐M., & Nielsen, J. K. (2013). Upper Carboniferous–Lower Permian Palaeoaplysina build‐ups on Svalbard: The influence of climate, salinity and sea‐level. Geological Society of London, Special Publication, 376(1), 269–305. https://doi.org/10.1144/SP376.17
    [Google Scholar]
  60. Haq, B. U., & Schutter, S. R. (2008). A chronology of Paleozoic sea‐level changes. Science, 322(5898), 64–68. https://doi.org/10.1126/science.1161648
    [Google Scholar]
  61. Harland, W. B., Anderson, L. M., Manasrah, D., Butterfield, N. J., Challinor, A., Doubleday, P. A., Dowdeswell, E. K., Dowdeswell, J. A., Geddes, I., & Kelly, S. R. (1997). The geology of Svalbard (Vol. 17). Geological Society London.
    [Google Scholar]
  62. Helland‐Hansen, W., & Hampson, G. (2009). Trajectory analysis: Concepts and applications. Basin Research, 21(5), 454–483. https://doi.org/10.1111/j.1365‐2117.2009.00425.x
    [Google Scholar]
  63. Howell, J. A., Martinius, A. W., & Good, T. R. (2014). The application of outcrop analogues in geological modelling: A review, present status and future outlook. Geological Society, London, Special Publications, 387(1), 1–25. https://doi.org/10.1144/SP387.12
    [Google Scholar]
  64. Hüneke, H., Joachimski, M., Buggisch, W., & Lützner, H. (2001). Marine carbonate facies in response to climate and nutrient level: The upper carboniferous and Permian of Central Spitsbergen (Svalbard). Facies, 45(1), 93–135. https://doi.org/10.1007/BF02668107
    [Google Scholar]
  65. Hussain, A., Butt, M. N., Olariu, C., Malik, M. H., Koeshidayatullah, A., Amao, A., & Al‐Ramadan, K. (2022). Unravelling reservoir quality heterogeneity in mixed siliciclastic‐carbonate deposits: An example from Miocene Red Sea rift, NW Saudi Arabia. Marine and Petroleum Geology, 145, 105850. https://doi.org/10.1016/j.marpetgeo.2022.105850
    [Google Scholar]
  66. Isbell, J. L., Miller, M. F., Wolfe, K. L., & Lenaker, P. A. (2003). Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of northern hemisphere cyclothems?Geological Society of America Special Papers, 370, 5–24.
    [Google Scholar]
  67. Jackson, C. A.‐L., Gawthorpe, R. L., & Sharp, I. R. (2002). Growth and linkage of the East Tanka fault zone, Suez rift: Structural style and syn‐rift stratigraphic response. Journal of the Geological Society, 159(2), 175–187. https://doi.org/10.1144/0016‐764901‐100
    [Google Scholar]
  68. Janocha, J., Smyrak‐Sikora, A., Senger, K., & Birchall, T. (2021). Seeing beyond the outcrop: Integration of ground‐penetrating radar with digital outcrop models of a paleokarst system. Marine and Petroleum Geology, 125, 104833. https://doi.org/10.1016/j.marpetgeo.2020.104833
    [Google Scholar]
  69. Jelby, M. E., Grundvåg, S. A., Helland‐Hansen, W., Olaussen, S., & Stemmerik, L. (2020). Tempestite facies variability and storm‐depositional processes across a wide ramp: Towards a polygenetic model for hummocky cross‐stratification. Sedimentology, 67(2), 742–781. https://doi.org/10.1111/sed.12671
    [Google Scholar]
  70. Joachimski, M. M., von Bitter, P. H., & Buggisch, W. (2006). Constraints on Pennsylvanian glacioeustatic sea‐level changes using oxygen isotopes of conodont apatite. Geology, 34(4), 277–280. https://doi.org/10.1130/G22198.1
    [Google Scholar]
  71. Johannesen, E., & Steel, R. (1992). Mid‐carboniferous extension and rift‐sequences in the Billefjorden trough, Svalbard. Norsk Geologisk Tidsskrift, 72, 35–48.
    [Google Scholar]
  72. Kjemperud, A. V., Schomacker, E. R., & Cross, T. A. J. A. B. (2008). Architecture and stratigraphy of alluvial deposits, Morrison formation (Upper Jurassic), Utah. AAPG Bulletin, 92(8), 1055–1076. https://doi.org/10.1306/03250807115
    [Google Scholar]
  73. Kleinspehn, K., Steel, R., Johannessen, E., & Netland, A. (1984). Conglomeratic fan‐Delta sequences, late carboniferous—Early Permian, Western Spitsbergen. In E. H.Koster & R. J.Steel (Eds.), Sedimentology of gravels and conglomerates (Vol. 10, pp. 279–294). Memoir Canadian Society of Petroleum Geologists.
    [Google Scholar]
  74. Krajewski, K., & Weitschat, W. (2015). Depositional history of the youngest strata of the Sassendalen Group (Bravaisberget Formation, Middle Triassic‐Carnian) in southern Spitsbergen, Svalbard. Paper presented at the Annales Societatis Geologorum Poloniae.
  75. Larssen, G., Elvebakk, G., Henriksen, L. B., Kristensen, S., Nilsson, I., Samuelsberg, T., Svånå, T., Stemmerik, L., & Worsley, D. (2002). Upper Palaeozoic lithostratigraphy of the Southern Norwegian Barents Sea. Norwegian Petroleum Directorate. Bulletin, 9, 1–69.
    [Google Scholar]
  76. Leeder, M. (1975). Pedogenic carbonates and flood sediment accretion rates: A quantitative model for alluvial arid‐zone lithofacies. Geological Magazine, 112(3), 257–270. https://doi.org/10.1017/S0016756800047014
    [Google Scholar]
  77. Leever, K. A., Gabrielsen, R. H., Faleide, J. I., & Braathen, A. (2011). A transpressional origin for the West Spitsbergen fold‐and‐thrust belt: Insight from analog modeling. Tectonics, 30(2), 1–24. https://doi.org/10.1029/2010TC002753
    [Google Scholar]
  78. Maher, H., & Welbon, A. (1992). Influence of carboniferous structures on Tertiary tectonism at St. Jonsfjorden and Bellsund, western Svalbard. Norsk Geologisk Tidsskrift, 72(1), 67–75.
    [Google Scholar]
  79. Mangerud, G., & Konieczny, R. (1993). Palynology of the Permian succession of Spitsbergen, Svalbard. Polar Research, 12(1), 65–93. https://doi.org/10.3402/polar.v12i1.6704
    [Google Scholar]
  80. Marzo, M., & Anadón, P. (1988). Anatomy of a conglomeratic fan‐delta complex: The Eocene Montserrat Conglomerate, Ebro Basin, northeastern Spain. In W.Nemec & R. J.Steel (Eds.), Fan deltas: Sedimentology and tectonic settings (pp. 318–340). Blackie.
    [Google Scholar]
  81. Matysik, M., Stemmerik, L., Olaussen, S., & Brunstad, H. (2018). Diagenesis of spiculites and carbonates in a Permian temperate ramp succession–Tempelfjorden group, Spitsbergen, Arctic Norway. Sedimentology, 65(3), 745–774. https://doi.org/10.1111/sed.12404
    [Google Scholar]
  82. McCormick, D. S., & Grotzinger, J. P. (1993). Distinction of marine from alluvial facies in the Paleoproterozoic (1.9 Ga) burnside formation, Kilohigok basin, NWT, Canada. Journal of Sedimentary Research, 63(3), 398–419. https://doi.org/10.1306/D4267B13‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  83. Miall, A. D., & Gibling, M. R. (1978). The Siluro‐Devonian clastic wedge of Somerset Island, Arctic Canada, and some regional paleogeographic implications. Sedimentary Geology, 21(2), 85–127. https://doi.org/10.1016/0037‐0738(78)90001‐5
    [Google Scholar]
  84. Montañez, I. P. (2022). Current synthesis of the penultimate icehouse and its imprint on the upper Devonian through Permian stratigraphic record. Geological Society, London, Special Publications, 512(1), 213–245. https://doi.org/10.1144/SP512‐2021‐124
    [Google Scholar]
  85. Montañez, I. P., & Poulsen, C. J. (2013). The late Paleozoic ice age: An evolving paradigm. Annual Review of Earth and Planetary Sciences, 41, 629–656.
    [Google Scholar]
  86. Morin, J., Desrochers, A., & Beauchamp, B. (1994). Facies analysis of lower permian platform carbonates, sverdrup basin, canadian arctic archipelago. Facies, 31(1), 105–130. https://doi.org/10.1007/BF02536936
    [Google Scholar]
  87. Mutti, E. (1985). The Eocene Baronia tide‐dominated delta‐shelf system in the Ager Basin. Excursion Guidebook. VI Eur. Reg. Mtg. IAS.
  88. Myrow, P. M., & Southard, J. B. (1996). Tempestite deposition. Journal of Sedimentary Research, 66(5), 875–887. https://doi.org/10.1306/D426842D‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  89. Nakrem, H., Nilsson, I., & Mangerud, G. (1992). Permian biostratigraphy of Svalbard (Arctic Norway)—A review. International Geology Review, 34(9), 933–959. https://doi.org/10.1080/00206819209465645
    [Google Scholar]
  90. Nemec, W., & Postma, G. (1993). Quaternary alluvial fans in southwestern Crete: Sedimentation processes and geomorphic evolution. In M.Marzo & C.Puigdefábregas (Eds.), Alluvial sedimentation (Vol. 17, pp. 235–276). International Association of Sedimentologists Oxford.
    [Google Scholar]
  91. Nemec, W., & Steel, R. (1988). What is a fan delta and how do we recognize it. Fan Deltas: Sedimentology Tectonic Settings, 3, 13.
    [Google Scholar]
  92. NPI . (2022). Svalbardkartet. Retrieved from https://geokart.npolar.no/Html5Viewer/index.html?viewer=Svalbardkartet
  93. Nysæther, E. (1977). Investigations on the Carboniferous and Permian stratigraphy of the Torell Land area, Spitsbergen (pp. 21–42). Norsk Polarinstitutt Årbok 1976.
  94. Olariu, C., & Bhattacharya, J. P. (2006). Terminal distributary channels and delta front architecture of river‐dominated delta systems. Journal of Sedimentary Research, 76(2), 212–233. https://doi.org/10.2110/jsr.2006.026
    [Google Scholar]
  95. Olariu, C., Steel, R. J., Dalrymple, R. W., & Gingras, M. K. (2012). Tidal dunes versus tidal bars: The sedimentological and architectural characteristics of compound dunes in a tidal seaway, the lower Baronia Sandstone (Lower Eocene), Ager Basin, Spain. Sedimentary Geology, 279, 134–155. https://doi.org/10.1016/j.sedgeo.2012.07.018
    [Google Scholar]
  96. Olaussen, S., Grundvåg, S.‐A., Senger, K., Anell, I., Betlem, P., Birchall, T., Braathen, A., Dallmann, W., Jochmann, M., Johannessen, E. P., Lord, G., Mørk, A., Osmundsen, P. T., Smyrak‐Sikora, A., & Stemmerik, L. (2024). Svalbard composite Tectono‐stratigraphic element, Barents Sea. In S. S.Drachev, H.Brekke, E.Henriksen, & T.Moore (Eds.), Sedimentary successions of the Arctic region and ther hydrocarbon prospectivity (Vol. 57). Geological Society. https://doi.org/10.1144/m57‐2021‐36.
    [Google Scholar]
  97. Oordt, A. J., Soreghan, G. S., Stemmerik, L., & Hinnov, L. A. (2020). A record of dust deposition in northern, mid‐latitude Pangaea during peak icehouse conditions of the late Paleozoic ice age. Journal of Sedimentary Research, 90(4), 337–363. https://doi.org/10.2110/jsr.2020.15
    [Google Scholar]
  98. Pemberton, S. G., MacEachern, J. A., Dashtgard, S. E., Bann, K. L., Gingras, M. K., & Zonneveld, J.‐P. (2012). Shorefaces. In D.Knaust & R. G.Bromley (Eds.), Developments in sedimentology (Vol. 64, pp. 563–603). Elsevier.
    [Google Scholar]
  99. Pérez‐López, A., & Pérez‐Valera, F. (2012). Tempestite facies models for the epicontinental Triassic carbonates of the Betic Cordillera (southern Spain). Sedimentology, 59(2), 646–678. https://doi.org/10.1111/j.1365‐3091.2011.01270.x
    [Google Scholar]
  100. Pérez‐Valera, F., & Pérez‐López, A. (2008). Stratigraphy and sedimentology of Muschelkalk carbonates of the Southern Iberian Continental Palaeomargin (Siles and Cehegín Formations, Southern Spain). Facies, 54, 61–87. https://doi.org/10.1007/s10347‐007‐0125‐1
    [Google Scholar]
  101. Plink‐Björklund, P., & Steel, R. J. (2004). Initiation of turbidity currents: Outcrop evidence for Eocene hyperpycnal flow turbidites. Sedimentary Geology, 165(1–2), 29–52. https://doi.org/10.1016/j.sedgeo.2003.10.013
    [Google Scholar]
  102. Plint, A. G., & Walker, R. G. (1987). Cardium Formation 8. Facies and environments of the Cardium shoreline and coastal plain in the Kakwa field and adjacent areas, northwestern Alberta. Bulletin of Canadian Petroleum Geology, 35(1), 48–64. https://doi.org/10.35767/gscpgbull.35.1.048
    [Google Scholar]
  103. Pollard, J. E., Goldring, R., & Buck, S. G. (1993). Ichnofabrics containing Ophiomorpha: Significance in shallow‐water facies interpretation. Journal of the Geological Society, 150(1), 149–164. https://doi.org/10.1144/gsjgs.150.1.0149
    [Google Scholar]
  104. Postma, G., & Nemec, W. (1990). Regressive and transgressive sequences in a raised Holocene gravelly beach, southwestern Crete. Sedimentology, 37(5), 907–920. https://doi.org/10.1111/j.1365‐3091.1990.tb01833.x
    [Google Scholar]
  105. Privat, A. M. L., Hodgson, D. M., Jackson, C. A. L., Schwarz, E., & Peakall, J. (2021). Evolution from syn‐rift carbonates to early post‐rift deep‐marine intraslope lobes: The role of rift basin physiography on sedimentation patterns. Sedimentology, 68(6), 2563–2605. https://doi.org/10.1111/sed.12864
    [Google Scholar]
  106. Prosser, S. (1991). Syn‐rift sequences: Their recognition and significance in basin analysis. Keele University.
    [Google Scholar]
  107. Prosser, S. (1993). Rift‐related linked depositional systems and their seismic expression. Geological Society of London, Special Publication, 71, 35–66. https://doi.org/10.1144/GSL.SP.1993.071.01.03
    [Google Scholar]
  108. Puga‐Bernabéu, Á., & Aguirre, J. (2017). Contrasting storm‐versus tsunami‐related shell beds in shallow‐water ramps. Palaeogeography, Palaeoclimatology, Palaeoecology, 471, 1–14. https://doi.org/10.1016/j.palaeo.2017.01.033
    [Google Scholar]
  109. Quin, J. G. (2011). Is most hummocky cross‐stratification formed by large‐scale ripples?Sedimentology, 58(6), 1414–1433. https://doi.org/10.1111/j.1365‐3091.2010.01219.x
    [Google Scholar]
  110. Ravnås, R., & Steel, R. J. (1998). Architecture of marine rift‐basin successions. AAPG Bulletin, 82(1), 110–146. https://doi.org/10.1306/1D9BC3A9‐172D‐11D7‐8645000102C1865D
    [Google Scholar]
  111. Reineck, H.‐E., & Singh, I. B. (1980). Tidal flats. In Depositional sedimentary environments (pp. 430–456). Springer.
    [Google Scholar]
  112. Sallam, E. S., & Ruban, D. A. (2020). Facies analysis and depositional environments of the Miocene syn‐rift carbonate–siliciclastic rock packages in the northwest Gulf of Suez, Egypt. Carbonates and Evaporites, 35(1), 1–20. https://doi.org/10.1007/s13146‐019‐00547‐7
    [Google Scholar]
  113. Scotese, C. R., & Langford, R. (1995). Pangea and the paleogeography of the Permian. In The Permian of Northern Pangea (pp. 3–19). Springer.
    [Google Scholar]
  114. Sedgwick, P. E., & Davis, R. A., Jr. (2003). Stratigraphy of washover deposits in Florida: Implications for recognition in the stratigraphic record. Marine Geology, 200(1–4), 31–48. https://doi.org/10.1016/S0025‐3227(03)00163‐4
    [Google Scholar]
  115. Senger, K., Brugmans, P., Grundvåg, S.‐A., Jochmann, M. M., Nøttvedt, A., Olaussen, S., Skotte, A., & Smyrak‐Sikora, A. (2019). Petroleum, coal and research drilling onshore Svalbard: A historical perspective. Norwegian Journal of Geology, 99, 377–407. https://doi.org/10.17850/njg99‐3‐1
    [Google Scholar]
  116. Sharp, I. R., Gawthorpe, R. L., Underhill, J. R., & Gupta, S. (2000). Fault‐propagation folding in extensional settings: Examples of structural style and synrift sedimentary response from the Suez rift, Sinai, Egypt. Geological Society of America Bulletin, 112(12), 1877–1899. https://doi.org/10.1130/0016‐7606(2000)112%3C1877:FPFIES%3E2.0.CO;2
    [Google Scholar]
  117. Siedlecka, A. (1968). Lithology and sedimentary environment of the Hyrnefjellet beds and the Treskelodden beds (late Paleozoic) at Treskelen, Hornsund, Vestspitsbergen. Studia Geologica Polonica, 21, 53–95.
    [Google Scholar]
  118. Smelror, M., Petrov, O., Larssen, G. B., & Werner, S. (2009). Geological history of the Barents Sea—Atlas. Geological Survey of Norway.
    [Google Scholar]
  119. Smyrak‐Sikora, A., Johannessen, E. P., Olaussen, S., Sandal, G., & Braathen, A. (2019). Sedimentary architecture during carboniferous rift initiation–the arid Billefjorden Trough, Svalbard. Journal of the Geological Society, 176(2), 225–252. https://doi.org/10.1144/jgs2018‐100
    [Google Scholar]
  120. Smyrak‐Sikora, A., Nicolaisen, J. B., Braathen, A., Johannessen, E. P., Olaussen, S., & Stemmerik, L. (2021). Impact of growth faults on mixed siliciclastic‐carbonate‐evaporite deposits during rift climax and reorganisation—Billefjorden Trough, Svalbard, Norway. Basin Research, 33(5), 2643–2674. https://doi.org/10.1111/bre.12578
    [Google Scholar]
  121. Sorento, T., Olaussen, S., & Stemmerik, L. (2020). Controls on deposition of shallow marine carbonates and evaporites–lower Permian Gipshuken formation, central Spitsbergen, Arctic Norway. Sedimentology, 67(1), 207–238. https://doi.org/10.1111/sed.12640
    [Google Scholar]
  122. Steel, R. J., & Worsley, D. (1984). Svalbard's post‐Caledonian strata—An atlas of sedimentational patterns and palaeogeographic evolution. In Petroleum geology of the North European margin (pp. 109–135). Springer.
    [Google Scholar]
  123. Stemmerik, L. (2008). Influence of late Paleozoic Gondwana glaciations on the depositional evolution of the northern Pangean shelf, North Greenland, Svalbard, and the Barents Sea. Geological Society of America Special Papers, 441, 205–217. https://doi.org/10.1130/2008.2441(14)
    [Google Scholar]
  124. Stemmerik, L., Elvebakk, G., Nilsson, I., & Olaussen, S. (1998). Comparison of upper Bashkirian – Upper Moscovianhigh frequency sequences between Bjørnøya and the Loppa High, western BarentsSea. In F. M.Gradstein, K. O.Sandvik, & N. J.Milton (Eds.), SequenceStratigraphy – concepts and applications. Norwegian Petroleum Society Special Publication 8 (pp. 215–227). Elsevier.
    [Google Scholar]
  125. Stemmerik, L., & Worsley, D. (2000). Upper Carboniferous cyclic shelf deposits, Kapp Kåre Formation, Bjørnøya, Svalbard: Response to high frequency, high amplitude sea level fluctuations and local tectonism. Polar Research, 19(2), 227–249. https://doi.org/10.3402/polar.v19i2.6548
    [Google Scholar]
  126. Stemmerik, L., & Worsley, D. (2005). 30 years on—Arctic upper Palaeozoic stratigraphy, depositional evolution and hydrocarbon prospectivity. Norwegian Journal of Geology, 85, 151–168.
    [Google Scholar]
  127. Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., Van Hinsbergen, D. J., Domeier, M., Gaina, C., & Tohver, E. (2012). Phanerozoic polar wander, palaeogeography and dynamics. Earth‐Science Reviews, 114(3–4), 325–368. https://doi.org/10.1016/j.earscirev.2012.06.007
    [Google Scholar]
  128. Tuttle, M. P., Ruffman, A., Anderson, T., & Jeter, H. (2004). Distinguishing tsunami from storm deposits in eastern North America: The 1929 grand banks tsunami versus the 1991 Halloween storm. Seismological Research Letters, 75(1), 117–131. https://doi.org/10.1785/gssrl.75.1.117
    [Google Scholar]
  129. Uchman, A., Hanken, N.‐M., Nielsen, J. K., Grundvåg, S.‐A., & Piasecki, S. (2016). Depositional environment, ichnological features and oxygenation of Permian to earliest Triassic marine sediments in central Spitsbergen, Svalbard. Polar Research, 35(1), 24782. https://doi.org/10.3402/polar.v35.24782
    [Google Scholar]
  130. Veevers, J. T., & Powell, C. M. (1987). Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive‐regressive depositional sequences in Euramerica. Geological Society of America Bulletin, 98(4), 475–487. https://doi.org/10.1130/0016‐7606(1987)98%3C475:LPGEIG%3E2.0.CO;2
    [Google Scholar]
  131. Verwer, K., Merino‐Tome, O., Kenter, J. A., & Della Porta, G. (2009). Evolution of a high‐relief carbonate platform slope using 3D digital outcrop models: Lower Jurassic Djebel Bou Dahar, High Atlas, Morocco. Journal of Sedimentary Research, 79(6), 416–439. https://doi.org/10.2110/jsr.2009.045
    [Google Scholar]
  132. Wanless, H. R., & Shepard, F. P. (1936). Sea level and climatic changes related to late Paleozoic cycles. Bulletin of the Geological Society of America, 47(8), 1177–1206. https://doi.org/10.1130/GSAB‐47‐1177
    [Google Scholar]
  133. Williams, H. (2011). Shell bed tempestites in the chenier plain of Louisiana: Late Holocene example and modern analogue. Journal of Quaternary Science, 26(2), 199–206. https://doi.org/10.1002/jqs.1444
    [Google Scholar]
  134. Worsley, D. (2008). The post‐Caledonian development of Svalbard and the western Barents Sea. Polar Research, 27(3), 298–317. https://doi.org/10.1111/j.1751‐8369.2008.00085.x
    [Google Scholar]
  135. Worsley, D., Agdestein, T., Gjelberg, J. G., Kirkemo, K., Mørk, A., Nilsson, I., Olaussen, S., Steel, R. J., & Stemmerik, L. (2001). The geological evolution of Biørnøya, Arctic Norway: Implications for the Barents Shelf. Norwegian Journal of Geology, 81(3), 195–234.
    [Google Scholar]
/content/journals/10.1111/bre.12880
Loading
/content/journals/10.1111/bre.12880
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error