1887
Volume 36, Issue 4
  • E-ISSN: 1365-2117
PDF

Abstract

[

Continental rift landscapes are shaped by faults, where elastic response from tectonic unloading by repeated faulting and erosion creates footwall rebound. Hanging wall basins with its sedimentary record hold aspects of the long‐lived fault evolution, starting with a depocentre in front of maximum throw that may be inverted, and divided in two sub‐basins during subsequent isostatic adjustments as the fault grows and trigger broad rollback.

, Abstract

We analyse 498 faults identified in satellite imagery and interpret the height and width of associated footwall ranges with respect to co‐seismic elastic rebound from tectonic and erosional unloading. The dynamics of footwall uplift link uplands to catchment patterns and interrelated hanging wall sedimentary fans. Height–length relations of some catchments and associated alluvial fans scale linearly whereas others, such as fault‐slope catchments and related down‐fault fans (building out from faults) show a significant scatter without an obvious trend. Perched basins abandoned in the footwalls of younger faults offer catchment‐fan height–length relations like watergap and dipslope‐related fans and, besides, hint at reduction of dip angle due to rollback of larger faults before abandonment. Analysis of the width‐to‐height ratio (/) of footwall ranges offer a robust linear statistical trend,  = 0.06 W and is identical between datasets. This trend is valid for both arid and tropical rifts, the latter offering smaller rebounds. Contributions of elastic rebound on fault throw in our data are simplistically considered through comparison to global trends on fault length versus throw. This allows consideration around maximum throw () linked to the maximum height of footwall ranges () and to their width () above the reference level. Basic calculations indicate that co‐seismic rebound contributes from <1% to 17% of extensional fault throw. Width‐to‐height ratios for large faults ( > c. 50 km) show less spread than smaller faults. Such large faults expectedly dissect the brittle crust, indicating that these large faults which root in the ductile–brittle transition approach a balanced, steady‐state kinematic pattern. We speculate that significant crustal thinning associated with these large faults triggers the onset of isostatic adjustments that drive fault rotation, instigating fault abandonment and disconnected perched basins.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12881
2024-07-05
2024-09-16
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/4/bre12881.html?itemId=/content/journals/10.1111/bre.12881&mimeType=html&fmt=ahah

References

  1. Anders, M. H., Spiegelman, M., Rodgers, D. W., & Hagstrum, J. T. (1993). The growth of fault‐bounded tilt blocks. Tectonics, 12(6), 1451–1459.
    [Google Scholar]
  2. Armitage, J. J., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4(4), 231–235.
    [Google Scholar]
  3. Barnett, J. A., Mortimer, J., Rippon, J. H., Walsh, J. J., & Watterson, J. (1987). Displacement geometry in the volume containing a single normal fault. AAPG Bulletin, 71(8), 925–937.
    [Google Scholar]
  4. Barrett, B. J., Hodgson, D. M., Jackson, C. A. L., Lloyd, C., Casagrande, J., & Collier, R. E. L. (2021). Quantitative analysis of a footwall‐scarp degradation complex and syn‐rift stratigraphic architecture, Exmouth Plateau, NW Shelf, offshore Australia. Basin Research, 33(2), 1135–1169.
    [Google Scholar]
  5. Bignami, C., Valerio, E., Carminati, E., Doglioni, C., Petricca, P., Tizzani, P., & Lanari, R. (2020). Are normal fault earthquakes due to elastic rebound or gravitational collapse?Annals of Geophysics, 63(2), SE213. https://doi.org/10.4401/ag‐8455
    [Google Scholar]
  6. Blair, T. C., & McPherson, J. G. (2009). Processes and forms of alluvial fans. In A. J.Parson & A. D.Abrehams (Eds.), Geomorphology of desert environments (pp. 413–467). Springer.
    [Google Scholar]
  7. Braathen, A., & Osmundsen, P. T. (2020). Extensional tectonics rooted in orogenic collapse: Long‐lived disintegration of the Semail ophiolite, Oman. Geology, 48(3), 258–262.
    [Google Scholar]
  8. Brun, J. P., Sokoutis, D., Tirel, C., Gueydan, F., Van den Driessche, J., & Beslier, M. O. (2018). Crustal versus mantle core complexes. Tectonophysics, 746, 22–45.
    [Google Scholar]
  9. Bull, W. B. (1991). Geomorphic responses to climatic change. United States: N. p., 1991. Web.
    [Google Scholar]
  10. Burbank, D. W., & Anderson, R. S. (2011). Tectonic geomorphology. John Wiley & Sons.
    [Google Scholar]
  11. Chorowicz, J. (2005). The east African rift system. Journal of African Earth Sciences, 43(1–3), 379–410.
    [Google Scholar]
  12. Corti, G. (2009). Continental rift evolution: From rift initiation to incipient break‐up in the Main Ethiopian rift, East Africa. Earth‐Science Reviews, 96(1–2), 1–53.
    [Google Scholar]
  13. Corti, G. (2012). Evolution and characteristics of continental rifting: Analog modelling‐inspired view and comparison with examples from the East African Rift System. Tectonophysics, 522, 1–33.
    [Google Scholar]
  14. Cowie, P. A., Malinverno, A., Ryan, W. B., & Edwards, M. H. (1994). Quantitative fault studies on the East Pacific rise: A comparison of sonar imaging techniques. Journal of Geophysical Research: Solid Earth, 99(B8), 15205–15218.
    [Google Scholar]
  15. Dawers, N. H., Anders, M. H., & Scholz, C. H. (1993). Growth of normal faults: Displacement‐length scaling. Geology, 21(12), 1107–1110.
    [Google Scholar]
  16. Dempsey, D., Ellis, S., Archer, R., & Rowland, J. (2012). Energetics of normal earthquakes on dip‐slip faults. Geology, 40(3), 279–282.
    [Google Scholar]
  17. Densmore, A. L., Dawers, N. H., Gupta, S., & Guidon, R. (2005). What sets topographic relief in extensional footwalls?Geology, 33(6), 453–456.
    [Google Scholar]
  18. Densmore, A. L., Dawers, N. H., Gupta, S., Guidon, R., & Goldin, T. (2004). Footwall topographic development during continental extension. Journal of Geophysical Research: Earth Surface, 109(F3), 1–16.
    [Google Scholar]
  19. Densmore, A. L., Ellis, M. A., Li, Y., Zhou, R., Hancock, G. S., & Richardson, N. (2007). Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau. Tectonics, 26(4), 1–17.
    [Google Scholar]
  20. Fernández‐Ibáñez, F., Pérez‐Peña, J. V., Azor, A., Soto, J. I., & Azañón, J. M. (2010). Normal faulting driven by denudational isostatic rebound. Geology, 38(7), 643–646.
    [Google Scholar]
  21. Ferrill, D. A., Stamatakos, J. A., Jones, S. M., Rahe, B., Lawrence McKague, H., Martin, R. H., & Morris, A. P. (1996). Quaternary slip history of the Bare Mountain fault (Nevada) from the morphology and distribution of alluvial fan deposits. Geology, 24(6), 559–562.
    [Google Scholar]
  22. Fossen, H., & Rotevatn, A. (2016). Fault linkage and relay structures in extensional settings ‐ A review. Earth Science Review, 154, 14–28.
    [Google Scholar]
  23. Gallen, S. F., & Wegmann, K. W. (2017). River profile response to normal fault growth and linkage: An example from the Hellenic forearc of south‐central Crete, Greece. Earth Surface Dynamics, 5(1), 161–186.
    [Google Scholar]
  24. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12(3–4), 195–218.
    [Google Scholar]
  25. Gibson, J. D., Shephard, L. E., Swan, F. H., Wesling, J. R., & Kerl, F. A. (1989). Synthesis of studies for the potential of fault rupture at the proposed surface facilities, Yucca Mountain, Nevada (No. SAND‐89‐2099C; CONF‐900406‐10). Sandia National Lab (SNL‐NM), Albuquerque, NM (United States).
  26. Gresseth, J. L., Braathen, A., Serck, C. S., Faleide, J. I., & Osmundsen, P. T. (2021). Late Paleozoic supradetachment basin configuration in the southwestern Barents Sea—Intrabasement seismic facies of the Fingerdjupet subbasin. Basin Research, 2021, 20. https://doi.org/10.1111/bre.12631
    [Google Scholar]
  27. Harvey, A. M. (2012). The coupling status of alluvial fans and debris cones: A review and synthesis. Earth Surface Processes and Landforms, 37(1), 64–76.
    [Google Scholar]
  28. Holm, D. K., Fleck, R. J., & Lux, D. R. (1994). The death valley turtlebacks reinterpreted as miocene‐pliocene folds of a major detachment surface. The Journal of Geology, 102(6), 718–727. https://doi.org/10.1086/629715
    [Google Scholar]
  29. Jones, C. H., Wernicke, B. P., Farmer, G. L., Walker, J. D., Coleman, D. S., McKenna, L. W., & Perry, F. V. (1992). Variations across and along a major continental rift: An interdisciplinary study of the basin and Range Province, western USA. Tectonophysics, 213(1–2), 57–96.
    [Google Scholar]
  30. Kirby, E., & Whipple, K. X. (2012). Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44, 54–75.
    [Google Scholar]
  31. Lavier, L. L., Roger Buck, W., & Poliakov, A. N. (1999). Self‐consistent rolling‐hinge model for the evolution of large‐offset low‐angle normal faults. Geology, 27(12), 1127–1130.
    [Google Scholar]
  32. Leeder, M. R., & Jackson, J. A. (1993). The interaction between normal faulting and drainage in active extensional basins, with examples from the western United States and central Greece. Basin Research, 5(2), 79–102.
    [Google Scholar]
  33. Leonard, J. S., Whipple, K. X., & Heimsath, A. M. (2023). Isolating climatic, tectonic, and lithologic controls on mountain landscape evolution. Science Advances, 9(3), eadd8915.
    [Google Scholar]
  34. Miller, M. B., & Pavlis, T. L. (2005). The Black Mountains turtlebacks: Rosetta stones of Death Valley tectonics. Earth‐Science Reviews, 73(1–4), 115–138.
    [Google Scholar]
  35. Mirabella, F., Bucci, F., Santangelo, M., Cardinali, M., Caielli, G., de Franco, R., Guzzetti, F., & Barchi, M. R. (2018). Alluvial fan shifts and stream captures driven by extensional tectonics in central Italy. Journal of the Geological Society, 175(5), 788–805.
    [Google Scholar]
  36. Olive, J. A., & Behn, M. D. (2014). Rapid rotation of normal faults due to flexural stresses: An explanation for the global distribution of normal fault dips. Journal of Geophysical Research: Solid Earth, 119(4), 3722–3739.
    [Google Scholar]
  37. Olive, J. A., Behn, M. D., & Malatesta, L. C. (2014). Modes of extensional faulting controlled by surface processes. Geophysical Research Letters, 41(19), 6725–6733.
    [Google Scholar]
  38. Osmundsen, P. T., & Péron‐Pinvidic, G. (2018). Crustal‐scale fault interaction at rifted margins and the formation of domain‐bounding breakaway complexes: Insights from offshore Norway. Tectonics, 37(3), 935–964.
    [Google Scholar]
  39. Osmundsen, P. T., Svendby, A. K., Braathen, A., Bakke, B., & Andersen, T. B. (2023). Fault growth and orthogonal shortening in transtensional supradetachment basins: Insights from the ‘old red’ of western Norway. Basin Research, 1–26. https://doi.org/10.1111/bre.12759
    [Google Scholar]
  40. Pérouse, E., & Wernicke, B. P. (2017). Spatiotemporal evolution of fault slip rates in deforming continents: The case of the Great Basin region, northern Basin and Range province. Geosphere, 13(1), 112–135.
    [Google Scholar]
  41. Petit, C., Meyer, B., Gunnell, Y., Jolivet, M., San'Kov, V., Strak, V., & Gonga‐Saholiariliva, N. (2009). Height of faceted spurs, a proxy for determining long‐term throw rates on normal faults: Evidence from the North Baikal Rift System, Siberia. Tectonics, 28(6), 1–12.
    [Google Scholar]
  42. Prosser, S. (1993). Rift‐related linked depositional systems and their seismic expression. Geological Society, London, Special Publications, 71(1), 35–66.
    [Google Scholar]
  43. Rosendahl, B. R. (1987). Architecture of continental rifts with special reference to East Africa. Annual Review of Earth and Planetary Sciences, 15, 445–503.
    [Google Scholar]
  44. Schlische, R. W. (1995). Geometry and origin of fault‐related folds in extensional settings. AAPG Bulletin, 79(11), 1661–1678.
    [Google Scholar]
  45. Serck, C. S., & Braathen, A. (2019). Extensional fault and fold growth: Impact on accommodation evolution and sedimentary infill. Basin Research, 31(5), 967–990.
    [Google Scholar]
  46. Smyrak‐Sikora, A., Johannessen, E. P., Olaussen, S., Sandal, G., & Braathen, A. (2019). Sedimentary architecture during carboniferous rift initiation–The arid Billefjorden trough, Svalbard. Journal of the Geological Society, 176(2), 225–252.
    [Google Scholar]
  47. Snyder, N. P., Whipple, K. X., Tucker, G. E., & Merritts, D. J. (2000). Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geological Society of America Bulletin, 112(8), 1250–1263.
    [Google Scholar]
  48. Sømme, T. O., Helland‐Hansen, W., Martinsen, O. J., & Thurmond, J. B. (2009). Relationships between morphological and sedimentological parameters in source‐to‐sink systems: A basis for predicting semi‐quantitative characteristics in subsurface systems. Basin Research, 21(4), 361–387.
    [Google Scholar]
  49. Stein, R. S., & Barrientos, S. E. (1985). Planar high‐angle faulting in the basin and range: Geodetic analysis of the 1983 Borah Peak, Idaho, earthquake. Journal of Geophysical Research: Solid Earth, 90(B13), 11355–11366.
    [Google Scholar]
  50. Stein, R. S., King, G. C., & Rundle, J. B. (1988). The growth of geological structures by repeated Earthquakes 2. Field examples of continental dip‐slip faults. Journal of Geophysical Research: Solid Earth, 93(B11), 13319–13331.
    [Google Scholar]
  51. Stern, R. J. (1994). Arc assembly and continental collision in the Neoproterozoic East African Orogen: Implications for the consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences, 22(1), 319–351.
    [Google Scholar]
  52. Stokes, M., & Mather, A. E. (2015). Controls on modern tributary‐junction alluvial fan occurrence and morphology: High Atlas Mountains, Morocco. Geomorphology, 248, 344–362.
    [Google Scholar]
  53. Thompson, G. A., & Parsons, T. (2016). Vertical deformation associated with normal fault systems evolved over coseismic, postseismic, and multiseismic periods. Journal of Geophysical Research: Solid Earth, 121(3), 2153–2173.
    [Google Scholar]
  54. Torabi, A., Alaei, B., & Libak, A. (2019). Normal fault 3D geometry and displacement revisited: Insights from faults in the Norwegian Barents Sea. Marine and Petroleum Geology, 99, 135–155.
    [Google Scholar]
  55. Tucker, G. E., Hobley, D. E., McCoy, S. W., & Struble, W. T. (2020). Modeling the shape and evolution of Normal‐fault facets. Journal of Geophysical Research: Earth Surface, 125(3), e2019JF005305.
    [Google Scholar]
  56. van der Beek, P. (1997). Flank uplift and topography at the central Baikal rift (SE Siberia): A test of kinematic models for continental extension. Tectonics, 16(1), 122–136.
    [Google Scholar]
  57. van der Beek, P., Cloetingh, S., & Andriessen, P. (1994). Mechanisms of extensional basin formation and vertical motions at rift flanks: Constraints from tectonic modelling and fission‐track thermochronology. Earth and Planetary Science Letters, 121(3–4), 417–433.
    [Google Scholar]
  58. Ventra, D., & Clarke, L. E. (2018). Geology and geomorphology of alluvial and fluvial fans: Current progress and research perspectives. Geological Society, London, Special Publications, 440(1), 1–21.
    [Google Scholar]
  59. Viola, G., Henderson, I. H. C., Bingen, B., Thomas, R. J., Smethurst, M. D., & De Azavedo, S. (2008). Growth and collapse of a deeply eroded orogen: Insights from structural, geophysical, and geochronological constraints on the Pan‐African evolution of NE Mozambique. Tectonics, 27(5), 1–31.
    [Google Scholar]
  60. Viseras, C., Calvache, M. L., Soria, J. M., & Fernández, J. (2003). Differential features of alluvial fans controlled by tectonic or eustatic accommodation space. Examples from the Betic cordillera, Spain. Geomorphology, 50(1–3), 181–202.
    [Google Scholar]
  61. Wadge, G., Biggs, J., Lloyd, R., & Kendall, J. M. (2016). Historical volcanism and the state of stress in the east African rift system. Frontiers in Earth Science, 4, 86.
    [Google Scholar]
  62. Walsh, J. J., & Watterson, J. (1988). Analysis of the relationship between displacements and dimensions of faults. Journal of Structural Geology, 10(3), 239–247.
    [Google Scholar]
  63. Weissel, J. K., & Karner, G. D. (1989). Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension. Journal of Geophysical Research: Solid Earth, 94(B10), 13919–13950.
    [Google Scholar]
  64. Wernicke, B., Axen, G. J., & Snow, J. K. (1988). Basin and range extensional tectonics at the latitude of Las Vegas, Nevada. Geological Society of America Bulletin, 100(11), 1738–1757.
    [Google Scholar]
  65. Whittaker, A. C. (2012). How do landscapes record tectonics and climate?Lithosphere, 4(2), 160–164.
    [Google Scholar]
  66. Whittaker, A. C., Attal, M., Cowie, P. A., Tucker, G. E., & Roberts, G. (2008). Decoding temporal and spatial patterns of fault uplift using transient river long profiles. Geomorphology, 100(3–4), 506–526.
    [Google Scholar]
/content/journals/10.1111/bre.12881
Loading
/content/journals/10.1111/bre.12881
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): fault; footwall rebound; geomorphology; rift; sedimentary systems

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error