1887
Volume 36, Issue 4
  • E-ISSN: 1365-2117

Abstract

[Abstract

Mapping ocean‐continent transitions (OCTs) separating equivocal continental and oceanic crusts is fundamental to investigate breakup processes and define the age and location of initial seafloor spreading. However, proposed limits of OCTs are rarely consistent, do not use uniform criteria, and result in conflicting interpretations as shown for the case of the northern South China Sea (SCS). We review original datasets including reflection and refraction seismic sections, drilling and potential field data with the aim to develop a ‘drilling‐constrained integrated geological‐geophysical’ approach to define the OCT along the northern SCS, understand the breakup process, and to compare the OCT in the SCS with those at Atlantic type rifted margins. The result shows a narrow, 5–15 km wide OCT. It separates a segmented margin that rifted a former arc in the west and a forearc in the east, both facing a Penrose oceanic crust that thins from the west towards the east. Seafloor spreading may have first nucleated at two centres during magnetic anomaly C11 in the NE and central subbasins, which then locally propagated both W and E to break through salients and produce full breakup at 29 Ma (anomaly C10r). Breakup at the SCS shows many differences to Atlantic type margins, in part due to inheritance but also due to rift/spreading‐related parameters such as strain/spreading rates.

,

A ‘drilling‐constrained integrated geological‐geophysical’ approach was developed to define OCTs and explore breakup processes (Figure a). Seafloor spreading had first nucleated in the central and NE subbasins of South China Sea during magnetic anomaly C11, then propagated both W and E and produced full breakup at anomaly C10r (Figure b).

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12882
2024-07-06
2024-09-16
Loading full text...

Full text loading...

References

  1. Augustin, N., van der Zwan, F. M., Devey, C. W., & Brandsdottir, B. (2021). 13 million years of seafloor spreading throughout the Red Sea Basin. Nature Communications, 12(1), 2427. https://doi.org/10.1038/s41467‐021‐22586‐2
    [Google Scholar]
  2. Bai, Y., Wu, S., Liu, Z., Müller, R. D., Williams, S. E., Zahirovic, S., & Dong, D. (2015). Full‐fit reconstruction of the South China Sea conjugate margins. Tectonophysics, 661, 121–135. https://doi.org/10.1016/j.tecto.2015.08.028
    [Google Scholar]
  3. Barckhausen, U., Engels, M., Franke, D., Ladage, S., & Pubellier, M. (2014). Evolution of the South China Sea: Revised ages for breakup and seafloor spreading. Marine and Petroleum Geology, 58, 599–611. https://doi.org/10.1016/j.marpetgeo.2014.02.022
    [Google Scholar]
  4. Benyshek, E. K., & Taylor, B. (2021). Tectonics of the Papua–Woodlark region. Geochemistry, Geophysics, Geosystems, 22, e2020GC009209. https://doi.org/10.1029/2020gc009209
    [Google Scholar]
  5. Bonatti, E. (1985). Punctiform initiation of seafloor spreading in the Red Sea during transition from a continental to an oceanic rift. Nature, 316(6023), 33–37. https://doi.org/10.1038/316033a0
    [Google Scholar]
  6. Briais, A., Patriat, P., & Tapponnier, P. (1993). Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4), 6299–6328. https://doi.org/10.1029/92jb02280
    [Google Scholar]
  7. Bronner, A., Sauter, D., Manatschal, G., Péron‐Pinvidic, G., & Munschy, M. (2011). Magmatic breakup as an explanation for magnetic anomalies at magma‐poor rifted margins. Nature Geoscience, 4, 549–553. https://doi.org/10.1038/ngeo1201
    [Google Scholar]
  8. Buck, W. R. (2006). The role of magma in the development of the Afro‐Arabian rift system. In G.Yirgu, C. J.Ebinger, & P. K. H.Maguire (Eds.), The Afar Volcanic Province within the East African rift system (Vol. 259, pp. 43–54). Geological Society Special Publications. https://doi.org/10.1144/GSL.SP.2006.259.01.0
    [Google Scholar]
  9. Buck, W. R. (2015). The dynamics of continental breakup and extension. In G.Schubert (Ed.), Treatise on geophysics (pp. 325–379). Elsevier. https://doi.org/10.1016/b978‐0‐444‐53802‐4.00118‐4
    [Google Scholar]
  10. Buiter, S. J. H., & Torsvik, T. H. (2014). A review of Wilson cycle plate margins: A role for mantle plumes in continental break‐up along sutures?Gondwana Research, 26(2), 627–653. https://doi.org/10.1016/j.gr.2014.02.007
    [Google Scholar]
  11. Bullock, A. D., & Minshull, T. A. (2005). From continental extension to seafloor spreading: Crustal structure of the Goban Spur rifted margin, southwest of the UK. Geophysical Journal International, 163(2), 527–546. https://doi.org/10.1111/j.1365‐246X.2005.02726.x
    [Google Scholar]
  12. Cameselle, A. L., Ranero, C. R., Franke, D., & Barckhausen, U. (2017). The continent‐ocean transition on the northwestern South China Sea. Basin Research, 29, 73–95. https://doi.org/10.1111/bre.12137
    [Google Scholar]
  13. Chao, P., Manatschal, G., Chenin, P., Ren, J., Zhang, C., Pang, X., Zheng, J., Yang, L., & Kusznir, N. (2021). The tectono‐stratigraphic and magmatic evolution of conjugate rifted margins: Insights from the NW South China Sea. Journal of Geodynamics, 148, 101877. https://doi.org/10.1016/j.jog.2021.101877
    [Google Scholar]
  14. Chao, P., Manatschal, G., Chenin, P., Zhang, C., Ren, J., Peng, X., & Zheng, J. (2022). A 3D snapshot of crustal breakup deduced from seismic analysis of the tip of the NW South China Sea. Tectonics, 41, e2021TC007127. https://doi.org/10.1029/2021tc007127
    [Google Scholar]
  15. Chao, P., Manatschal, G., Zhang, C., Chenin, P., Ren, J., Pang, X., & Zheng, J. (2022). The transition from continental to lithospheric breakup recorded in proto‐oceanic crust: Insights from the NW South China Sea. Geological Society of America Bulletin, 135, 886–902. https://doi.org/10.1130/b36371.1
    [Google Scholar]
  16. Chen, N., Li, C., Wen, Y., Wang, P., Zhao, X., & Wan, X. (2023). Seismic multiple attenuation in the continent–ocean transition zone of the Northern South China Sea. Journal of Marine Science and Engineering, 11(1), 227. https://doi.org/10.3390/jmse11010227
    [Google Scholar]
  17. Chenin, P., Manatschal, G., Picazo, S., Müntener, O., Karner, G., Johnson, C., & Ulrich, M. (2017). Influence of the architecture of magma‐poor hyperextended rifted margins on orogens produced by the closure of narrow versus wide oceans. Geosphere, 13(2), 559–576. https://doi.org/10.1130/ges01363.1
    [Google Scholar]
  18. Childress, L., & The Expedition 368X Scientists . (2019). Expedition 368X preliminary report: South China Sea rifted margin. International Ocean Discovery Program. https://doi.org/10.14379/iodp.pr.368X.2019
    [Google Scholar]
  19. Clift, P. D. (2015). Coupled onshore erosion and offshore sediment loading as causes of lower crust flow on the margins of South China Sea. Geoscience Letters, 2(1), 13. https://doi.org/10.1186/s40562‐015‐0029‐9
    [Google Scholar]
  20. Cui, Y., Shao, L., Li, Z.‐X., Zhu, W., Qiao, P., & Zhang, X. (2021). A Mesozoic Andean‐type active continental margin along coastal South China: New geological records from the basement of the northern South China Sea. Gondwana Research, 99, 36–52. https://doi.org/10.1016/j.gr.2021.06.021
    [Google Scholar]
  21. Cullen, A., Reemst, P., Henstra, G., Gozzard, S., & Ray, A. (2010). Rifting of the South China Sea: New perspectives. Petroleum Geoscience, 16(3), 273–282. https://doi.org/10.1144/1354‐079309‐908
    [Google Scholar]
  22. Dean, S. M., Minshull, T. A., Whitmarsh, R. B., & Louden, K. E. (2000). Deep structure of the ocean‐continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles: The IAM‐9 transect at 40°20′N. Journal of Geophysical Research: Solid Earth, 105(B3), 5859–5885. https://doi.org/10.1029/1999jb900301
    [Google Scholar]
  23. Deng, J.‐M., Wang, T. K., Yang, B. J., Lee, C.‐S., Liu, C.‐S., & Chen, S.‐C. (2013). Crustal velocity structure off SW Taiwan in the northernmost South China Sea imaged from TAIGER OBS and MCS data. Marine Geophysical Research, 33(4), 327–349. https://doi.org/10.1007/s11001‐013‐9166‐8
    [Google Scholar]
  24. Ding, W., Schnabel, M., Franke, D., Aiguo, R., & Zhenli, W. (2012). Crustal structure across the northwestern margin of South China Sea: Evidence for magma‐poor rifting from a wide‐angle seismic profile. Acta Geologica Sinica‐English Edition, 86(4), 854–866. https://doi.org/10.1111/j.1755‐6724.2012.00711.x
    [Google Scholar]
  25. Ding, W., Sun, Z., Mohn, G., Nirrengarten, M., Tugend, J., Manatschal, G., & Li, J. (2020). Lateral evolution of the rift‐to‐drift transition in the South China Sea: Evidence from multi‐channel seismic data and IODP expeditions 367&368 drilling results. Earth and Planetary Science Letters, 531, 115932. https://doi.org/10.1016/j.epsl.2019.115932
    [Google Scholar]
  26. Direen, N. G., Stagg, H. M. J., Symonds, P. A., & Colwell, J. B. (2008). Architecture of volcanic rifted margins: New insights from the Exmouth–Gascoyne margin, Western Australia. Australian Journal of Earth Sciences, 55(3), 341–363. https://doi.org/10.1080/08120090701769472
    [Google Scholar]
  27. Eagles, G., Pérez‐Díaz, L., & Scarselli, N. (2015). Getting over continent ocean boundaries. Earth‐Science Reviews, 151, 244–265. https://doi.org/10.1016/j.earscirev.2015.10.009
    [Google Scholar]
  28. Eakin, D. H., McIntosh, K. D., Van Avendonk, H. J. A., Lavier, L., Lester, R., Liu, C.‐S., & Lee, C.‐S. (2014). Crustal‐scale seismic profiles across the Manila subduction zone: The transition from intraoceanic subduction to incipient collision. Journal of Geophysical Research: Solid Earth, 119(1), 1–17. https://doi.org/10.1002/2013jb010395
    [Google Scholar]
  29. Franke, D., Klitzke, P., Barckhausen, U., Berglar, K., Berndt, C., Damm, V., Dannowski, A., Ehrhardt, A., Engels, M., Funck, T., Geissler, W., Schnabel, M., Thorwart, M., & Trinhammer, P. (2019). Polyphase magmatism during the formation of the northern East Greenland continental margin. Tectonics, 38(8), 2961–2982. https://doi.org/10.1029/2019tc005552
    [Google Scholar]
  30. Franke, D., Savva, D., Pubellier, M., Steuer, S., Mouly, B., Auxietre, J.‐L., Meresse, F., & Chamot‐Rooke, N. (2014). The final rifting evolution in the South China Sea. Marine and Petroleum Geology, 58, 704–720. https://doi.org/10.1016/j.marpetgeo.2013.11.020
    [Google Scholar]
  31. Funck, T., Hopper, J. R., Larsen, H. C., Louden, K. E., Tucholke, B. E., & Holbrook, W. S. (2003). Crustal structure of the ocean‐continent transition at Flemish cap: Seismic refraction results. Journal of Geophysical Research, 108(B11), 25. https://doi.org/10.1029/2003jb002434
    [Google Scholar]
  32. Gao, J., Wu, S., McIntosh, K., Mi, L., Yao, B., Chen, Z., & Jia, L. (2015). The continent–ocean transition at the mid‐northern margin of the South China Sea. Tectonophysics, 654, 1–19. https://doi.org/10.1016/j.tecto.2015.03.003
    [Google Scholar]
  33. Geoffroy, L., Burov, E. B., & Werner, P. (2015). Volcanic passive margins: Another way to break up continents. Scientific Reports, 5, 14828. https://doi.org/10.1038/srep14828
    [Google Scholar]
  34. Geoffroy, L., Gernigon, L., & Foulger, G. R. (2021). Linear magnetic anomalies and the limits of oceanic crust in oceans. In G. R.Foulger, L. C.Hamilton, D. M.Jurdy, C. A.Stein, K. A.Howard, & S.Stein (Eds.), In the footsteps of Warren B. Hamilton: New ideas in earth science (Vol. 553, pp. 59–72). Geological Society of America Special Paper. https://doi.org/10.1130/2021.2553(06)
    [Google Scholar]
  35. Gibbons, A. D., Barckhausen, U., van den Bogaard, P., Hoernle, K., Werner, R., Whittaker, J. M., & Müller, R. D. (2012). Constraining the Jurassic extent of greater India: Tectonic evolution of the west Australian margin. Geochemistry, Geophysics, Geosystems, 13, Q05W13. https://doi.org/10.1029/2011gc003919
    [Google Scholar]
  36. Gillard, M., Autin, J., Manatschal, G., Sauter, D., Munschy, M., & Schaming, M. (2015). Tectonomagmatic evolution of the final stages of rifting along the deep conjugate Australian‐Antarctic magma‐poor rifted margins: Constraints from seismic observations. Tectonics, 34, 753–783. https://doi.org/10.1002/2015tc003850
    [Google Scholar]
  37. Gillard, M., Tugend, J., Müntener, O., Manatschal, G., Karner, G. D., Autin, J., Sauter, D., Figueredo, P. H., & Ulrich, M. (2019). The role of serpentinization and magmatism in the formation of decoupling interfaces at magma‐poor rifted margins. Earth‐Science Reviews, 196, 102882. https://doi.org/10.1016/j.earscirev.2019.102882
    [Google Scholar]
  38. Goodliffe, A. M., & Taylor, B. (2007). The boundary between continental rifting and sea‐floor spreading in the Woodlark Basin, Papua New Guinea. In G. D.Karner, G.Manatschal, & L. M.Pinheiro (Eds.), Imaging, mapping and modelling continental lithosphere extension and breakup (Vol. 282, pp. 217–238). Geological Society. https://doi.org/10.1144/sp282.11
    [Google Scholar]
  39. Gouiza, M., & Naliboff, J. (2021). Rheological inheritance controls the formation of segmented rifted margins in cratonic lithosphere. Nature Communications, 12(1), 4653. https://doi.org/10.1038/s41467‐021‐24945‐5
    [Google Scholar]
  40. Gouiza, M., & Paton, D. A. (2019). The role of inherited lithospheric heterogeneities in defining the crustal architecture of rifted margins and the magmatic budget during continental breakup. Geochemistry, Geophysics, Geosystems, 20(4), 1836–1853. https://doi.org/10.1029/2018gc007808
    [Google Scholar]
  41. Gozzard, S., Kusznir, N., Franke, D., Cullen, A., Reemst, P., & Henstra, G. (2019). South China Sea crustal thickness and oceanic lithosphere distribution from satellite gravity inversion. Petroleum Geoscience, 25(1), 112–128. https://doi.org/10.1144/petgeo2016‐162
    [Google Scholar]
  42. Guan, Q., Zhang, T., Taylor, B., Gao, J., & Li, J. (2021). Ridge jump reorientation of the South China Sea revealed by high‐resolution magnetic data. Terra Nova, 33(5), 475–482. https://doi.org/10.1111/ter.12532
    [Google Scholar]
  43. Hsu, S.‐K., Yeh, Y.‐C., Doo, W.‐B., & Tsai, C.‐H. (2004). New bathymetry and magnetic Lineations identifications in the Northernmost South China Sea and their tectonic implications. Marine Geophysical Researches, 25(1–2), 29–44. https://doi.org/10.1007/s11001‐005‐0731‐7
    [Google Scholar]
  44. Hu, D., Zhou, D., Wu, X., He, M., Pang, X., & Wang, Y. (2009). Crustal structure and extension from slope to deepsea basin in the northern South China Sea. Journal of Earth Science, 20(1), 27–37. https://doi.org/10.1007/s12583‐009‐0003‐6
    [Google Scholar]
  45. Hwang, C., & Chang, E. T. (2014). Geophysics. Seafloor secrets revealed. Science, 346(6205), 32–33. https://doi.org/10.1126/science.1260459
    [Google Scholar]
  46. Jian, Z., Larsen, H. C., Alvarez Zarikian, C. A., Sun, Z., Stock, J. M., Klaus, A., Boaga, J., Bowden, S. A., Briais, A., Chen, Y., Cukur, D., Dadd, K. A., Ding, W., Dorais, M. J., Ferré, E. C., Ferreira, F., Furusawa, A., Gewecke, A. J., Hinojosa, J. L., … Zhong, L. (2018). Site U1505. https://doi.org/10.14379/iodp.proc.367368.109.2018
  47. Karner, G. D., Johnson, C., Shoffner, J., Lawson, M., Sullivan, M., Sitgreaves, J., McHarge, J., Stewart, J., & Figueredo, P. (2021). Chapter 9: Tectono‐magmatic development of the Santos and Campos basins, Offshore Brazil. In M. R.Mello, P. O.Yilmaz, & B. J.Katz (Eds.), Memoir 124: The supergiant lower cretaceous pre‐salt petroleum systems of the Santos Basin, Brazil (pp. 215–256). AAPG. https://doi.org/10.1306/13722321MSB.9.1853
    [Google Scholar]
  48. Karner, G. D., Manatschal, G., & Pinheiro, L. M. (2007). Imaging, mapping and modelling continental lithosphere extension and breakup: An introduction. Geological Society of London, Special Publication, 282(1), 1–8. https://doi.org/10.1144/sp282.1
    [Google Scholar]
  49. Keen, C. E., Dickie, K., & Dafoe, L. T. (2018). Structural evolution of the rifted margin off northern Labrador: The role of hyperextension and magmatism. Tectonics, 37(7), 1955–1972. https://doi.org/10.1029/2017tc004924
    [Google Scholar]
  50. Larsen, H. C., Jian, Z., Alvarez Zarikian, C. A., Sun, Z., Stock, J. M., Klaus, A., Boaga, J., Bowden, S. A., Briais, A., Chen, Y., Cukur, D., Dadd, K. A., Ding, W., Dorais, M. J., Ferré, E. C., Ferreira, F., Furusawa, A., Gewecke, A. J., Hinojosa, J. L., … Zhong, L. (2018a). Site U1501. In Proceedings of the International Ocean Discovery Program 367/368, College station, TX. https://doi.org/10.14379/iodp.proc.367368.105.2018
    [Google Scholar]
  51. Larsen, H. C., Jian, Z., Alvarez Zarikian, C. A., Sun, Z., Stock, J. M., Klaus, A., Boaga, J., Bowden, S. A., Briais, A., Chen, Y., Cukur, D., Dadd, K. A., Ding, W., Dorais, M. J., Ferré, E. C., Ferreira, F., Furusawa, A., Gewecke, A. J., Hinojosa, J. L., … Zhong, L. (2018b). Site U1502, Proceedings of the International Ocean Discovery Program 367/368, College station, TX. https://doi.org/10.14379/iodp.proc.367368.106.2018
  52. Larsen, H. C., Jian, Z., Alvarez Zarikian, C. A., Sun, Z., Stock, J. M., Klaus, A., Boaga, J., Bowden, S. A., Briais, A., Chen, Y., Cukur, D., Dadd, K. A., Ding, W., Dorais, M. J., Ferré, E. C., Ferreira, F., Furusawa, A., Gewecke, A. J., Hinojosa, J. L., … Zhong, L. (2018c). Site U1504, Proceedings of the International Ocean Discovery Program 367/368, College station, TX. https://doi.org/10.14379/iodp.proc.367368.108.2018
  53. Larsen, H. C., Mohn, G., Nirrengarten, M., Sun, Z., Stock, J., Jian, Z., Klaus, A., Alvarez‐Zarikian, C. A., Boaga, J., Bowden, S. A., Briais, A., Chen, Y., Cukur, D., Dadd, K., Ding, W., Dorais, M., Ferré, E. C., Ferreira, F., Furusawa, A., … Zhong, L. (2018). Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience, 11, 782–789. https://doi.org/10.1038/s41561‐018‐0198‐1
    [Google Scholar]
  54. Le Pourhiet, L., Burov, E., & Moretti, I. (2004). Rifting through a stack of inhomogeneous thrusts (the dipping pie concept). Tectonics, 23(4), TC4005. https://doi.org/10.1029/2003tc001584
    [Google Scholar]
  55. Li, C.‐F., Li, J., Ding, W., Franke, D., Yao, Y., Shi, H., Pang, X., Cao, Y., Lin, J., Kulhanek, D. K., Williams, T., Bao, R., Briais, A., Brown, E. A., Chen, Y., Clift, P. D., Colwell, F. S., Dadd, K. A., Hernández‐Almeida, I., … Zhao, X. (2015). Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research: Solid Earth, 120(3), 1377–1399. https://doi.org/10.1002/2014jb011686
    [Google Scholar]
  56. Li, C.‐F., Lin, J., Kulhanek, D. K., Williams, T., Bao, R., Briais, A., Brown, E. A., Chen, Y., Clift, P. D., Colwell, F. S., Dadd, K. A., Ding, W.‐W., Hernández‐Almeida, I., Huang, X.‐L., Hyun, S., Jiang, T., Koppers, A. A. P., Li, Q., Liu, C., … Zhao, X. (2015). Site U1435. https://doi.org/10.14379/iodp.proc.349.107.2015
  57. Li, C.‐F., Shi, X., Zhou, Z., Li, J., Geng, J., & Chen, B. (2010). Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications. Geophysical Journal International, 182(3), 1229–1247. https://doi.org/10.1111/j.1365‐246X.2010.04702.x
    [Google Scholar]
  58. Li, C.‐F., & Song, T. (2012). Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin. Chinese Science Bulletin, 57(24), 3165–3181. https://doi.org/10.1007/s11434‐012‐5063‐9
    [Google Scholar]
  59. Li, C.‐F., Zhou, Z., Hao, H., Chen, H., Wang, J., Chen, B., & Wu, J. (2008). Late Mesozoic tectonic structure and evolution along the present‐day northeastern South China Sea continental margin. Journal of Asian Earth Sciences, 31(4–6), 546–561. https://doi.org/10.1016/j.jseaes.2007.09.004
    [Google Scholar]
  60. Li, F., Sun, Z., & Yang, H. (2018). Possible spatial distribution of the Mesozoic volcanic arc in the present‐day South China Sea continental margin and its tectonic implications. Journal of Geophysical Research: Solid Earth, 123, 6215–6235. https://doi.org/10.1029/2017jb014861
    [Google Scholar]
  61. Li, H., Liao, J., Shen, Y., Qing, J., Wu, Y., Zhao, Z., & Shi, X. (2023). Rifting/spreading propagation interacts with preexisting transform faults: 3D geodynamic modeling. Frontiers in Earth Science, 10, 1054747. https://doi.org/10.3389/feart.2022.1054747
    [Google Scholar]
  62. Li, Z.‐X., & Li, X.‐H. (2007). Formation of the 1300‐km‐wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat‐slab subduction model. Geology, 35(2), 179. https://doi.org/10.1130/g23193a.1
    [Google Scholar]
  63. Ligi, M., Bonatti, E., Bortoluzzi, G., Cipriani, A., Cocchi, L., Tontini, F. C., Carminati, E., Ottolini, L., & Schettino, A. (2012). Birth of an ocean in the Red Sea: Initial pangs. Geochemistry, Geophysics, Geosystems, 13(8), Q08009. https://doi.org/10.1029/2012gc004155
    [Google Scholar]
  64. Lin, J., Li, J., Xu, Y., Sun, Z., Xia, S., Huang, X., Xie, X., Li, C., Ding, W., Zhou, Z., Zhang, F., & Luo, Y. (2019). Ocean drilling and major advances in marine geological and geophysical research of the South China Sea. Haiyang Xuebao, 41(10), 125–140. https://doi.org/10.3969/j.issn.0253−4193.2019.10.008
    [Google Scholar]
  65. Lister, G. S., Etheridge, M. A., & Symonds, P. A. (1986). Detachment faulting and the evolution of passive continental margins. Geology, 14(3), 246–250. https://doi.org/10.1130/0091‐7613(1986)14<246:DFATEO>2.0.CO;2
    [Google Scholar]
  66. Liu, Y., Li, C.‐F., Wen, Y., Yao, Z., Wan, X., Qiu, X., Zhang, J. Z., Abbas, A., Peng, X., & Li, G. (2021). Mantle serpentinization beneath a failed rift and post‐spreading magmatism in the northeastern South China Sea margin. Geophysical Journal International, 225, 811–828. https://doi.org/10.1093/gji/ggab006
    [Google Scholar]
  67. Ma, P., Liu, Z., Huang, B., Zhao, Y., Shu, W., & Li, Y. (2020). Oligocene evolution of the outermost continental margin in response to breakup and early spreading of the South China Sea. Marine Geology, 427, 106241. https://doi.org/10.1016/j.margeo.2020.106241
    [Google Scholar]
  68. Macdonald, K. C. (1982). Mid‐Ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone. Annual Review of Earth and Planetary Sciences, 10, 155–190. https://doi.org/10.1146/annurev.ea.10.050182.001103
    [Google Scholar]
  69. Macdonald, K. C. (2001). Mid‐ocean ridge tectonics, volcanism and geomorphology. In J.Steele, S.Thorpe, & K.Turekian (Eds.), Encyclopedia of ocean sciences (pp. 1798–1813). Elsevier, Academic Press. https://doi.org/10.1006/rwos.2001.0094
    [Google Scholar]
  70. Martinez, F., Taylor, B., & Goodliffe, A. M. (1999). Contrasting styles of seafloor spreading in the Woodlark Basin: Indications of rift‐induced secondary mantle convection. Journal of Geophysical Research, 104(B6), 12909–12926. https://doi.org/10.1029/1999jb900068
    [Google Scholar]
  71. McIntosh, K., Lavier, L., van Avendonk, H., Lester, R., Eakin, D., & Liu, C.‐S. (2014). Crustal structure and inferred rifting processes in the northeast South China Sea. Marine and Petroleum Geology, 58, 612–626. https://doi.org/10.1016/j.marpetgeo.2014.03.012
    [Google Scholar]
  72. Minshull, T. A., Edwards, R. A., & Flueh, E. R. (2015). Crustal structure of the Murray ridge, northwest Indian Ocean, from wide‐angle seismic data. Geophysical Journal International, 202(1), 454–463. https://doi.org/10.1093/gji/ggv162
    [Google Scholar]
  73. Mohn, G., Ringenbach, J. C., Nirrengarten, M., Lei, C., McCarthy, A., & Tugend, J. (2022). Mode of continental breakup of marginal seas. Geology, 50(10), 1208–1213. https://doi.org/10.1130/G50204.1
    [Google Scholar]
  74. Nemčok, M., Sinha, S. T., Stuart, C. J., Welker, C., Choudhuri, M., Sharma, S. P., Misra, A. A., Sinha, N., & Venkatraman, S. (2013). East Indian margin evolution and crustal architecture: Integration of deep reflection seismic interpretation and gravity modelling. Geological Society of London, Special Publication, 369(1), 477–496. https://doi.org/10.1144/sp369.6
    [Google Scholar]
  75. Nirrengarten, M., Gernigon, L., & Manatschal, G. (2014). Lower crustal bodies in the Møre volcanic rifted margin: Geophysical determination and geological implications. Tectonophysics, 636, 143–157. https://doi.org/10.1016/j.tecto.2014.08.004
    [Google Scholar]
  76. Nirrengarten, M., Manatschal, G., Yuan, X. P., Kusznir, N. J., & Maillot, B. (2016). Application of the critical Coulomb wedge theory to hyper‐extended, magma‐poor rifted margins. Earth and Planetary Science Letters, 442, 121–132. https://doi.org/10.1016/j.epsl.2016.03.004
    [Google Scholar]
  77. Nirrengarten, M., Mohn, G., Kusznir, N. J., Sapin, F., Despinois, F., Pubellier, M., Chang, S. P., Larsen, H. C., & Ringenbach, J. C. (2020). Extension modes and breakup processes of the southeast China‐Northwest Palawan conjugate rifted margins. Marine and Petroleum Geology, 113, 104123. https://doi.org/10.1016/j.marpetgeo.2019.104123
    [Google Scholar]
  78. Nissen, S. S., Hayes, D. E., Bochu, Y., Zeng, W., Chen, Y., & Nu, X. (1995). Gravity, heat flow, and seismic constraints on the processes of crustal extension: Northern margin of the South China Sea. Journal of Geophysical Research: Solid Earth, 100(B11), 22447–22483. https://doi.org/10.1029/95jb01868
    [Google Scholar]
  79. Ogg, J. G. (2020). Chapter 5—Geomagnetic polarity time scale. In M. F.Gradstein, J. G.Ogg, M. D.Schmitz, & G. M.Ogg (Eds.), Geologic time scale 2020 (Vol. 1, pp. 159–192). Elsevier. https://doi.org/10.1016/b978‐0‐12‐824360‐2.00005‐x
    [Google Scholar]
  80. Pang, X., Zheng, J., Mei, L., Liu, B., Zhang, Z., Wu, Z., Wu, Z., & Feng, X. (2021). Structural diversity of fault depressions under the background of preexisting subduction continental margin, Pearl River Mouth Basin, China. Petroleum Exploration and Development, 48(4), 677–687. https://doi.org/10.11698/PED.2021.04.01
    [Google Scholar]
  81. Pang, X., Zheng, J., Ren, J., Wang, F., Yan, H., Sun, H., & Liu, B. (2022). Structural evolution and magmatism of fault depression in Baiyun Sag, northern margin of South China Sea. Earth Science, 47(7), 2303–2316. https://doi.org/10.3799/dqkx.2022.064
    [Google Scholar]
  82. Peace, A. L., Phethean, J. J. J., Franke, D., Foulger, G. R., Schiffer, C., Welford, J. K., McHone, G., Rocchi, S., Schnabel, M., & Doré, A. G. (2020). A review of Pangaea dispersal and large igneous provinces—In search of a causative mechanism. Earth‐Science Reviews, 206, 102902. https://doi.org/10.1016/j.earscirev.2019.102902
    [Google Scholar]
  83. Peng, X., Li, C., Song, T., Wan, X., Hou, W., Wen, Y., et al. (2022). Deep structures and lithospheric breakup processes at the northern continent⁃ocean transition zone of the South China Sea. Earth Science, 47(11), 1–11. https://doi.org/10.3799/dqkx.2022.000
    [Google Scholar]
  84. Peng, X., & Li, C.‐F. (2024). Along‐strike break‐up variations of the continent–ocean transition zone in the northern South China Sea. Journal of the Geological Society, 181. https://doi.org/10.1144/jgs2023‐134
    [Google Scholar]
  85. Pérez‐Gussinyé, M., Andrés‐Martínez, M., Araújo, M., Xin, Y., Armitage, J., & Morgan, J. P. (2020). Lithospheric strength and rift migration controls on Synrift stratigraphy and breakup unconformities at rifted margins: Examples from numerical models, the Atlantic and South China Sea margins. Tectonics, 39, e2020TC006255. https://doi.org/10.1029/2020tc006255
    [Google Scholar]
  86. Pérez‐Gussinyé, M., Collier, J. S., Armitage, J. J., Hopper, J. R., Sun, Z., & Ranero, C. R. (2023). Towards a process‐based understanding of rifted continental margins. Nature Reviews Earth and Environment, 4, 166–184. https://doi.org/10.1038/s43017‐022‐00380‐y
    [Google Scholar]
  87. Péron‐Pinvidic, G., & Manatschal, G. (2009). The final rifting evolution at deep magma‐poor passive margins from Iberia‐Newfoundland: A new point of view. International Journal of Earth Sciences, 98(7), 1581–1597. https://doi.org/10.1007/s00531‐008‐0337‐9
    [Google Scholar]
  88. Péron‐Pinvidic, G., & Naliboff, J. (2020). The exhumation detachment factory. Geology, 48(6), 635–639. https://doi.org/10.1130/g47174.1
    [Google Scholar]
  89. Petri, B., Wijbrans, J. R., Mohn, G., Manatschal, G., & Beltrando, M. (2023). Thermal evolution of Permian post‐orogenic extension and Jurassic rifting recorded in the Austroalpine basement (SE Switzerland, N Italy). Lithos, 444–445, 107124. https://doi.org/10.1016/j.lithos.2023.107124
    [Google Scholar]
  90. Piao, Q., Zhang, B., Zhang, R., Geng, M., & Zhong, G. (2022). Continent‐ocean transition in the northern South China Sea by high‐quality deep reflection seismic data. Chinese Journal of Geophysics, 65(7), 2546–2559. https://doi.org/10.6038/cjg2022P0663
    [Google Scholar]
  91. Pichot, T., Delescluse, M., Chamot‐Rooke, N., Pubellier, M., Qiu, Y., Meresse, F., Sun, G., Savva, D., Wong, K. P., Watremez, L., & Auxiètre, J. L. (2014). Deep crustal structure of the conjugate margins of the SW South China Sea from wide‐angle refraction seismic data. Marine and Petroleum Geology, 58, 627–643. https://doi.org/10.1016/j.marpetgeo.2013.10.008
    [Google Scholar]
  92. Reeve, M. T., Magee, C., Jackson, C. A. L., Bell, R. E., & Bastow, I. D. (2022). Stratigraphic record of continental breakup, offshore NW Australia. Basin Research, 34(3), 1220–1243. https://doi.org/10.1111/bre.12656
    [Google Scholar]
  93. Ren, J., Sun, M., Zhu, B., Han, B., Zhang, H., & Lv, W. (2018). Paleo‐sedimentary environment and tectonic significance of gravel layers at IODP site U1499 in northern South China Sea. Earth Science, 43(Suppl. 2), 179–191. https://doi.org/10.3799/dqkx.2018.209
    [Google Scholar]
  94. Reston, T. J. (2009). The structure, evolution and symmetry of the magma‐poor rifted margins of the North and Central Atlantic: A synthesis. Tectonophysics, 468(1–4), 6–27. https://doi.org/10.1016/j.tecto.2008.09.002
    [Google Scholar]
  95. Robb, M. S., Taylor, B., & Goodliffe, A. M. (2005). Re‐examination of the magnetic lineations of the Gascoyne and Cuvier Abyssal Plains, off NW Australia. Geophysical Journal International, 163(1), 42–55. https://doi.org/10.1111/j.1365‐246X.2005.02727.x
    [Google Scholar]
  96. Salazar‐Mora, C. A., & Sacek, V. (2023). Effects of tectonic quiescence between orogeny and rifting. Tectonics, 42, e2022TC007492. https://doi.org/10.1029/2022TC007492
    [Google Scholar]
  97. Sandwell, D. T., Muller, R. D., Smith, W. H., Garcia, E., & Francis, R. (2014). Marine geophysics. New global marine gravity model from CryoSat‐2 and Jason‐1 reveals buried tectonic structure. Science, 346(6205), 65–67. https://doi.org/10.1126/science.1258213
    [Google Scholar]
  98. Sauter, D., Manatschal, G., Kusznir, N., Masquelet, C., Werner, P., Ulrich, M., Bellingham, P., Franke, D., & Autin, J. (2023). Ignition of the southern Atlantic seafloor spreading machine without hot‐mantle booster. Scientific Reports, 13(1), 1195. https://doi.org/10.1038/s41598‐023‐28364‐y
    [Google Scholar]
  99. Schiffer, C., Doré, A. G., Foulger, G. R., Franke, D., Geoffroy, L., Gernigon, L., Holdsworth, B., Kusznir, N., Lundin, E., McCaffrey, K., Peace, A. L., Petersen, K. D., Phillips, T. B., Stephenson, R., Stoker, M. S., & Welford, J. K. (2020). Structural inheritance in the North Atlantic. Earth‐Science Reviews, 206, 102975. https://doi.org/10.1016/j.earscirev.2019.102975
    [Google Scholar]
  100. Seton, M., Müller, R. D., Zahirovic, S., Williams, S., Wright, N. M., Cannon, J., Whittaker, J. M., Matthews, K. J., & McGirr, R. (2020). A global data set of present‐day oceanic crustal age and seafloor spreading parameters. Geochemistry, Geophysics, Geosystems, 21(10), e2020GC009214. https://doi.org/10.1029/2020gc009214
    [Google Scholar]
  101. Shao, L., Meng, A., Li, Q., Qiao, P., Cui, Y., Cao, L., & Chen, S. (2017). Detrital zircon ages and elemental characteristics of the Eocene sequence in IODP Hole U1435A: Implications for rifting and environmental changes before the opening of the South China Sea. Marine Geology, 394, 39–51. https://doi.org/10.1016/j.margeo.2017.08.002
    [Google Scholar]
  102. Shi, H., & Li, C.‐F. (2012). Mesozoic and early Cenozoic tectonic convergence‐to‐rifting transition prior to opening of the South China Sea. International Geology Review, 54(15), 1801–1828. https://doi.org/10.1080/00206814.2012.677136
    [Google Scholar]
  103. Sibuet, J.‐C., & Tucholke, B. E. (2012). The geodynamic province of transitional lithosphere adjacent to magma‐poor continental margins. Geological Society of London, Special Publication, 369(1), 429–452. https://doi.org/10.1144/sp369.15
    [Google Scholar]
  104. Song, T., Li, C.‐F., Wu, S., Yao, Y., & Gao, J. (2019). Extensional styles of the conjugate rifted margins of the South China Sea. Journal of Asian Earth Sciences, 177, 117–128. https://doi.org/10.1016/j.jseaes.2019.03.008
    [Google Scholar]
  105. Stein, C. A., & Stein, S. (1992). A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359, 123–129. https://doi.org/10.1038/359123a0
    [Google Scholar]
  106. Stock, J. M., Sun, Z., Klaus, A., Larsen, H. C., Jian, Z., Alvarez Zarikian, C. A., Boaga, J., Bowden, S. A., Briais, A., Chen, Y., Cukur, D., Dadd, K. A., Ding, W., Dorais, M. J., Ferré, E. C., Ferreira, F., Furusawa, A., Gewecke, A. J., Hinojosa, J. L., … Zhong, L. (2018). Site U1500, Proceedings of the International Ocean Discovery Program 367/368. https://doi.org/10.14379/iodp.proc.367368.104.2018
  107. Sun, Z., Lin, J., Qiu, N., Jian, Z. M., Wang, P. X., Pang, X., Zheng, J., & Zhu, B. (2019). The role of magmatism in the thinning and breakup of the South China Sea continental margin. National Science Review, 6(5), 871–876. https://doi.org/10.1093/nsr/nwz116
    [Google Scholar]
  108. Sun, Z., Stock, J. M., Klaus, A., Larsen, H. C., Jian, Z., Alvarez Zarikian, C. A., Boaga, J., Bowden, S. A., Briais, A., Chen, Y., Cukur, D., Dadd, K. A., Ding, W., Dorais, M. J., Ferré, E. C., Ferreira, F., Furusawa, A., Gewecke, A. J., Hinojosa, J. L., … Zhong, L. (2018). Site U1499, Proceedings of the International Ocean Discovery Program 367/368. https://doi.org/10.14379/iodp.proc.367368.103.2018
  109. Suo, Y., Li, S., Peng, G., Du, X., Zhou, J., Wang, P., Wang, G., Somerville, I., Diao, Y., Liu, Z., Fu, X., Liu, B., & Cao, X. (2022). Cenozoic basement‐involved rifting of the northern South China Sea margin. Gondwana Research, 120, 20–30. https://doi.org/10.1016/j.gr.2022.02.017
    [Google Scholar]
  110. Sutra, E., & Manatschal, G. (2012). How does the continental crust thin in a hyperextended rifted margin? Insights from the Iberia Margin. Geology, 40(2), 139–142. https://doi.org/10.1130/g32786.1
    [Google Scholar]
  111. Sutra, E., Manatschal, G., Mohn, G., & Unternehr, P. (2013). Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochemistry, Geophysics, Geosystems, 14, 2575–2597. https://doi.org/10.1002/ggge.20135
    [Google Scholar]
  112. Tang, X.‐Y., Hu, S.‐B., Zhang, G.‐C., Liang, J.‐S., Yang, S.‐C., Rao, S., & Li, W.‐W. (2014). Geothermal characteristics and hydrocarbon accumulation of the northern marginal basins, South China Sea. Chinese Journal of Geophysics, 57(1), 64–78. https://doi.org/10.1002/cjg2.20084
    [Google Scholar]
  113. Taylor, B., Goodliffe, A., & Martinez, F. (2009). Initiation of transform faults at rifted continental margins. Comptes Rendus Geoscience, 341(5), 428–438. https://doi.org/10.1016/j.crte.2008.08.010
    [Google Scholar]
  114. Taylor, B., Goodliffe, A., Martinez, F., & Hey, R. (1995). Continental rifting and initial sea‐floor spreading in the woodlark basin. Nature, 374, 534–537. https://doi.org/10.1038/374534a0
    [Google Scholar]
  115. Taylor, B., Goodliffe, A. M., & Martinez, F. (1999). How continents break up: Insights from Papua New Guinea. Journal of Geophysical Research: Solid Earth, 104(B4), 7497–7512. https://doi.org/10.1029/1998JB900115
    [Google Scholar]
  116. Taylor, B., & Hayes, D. E. (1980). The tectonic evolution of the South China Basin. In D. E.Hayes (Ed.), The tectonic and geologic evolution of southeast Asian Seas and Islands (pp. 89–104). Geophysical Monograph Series, American Geophysical Union. https://doi.org/10.1029/GM023p0089
    [Google Scholar]
  117. Taylor, B., & Hayes, D. E. (1983). Origin and history of the South China Sea basin. In D. E.Hayes (Ed.), The tectonic and geologic evolution of southeast Asian Seas and Islands: Part 2 (Vol. 27, pp. 23–56). Geophysical Monograph Series. https://doi.org/10.1029/GM027p0023
    [Google Scholar]
  118. Tucholke, B. E., Sawyer, D. S., & Sibuet, J. C. (2007). Breakup of the Newfoundland–Iberia rift. In G. D.Karner, G.Manatschal, & L. M.Pinheiro (Eds.), Imaging, mapping and modelling continental lithosphere extension and breakup (Vol. 282, pp. 9–46). Geological Society Special Publications. https://doi.org/10.1144/sp282.2
    [Google Scholar]
  119. Tugend, J., Gillard, M., Manatschal, G., Nirrengarten, M., Harkin, C., Epin, M.‐E., Sauter, D., Autin, J., Kusznir, N., & McDermott, K. (2018). Reappraisal of the magma‐rich versus magma‐poor rifted margin archetypes. In K. R.McClay & J. A.Hammerstein (Eds.), Passive margins: Tectonics, sedimentation and magmatism (Vol. 476, pp. 23–47). Geological Society Special Publications. https://doi.org/10.1144/sp476.9
    [Google Scholar]
  120. Wan, X., Li, C.‐F., Zhao, M., He, E., Liu, S., Qiu, X., Lu, Y., & Chen, N. (2019). Seismic velocity structure of the magnetic quiet zone and Continent‐Ocean boundary in the northeastern South China Sea. Journal of Geophysical Research: Solid Earth, 124(11), 11866–11899. https://doi.org/10.1029/2019jb017785
    [Google Scholar]
  121. Wang, P., Huang, C.‐Y., Lin, J., Jian, Z., Sun, Z., & Zhao, M. (2019). The South China Sea is not a mini‐Atlantic: Plate‐edge rifting vs intra‐plate rifting. National Science Review, 6(5), 902–913. https://doi.org/10.1093/nsr/nwz135
    [Google Scholar]
  122. Wang, P., Prell, W. L., & Blum, P. (2000). Site 1148, Proceedings of the Ocean Drilling Program, Initial Reports Volume 184.
  123. Wang, Q., Zhao, M., Zhang, H., Zhang, J., He, E., Yuan, Y., & Qiu, X. (2020). Crustal velocity structure of the northwest sub‐basin of the South China Sea based on seismic data reprocessing. Science China Earth Sciences, 63(11), 1791–1806. https://doi.org/10.1007/s11430‐020‐9654‐4
    [Google Scholar]
  124. Wang, T. K., Chen, M.‐K., Lee, C.‐S., & Xia, K. (2006). Seismic imaging of the transitional crust across the northeastern margin of the South China Sea. Tectonophysics, 412(3–4), 237–254. https://doi.org/10.1016/j.tecto.2005.10.039
    [Google Scholar]
  125. Wang, W., Tian, L., Castillo, P. R., Wu, T., Dong, Y., Liu, H., & Chen, L. (2023). Petrogenesis of high‐alumina basalts: Implications for magmatic processes associated with the opening of the South China Sea. Chemical Geology, 636, 121641. https://doi.org/10.1016/j.chemgeo.2023.121641
    [Google Scholar]
  126. Warner, M. R. (1987). Seismic reflections from the Moho—The effect of isostasy. Geophysical Journal International, 88(2), 425–435. https://doi.org/10.1111/j.1365‐246X.1987.tb06651.x
    [Google Scholar]
  127. Wen, Y., Li, C.‐F., Wang, L., Liu, Y., Peng, X., Yao, Z., & Yao, Y. (2021). The onset of seafloor spreading at the northeastern continent‐ocean boundary of the South China Sea. Marine and Petroleum Geology, 133, 105255. https://doi.org/10.1016/j.marpetgeo.2021.105255
    [Google Scholar]
  128. Wu, Z.‐C., Gao, J.‐Y., Li, J.‐B., Zhang, T., Shen, Z.‐Y., & Yang, C.‐G. (2011). Characteristics of magnetic anomalies in the northern South China Sea and their implications for pre‐Cenozoic tectonics. Chinese Journal of Geophysics, 54(6), 1112–1123. https://doi.org/10.1002/cjg2.1688
    [Google Scholar]
  129. Xu, Z., Wang, J., Yao, Y., Tang, J., Gao, H., & Li, X. (2021). The temporal‐spatial distribution and deep structure of the ZhongnanLiyue fault zone in the north of the South China Sea basin. Earth Science ‐ Journal of China University of Geosciences, 46(3), 942–955. https://doi.org/10.3799/dqkx.2020.400
    [Google Scholar]
  130. Ye, Q., Mei, L., Shi, H., Shu, Y., Camanni, G., & Wu, J. (2018). A low‐angle normal fault and basement structures within the Enping Sag, Pearl River Mouth Basin: Insights into late Mesozoic to early Cenozoic tectonic evolution of the South China Sea area. Tectonophysics, 731‐732, 1–16. https://doi.org/10.1016/j.tecto.2018.03.003
    [Google Scholar]
  131. Yuan, Y., He, E., Zhao, M., Zhang, C., Gao, J., Zhang, J., & Sun, Z. (2023). Seismic velocity structure and tectonic evolution of the continent‐ocean transition in the mid‐northern South China Sea. Tectonophysics, 862, 229984. https://doi.org/10.1016/j.tecto.2023.229984
    [Google Scholar]
  132. Zhang, C., Manatschal, G., Pang, X., Sun, Z., Zheng, J., Li, H., Sun, L., Zhang, J., & Zhao, Y. (2020). Discovery of mega‐sheath folds flooring the Liwan subbasin (South China Sea): Implications for the rheology of hyperextended crust. Geochemistry, Geophysics, Geosystems, 21(7), e2020GC009023. https://doi.org/10.1029/2020gc009023
    [Google Scholar]
  133. Zhang, C., Sun, Z., Manatschal, G., Pang, X., Li, S., Sauter, D., Péron‐Pinvidic, G., & Zhao, M. (2021). Ocean‐continent transition architecture and breakup mechanism at the mid‐northern South China Sea. Earth‐Science Reviews, 217, 103620. https://doi.org/10.1016/j.earscirev.2021.103620
    [Google Scholar]
  134. Zhang, C., Sun, Z., Manatschal, G., Pang, X., Qiu, N., Su, M., Zheng, J., Li, H., Gu, Y., Zhang, J., & Zhao, Y. (2021). Syn‐rift magmatic characteristics and evolution at a sediment‐rich margin: Insights from high‐resolution seismic data from the South China Sea. Gondwana Research, 91, 81–96. https://doi.org/10.1016/j.gr.2020.11.012
    [Google Scholar]
  135. Zhang, J., Zhao, M., Ding, W., Ranero, C. R., Sallares, V., Gao, J., Zhang, C., & Qiu, X. (2023). New insights into the rift‐to‐drift process of the northern South China Sea margin constrained by a three‐dimensional OBS seismic velocity model. Journal of Geophysical Research: Solid Earth, 128, e2022JB026171. https://doi.org/10.1029/2022JB026171
    [Google Scholar]
  136. Zhao, F., Alves, T. M., Xia, S., Li, W., Wang, L., Mi, L., Wu, S., Cao, J., & Fan, C. (2020). Along‐strike segmentation of the South China Sea margin imposed by inherited pre‐rift basement structures. Earth and Planetary Science Letters, 530, 115862. https://doi.org/10.1016/j.epsl.2019.115862
    [Google Scholar]
  137. Zhao, M., Qiu, X., Xia, S., Xu, H., Wang, P., Wang, T. K., Lee, C. S., & Xia, K. (2010). Seismic structure in the northeastern South China Sea: S‐wave velocity and Vp/Vs ratios derived from three‐component OBS data. Tectonophysics, 480, 183–197. https://doi.org/10.1016/j.tecto.2009.10.004
    [Google Scholar]
  138. Zhu, J., Qiu, X., Kopp, H., Xu, H., Sun, Z., Ruan, A., Sun, J., & Wei, X. (2012). Shallow anatomy of a continent–ocean transition zone in the northern South China Sea from multichannel seismic data. Tectonophysics, 554‐557, 18–29. https://doi.org/10.1016/j.tecto.2012.05.027
    [Google Scholar]
/content/journals/10.1111/bre.12882
Loading
/content/journals/10.1111/bre.12882
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error