1887
Volume 36, Issue 4
  • E-ISSN: 1365-2117

Abstract

[

Paleo‐source areas (dashed grey areas) and depositional sink in the SW Barents Sea for (a) Early Eocene; (b) Middle Eocene; (c) Oligocene and (d) Miocene.

, Abstract

Source‐to‐sink dynamics are subjected to complex interactions between erosion, sediment transfer and deposition, particularly in an evolving tectonic and climatic setting. Here we use stratigraphic forward modelling (SFM) to predict the basin‐fill architecture of a multi‐source‐to‐sink system based on a state‐of‐the‐art numerical approach. The modelling processes consider key source‐to‐sink parameters such as water discharge, sediment load and grain size to simulate various sedimentary processes and transport mechanisms reflecting the dynamic interplay between erosion in the catchment area, subsidence, deposition and filling of the basin. The Cenozoic succession along the SW Barents Shelf margin provides a key area to examine controls on source‐to‐sink systems along a transform margin that developed during the opening of the North Atlantic when Greenland and Eurasian plates were separated (ca. 55 Ma onwards). Moreover, the gradual cooling which culminated in major glaciations in the northern hemisphere during the Quaternary (ca. 2.7 Ma), has affected the spatio‐temporal evolution of the sediment routing along the western Barents Shelf margin. This study aims to characterize the relative importance of different source areas within the source‐to‐sink framework through SFM. In the early Eocene, the SW Barents Shelf experienced a relatively equal sediment delivery from three principal source areas: (i) Greenland to the north, (ii) the Stappen High to the east, representing a local source terrain, and (iii) a major southern source (Fennoscandia). In the middle Eocene, our best‐fit modelling scenario suggests that the northern and the local eastern sources dominated over the southern source, collectively supplying large amounts of sand into the basin as evidenced by the submarine fans in Sørvestsnaget Basin. In the Oligocene (ca. 33 Ma) and Miocene (ca. 23 Ma), significant amounts of sediments were sourced from the east due to shelf‐wide uplift. Finally, this study highlights the dynamic nature and controls of sediment transfer in multi‐source‐to‐sink systems and demonstrates the potential of SFM to unravel tectonic and climatic signals in the stratigraphic record.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12883
2024-07-10
2024-09-16
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/4/bre12883.html?itemId=/content/journals/10.1111/bre.12883&mimeType=html&fmt=ahah

References

  1. Amorosi, A., Sammartino, I., Dinelli, E., Campo, B., Guercia, T., Trincardi, F., & Pellegrini, C. (2022). Provenance and sediment dispersal in the Po‐Adriatic source‐to‐sink system unraveled by bulk‐sediment geochemistry and its linkage to catchment geology. Earth‐Science Reviews, 234, 104202.
    [Google Scholar]
  2. Baig, I., Faleide, J. I., Jahren, J., & Mondol, N. H. (2016). Cenozoic exhumation on the southwestern Barents Shelf: Estimates and uncertainties constrained from compaction and thermal maturity analyses. Marine and Petroleum Geology, 73, 105–130.
    [Google Scholar]
  3. Barabasch, J., Ducros, M., Hawie, N., Daher, S. B., Nader, F. H., & Littke, R. (2019). Integrated 3D forward stratigraphic and petroleum system modeling of the Levant Basin, Eastern Mediterranean. Basin Research, 31(2), 228–252.
    [Google Scholar]
  4. Bergh, S. G., Braathen, A., & Andresen, A. (1997). Interaction of basement‐involved and thin‐skinned tectonism in the Tertiary fold‐thrust belt of central Spitsbergen, Svalbard. AAPG Bulletin, 81(4), 637–661.
    [Google Scholar]
  5. Bjordal‐Olsen, S., Rydningen, T. A., Laberg, J. S., Lasabuda, A. P., & Knutsen, S.‐M. (2022). Contrasting Neogene–Quaternary continental margin evolution offshore mid‐north Norway: Implications for source‐to‐sink systems. Marine Geology, 106974, 106974.
    [Google Scholar]
  6. Blaich, O., Tsikalas, F., & Faleide, J. (2017). New insights into the tectono‐stratigraphic evolution of the southern Stappen High and its transition to Bjørnøya Basin, SW Barents Sea. Marine and Petroleum Geology, 85, 89–105.
    [Google Scholar]
  7. Burgess, P. M., Lammers, H., van Oosterhout, C., & Granjeon, D. (2006). Multivariate sequence stratigraphy: Tackling complexity and uncertainty with stratigraphic forward modeling, multiple scenarios, and conditional frequency maps. AAPG Bulletin, 90(12), 1883–1901.
    [Google Scholar]
  8. Colombera, L., Arévalo, O. J., & Mountney, N. P. (2017). Fluvial‐system response to climate change: The Paleocene‐Eocene Tremp group, Pyrenees, Spain. Global and Planetary Change, 157, 1–17.
    [Google Scholar]
  9. Covault, J. A., Romans, B. W., Graham, S. A., Fildani, A., & Hilley, G. E. (2011). Terrestrial source to deep‐sea sink sediment budgets at high and low sea levels: Insights from tectonically active Southern California. Geology, 39(7), 619–622.
    [Google Scholar]
  10. Dai, A., & Trenberth, K. E. (2002). Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. Journal of Hydrometeorology, 3(6), 660–687.
    [Google Scholar]
  11. Dai, A., Zhao, T., & Chen, J. (2018). Climate change and drought: A precipitation and evaporation perspective. Current Climate Change Reports, 4, 301–312.
    [Google Scholar]
  12. De Weger, W., Hernández‐Molina, F. J., Miguez‐Salas, O., De Castro, S., Bruno, M., Chiarella, D., Sierro, F. J., Blackbourn, G., & Manar, M. A. (2021). Contourite depositional system after the exit of a strait: Case study from the late Miocene south Rifian Corridor, Morocco. Sedimentology, 68(7), 2996–3032.
    [Google Scholar]
  13. Dimakis, P., Braathen, B. I., Faleide, J. I., Elverhøi, A., & Gudlaugsson, S. T. (1998). Cenozoic erosion and the preglacial uplift of the Svalbard–Barents Sea region. Tectonophysics, 300(1), 311–327.
    [Google Scholar]
  14. Doré, A., Lundin, E., Gibbons, A., Sømme, T., & Tørudbakken, B. (2016). Transform margins of the Arctic: A synthesis and re‐evaluation. Geological Society, London, Special Publications, 431(1), 63–94.
    [Google Scholar]
  15. Dumais, M. A., Gernigon, L., Olesen, O., Lim, A., Johansen, S., & Brönner, M. (2022). Crustal and thermal heterogeneities across the Fram Strait and the Svalbard Margin. Tectonics, 41(10), e2022TC007302.
    [Google Scholar]
  16. Eide, C. H., Klausen, T. G., Katkov, D., Suslova, A. A., & Helland‐Hansen, W. (2017). Linking an early Triassic delta to antecedent topography: Source‐to‐sink study of the southwestern Barents Sea margin. Geological Society of America Bulletin, 130(1–2), 263–283.
    [Google Scholar]
  17. Eide, C. H., Müller, R., & Helland‐Hansen, W. (2018). Using climate to relate water discharge and area in modern and ancient catchments. Sedimentology, 65(4), 1378–1389.
    [Google Scholar]
  18. Eidvin, T., Jansen, E., & Riis, F. (1993). Chronology of Tertiary fan deposits off the western Barents Sea: Implications for the uplift and erosion history of the Barents Shelf. Marine Geology, 112(1), 109–131.
    [Google Scholar]
  19. Eidvin, T., Riis, F., Brekke, H., & Smelror, M. (2022). A revised lithostratigraphic scheme for the Eocene to Pleistocene succession on the Norwegian continental shelf. Norwegian Journal of Geology, 1, 1–132. https://doi.org/10.17850/njgsp1
    [Google Scholar]
  20. Faleide, J., Myhre, A., & Eldholm, O. (1988). Early Tertiary volcanism at the western Barents Sea margin. Geological Society, London, Special Publications, 39(1), 135–146.
    [Google Scholar]
  21. Faleide, J. I., Bjørlykke, K., & Gabrielsen, R. H. (2015). Geology of the Norwegian continental shelf. In K.Bjørlykke (Ed.), Petroleum geoscience: From sedimentary environments to rock physics (pp. 603–637). Springer‐Verlag.
    [Google Scholar]
  22. Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, O., Wilson, J., & Eldholm, O. (2008). Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 31(1), 82–91.
    [Google Scholar]
  23. Fjeldskaar, W., & Amantov, A. (2018). Effects of glaciations on sedimentary basins. Journal of Geodynamics, 118, 66–81.
    [Google Scholar]
  24. Flowerdew, M. J., Fleming, E. J., Chew, D. M., Morton, A. C., Frei, D., Benedictus, A., Omma, J., Riley, T. R., Badenszki, E., & Whitehouse, M. J. (2023). The importance of Eurekan Mountains on Cenozoic sediment routing on the Western Barents shelf. Geosciences, 13(3), 91.
    [Google Scholar]
  25. Gac, S., Minakov, A., Shephard, G. E., Faleide, J. I., & Planke, S. (2020). Deformation analysis in the Barents Sea in relation to Paleogene transpression along the Greenland‐Eurasia Plate Boundary. Tectonics, 39(10), e2020TC006172.
    [Google Scholar]
  26. Gaina, C., Nasuti, A., Kimbell, G. S., & Blischke, A. (2017). Break‐up and seafloor spreading domains in the NE Atlantic. Geological Society, London, Special Publications, 447(1), 393–417.
    [Google Scholar]
  27. GEBCO . (2022). GEBCO_2022 grid.
  28. Gervais, V., Granjeon, D., & Bouquet, S. (2023). An automatic workflow for risk analysis on spatial output properties using kriging‐based surrogate models—Application to stratigraphic forward modelling. Basin Research, 35, 1933–1960.
    [Google Scholar]
  29. Gilmullina, A., Klausen, T. G., Doré, A. G., Rossi, V. M., Suslova, A., & Eide, C. H. (2022). Linking sediment supply variations and tectonic evolution in deep time, source‐to‐sink systems—The Triassic Greater Barents Sea Basin. Bulletin, 134(7–8), 1760–1780.
    [Google Scholar]
  30. Golovneva, L. B., Zolina, А. А., & Spicer, R. A. (2023). The early Paleocene (Danian) climate of Svalbard based on palaeobotanical data. Papers in Palaeontology, 9(6), e1533.
    [Google Scholar]
  31. Granjeon, D., & Joseph, P. (1999). Concepts and applications of a 3‐D multiple lithology, diffusive model in stratigraphic modeling.
  32. Green, P., & Duddy, I. (2010). Synchronous exhumation events around the Arctic including examples from Barents Sea and Alaska North Slope. Geological Society of London, Petroleum Geology Conference Series, 7, 633–644.
    [Google Scholar]
  33. Greenwood, D. R., Basinger, J. F., & Smith, R. Y. (2010). How wet was the Arctic Eocene rain forest? Estimates of precipitation from Paleogene Arctic macrofloras. Geology, 38(1), 15–18.
    [Google Scholar]
  34. Grundvåg, S.‐A., Marin, D., Kairanov, B., Śliwińska, K., Nøhr‐Hansen, H., Jelby, M. E., Escalona, A., & Olaussen, S. (2017). The Lower Cretaceous succession of the northwestern Barents Shelf: Onshore and offshore correlations. Marine and Petroleum Geology, 86, 834–857.
    [Google Scholar]
  35. Harishidayat, D., Omosanya, K. O., Johansen, S. E., Eruteya, O. E., & Niyazi, Y. (2018). Morphometric analysis of sediment conduits on a bathymetric high: Implications for palaeoenvironment and hydrocarbon prospectivity. Basin Research, 30(5), 1015–1041.
    [Google Scholar]
  36. Hawie, N., Covault, J. A., Dunlap, D., & Sylvester, Z. (2018). Slope‐fan depositional architecture from high‐resolution forward stratigraphic models. Marine and Petroleum Geology, 91, 576–585.
    [Google Scholar]
  37. Hawie, N., Deschamps, R., Granjeon, D., Nader, F. H., Gorini, C., Müller, C., Montadert, L., & Baudin, F. (2017). Multi‐scale constraints of sediment source to sink systems in frontier basins: A forward stratigraphic modelling case study of the levant region. Basin Research, 29, 418–445.
    [Google Scholar]
  38. Helland‐Hansen, W., & Grundvåg, S. A. (2021). The Svalbard Eocene‐Oligocene (?) Central Basin succession: Sedimentation patterns and controls. Basin Research, 33(1), 729–753.
    [Google Scholar]
  39. Helland‐Hansen, W., Sømme, T. O., Martinsen, O. J., Lunt, I., & Thurmond, J. (2016). Deciphering Earth's natural hourglasses: Perspectives on source‐to‐sink analysis. Journal of Sedimentary Research, 86(9), 1008–1033.
    [Google Scholar]
  40. Henriksen, E., Bjørnseth, H., Hals, T., Heide, T., Kiryukhina, T., Kløvjan, O., Larssen, G., Ryseth, A., Rønning, K., & Sollid, K. (2011). Uplift and erosion of the greater Barents Sea: Impact on prospectivity and petroleum systems. Geological Society, London, Memoirs, 35(1), 271–281.
    [Google Scholar]
  41. Henriksen, E., Ryseth, A., Larssen, G., Heide, T., Rønning, K., Sollid, K., & Stoupakova, A. (2011). Tectonostratigraphy of the greater Barents Sea: Implications for petroleum systems. Geological Society, London, Memoirs, 35(1), 163–195.
    [Google Scholar]
  42. Indrevær, K., Gac, S., Gabrielsen, R. H., & Faleide, J. I. (2018). Crustal‐scale subsidence and uplift caused by metamorphic phase changes in the lower crust: A model for the evolution of the Loppa High area, SW Barents Sea from late Paleozoic to present. Journal of the Geological Society, 175(3), 497–508.
    [Google Scholar]
  43. Jakobsson, K. (2018). A history of exploration offshore Norway: The Barents Sea. Geological Society, London, Special Publications, 465(1), 219–241.
    [Google Scholar]
  44. Jakobsson, M., Backman, J., Rudels, B., Nycander, J., Frank, M., Mayer, L., Jokat, W., Sangiorgi, F., O'Regan, M., & Brinkhuis, H. (2007). The early Miocene onset of a ventilated circulation regime in the Arctic Ocean. Nature, 447(7147), 986–990.
    [Google Scholar]
  45. Johansen, S., Ostisty, B., Fedorovsky, Y., Martirosjan, V., Christensen, O. B., Cheredeev, S., Ignatenko, E., & Margulis, L. (1993). Hydrocarbon potential in the Barents Sea region: Play distribution and potential (pp. 273–320). Norwegian Petroleum Society Special Publications.
    [Google Scholar]
  46. Jones, S. M., Murton, B. J., Fitton, J. G., White, N. J., Maclennan, J., & Walters, R. (2014). A joint geochemical–Geophysical record of time‐dependent mantle convection south of Iceland. Earth and Planetary Science Letters, 386, 86–97.
    [Google Scholar]
  47. Jones, S. M., & White, N. (2003). Shape and size of the starting Iceland plume swell. Earth and Planetary Science Letters, 216(3), 271–282.
    [Google Scholar]
  48. Jones, S. M., White, N., Clarke, B. J., Rowley, E., & Gallagher, K. (2002). Present and past influence of the Iceland Plume on sedimentation. Geological Society, London, Special Publications, 196(1), 13–25.
    [Google Scholar]
  49. Klausen, T. G., & Helland‐Hansen, W. (2018). Methods for restoring and describing ancient clinoform surfaces. Journal of Sedimentary Research, 88(2), 241–259.
    [Google Scholar]
  50. Klausen, T. G., Müller, R., Slama, J., & Helland‐Hansen, W. (2017). Evidence for late Triassic provenance areas and Early Jurassic sediment supply turnover in the Barents Sea Basin of northern Pangea. Lithosphere, 9(1), 14–28.
    [Google Scholar]
  51. Knies, J., Matthiessen, J., Vogt, C., Laberg, J. S., Hjelstuen, B. O., Smelror, M., Larsen, E., Andreassen, K., Eidvin, T., & Vorren, T. O. (2009). The Plio‐Pleistocene glaciation of the Barents Sea–Svalbard region: A new model based on revised chronostratigraphy. Quaternary Science Reviews, 28(9), 812–829.
    [Google Scholar]
  52. Knies, J., Mattingsdal, R., Fabian, K., Grøsfjeld, K., Baranwal, S., Husum, K., De Schepper, S., Vogt, C., Andersen, N., & Matthiessen, J. (2014). Effect of early Pliocene uplift on late Pliocene cooling in the Arctic–Atlantic gateway. Earth and Planetary Science Letters, 387, 132–144.
    [Google Scholar]
  53. Kristensen, T. B., Rotevatn, A., Marvik, M., Henstra, G. A., Gawthorpe, R. L., & Ravnås, R. (2018). Structural evolution of sheared margin basins: The role of strain partitioning. Sørvestsnaget Basin, Norwegian Barents Sea. Basin Research, 30(2), 279–301.
    [Google Scholar]
  54. Ktenas, D., Henriksen, E., Meisingset, I., Nielsen, J. K., & Andreassen, K. (2017). Quantification of the magnitude of net erosion in the southwest Barents Sea using sonic velocities and compaction trends in shales and sandstones. Marine and Petroleum Geology, 88, 826–844.
    [Google Scholar]
  55. Ktenas, D., Nielsen, J. K., Henriksen, E., Meisingset, I., & Schenk, O. (2023). The effects of uplift and erosion on the petroleum systems in the southwestern Barents Sea: Insights from seismic data and 2D petroleum systems modelling. Marine and Petroleum Geology, 158, 106535.
    [Google Scholar]
  56. Laberg, J., Vorren, T., & Knutsen, S.‐M. (1999). The Lofoten contourite drift off Norway. Marine Geology, 159(1), 1–6.
    [Google Scholar]
  57. Laberg, J. S., Andreassen, K., & Vorren, T. O. (2012). Late Cenozoic erosion of the high‐latitude southwestern Barents Sea shelf revisited. Geological Society of America Bulletin, 124(1–2), 77–88.
    [Google Scholar]
  58. Lasabuda, A., Geissler, W. H., Laberg, J. S., Knutsen, S. M., Rydningen, T. A., & Berglar, K. (2018). Late Cenozoic erosion estimates for the northern Barents Sea: Quantifying glacial sediment input to the Arctic Ocean. Geochemistry, Geophysics, Geosystems, 19(12), 4876–4903.
    [Google Scholar]
  59. Lasabuda, A., Laberg, J. S., Knutsen, S.‐M., & Høgseth, G. (2018). Early to middle Cenozoic paleoenvironment and erosion estimates of the southwestern Barents Sea: Insights from a regional mass‐balance approach. Marine and Petroleum Geology, 96, 501–521.
    [Google Scholar]
  60. Lasabuda, A., Laberg, J. S., Knutsen, S.‐M., & Safronova, P. (2018). Cenozoic tectonostratigraphy and pre‐glacial erosion: A mass‐balance study of the northwestern Barents Sea margin, Norwegian Arctic. Journal of Geodynamics, 119, 149–166.
    [Google Scholar]
  61. Lasabuda, A. P., Johansen, N. S., Laberg, J. S., Faleide, J. I., Senger, K., Rydningen, T. A., Patton, H., Knutsen, S.‐M., & Hanssen, A. (2021). Cenozoic uplift and erosion of the Norwegian Barents Shelf–a review. Earth‐Science Reviews, 217, 103609.
    [Google Scholar]
  62. Lasabuda, A. P. E., Hanssen, A., Laberg, J. S., Faleide, J. I., Patton, H., Abdelmalak, M. M., Rydningen, T. A., & Kjølhamar, B. E. (2023). Paleobathymetric reconstructions of the SW Barents Seaway and their implications for Atlantic‐Arctic ocean circulation. Communications Earth & Environment, 4, 231.
    [Google Scholar]
  63. Longhitano, S. G., & Chiarella, D. (2020). Tidal straits: Basic criteria for recognizing ancient systems from the rock record. In Regional geology and tectonics (pp. 365–415). Elsevier.
    [Google Scholar]
  64. Løtveit, I. F., Fjeldskaar, W., & Sydnes, M. (2019). Tilting and flexural stresses in basins due to glaciations—An example from the Barents Sea. Geosciences, 9(11), 474.
    [Google Scholar]
  65. Marín, D., Escalona, A., Grundvåg, S. A., Olaussen, S., Sandvik, S., & Śliwińska, K. K. (2018). Unravelling key controls on the rift climax to post‐rift fill of marine rift basins: Insights from 3D seismic analysis of the Lower Cretaceous of the Hammerfest Basin, SW Barents Sea. Basin Research, 30(4), 587–612.
    [Google Scholar]
  66. Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., & Wright, J. D. (2020). Cenozoic sea‐level and cryospheric evolution from deep‐sea geochemical and continental margin records. Science Advances, 6(20), eaaz1346.
    [Google Scholar]
  67. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie‐Blick, N., & Pekar, S. F. (2005). The phanerozoic record of global sea‐level change. Science, 310(5752), 1293–1298.
    [Google Scholar]
  68. Milliman, J. D., & Farnsworth, K. L. (2013). River discharge to the coastal ocean: A global synthesis. Cambridge University Press.
    [Google Scholar]
  69. Milliman, J. D., & Meade, R. H. (1983). World‐wide delivery of river sediment to the oceans. The Journal of Geology, 91, 1–21.
    [Google Scholar]
  70. Milliman, J. D., & Syvitski, J. P. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. The Journal of Geology, 100(5), 525–544.
    [Google Scholar]
  71. Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., Tetley, M. G., Heine, C., Le Breton, E., & Liu, S. (2019). A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics, 38(6), 1884–1907.
    [Google Scholar]
  72. Nyberg, B., Helland‐Hansen, W., Gawthorpe, R. L., Sandbakken, P., Eide, C. H., Sømme, T., Hadler‐Jacobsen, F., & Leiknes, S. J. S. G. (2018). Revisiting morphological relationships of modern source‐to‐sink segments as a first‐order approach to scale ancient sedimentary systems. Communications Earth & Environment, 373, 111–133.
    [Google Scholar]
  73. Nyland, B., Jensen, L., Skagen, J., Skarpnes, O., & Vorren, T. (1992). Tertiary uplift and erosion in the Barents Sea: Magnitude, timing and consequences. In R. M.Larsen, H.Brekke, B. T.Larsen, & E.Talleras (Eds.), Tectonic modelling and its implication to petroleum geology (pp. 153–162). Elsevier.
    [Google Scholar]
  74. Palerme, C., Genthon, C., Claud, C., Kay, J. E., Wood, N. B., & L'Ecuyer, T. (2017). Evaluation of current and projected Antarctic precipitation in CMIP5 models. Climate Dynamics, 48, 225–239. https://doi.org/10.1007/s00382‐016‐3071‐1
    [Google Scholar]
  75. Patruno, S., Hampson, G. J., & Jackson, C. A. (2015). Quantitative characterisation of deltaic and subaqueous clinoforms. Earth‐Science Reviews, 142, 79–119.
    [Google Scholar]
  76. Patruno, S., & Helland‐Hansen, W. (2018). Clinoforms and clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth‐Science Reviews, 185, 202–233.
    [Google Scholar]
  77. Patton, H., Hubbard, A., Heyman, J., Alexandropoulou, N., Lasabuda, A. P., Stroeven, A., Hall, A., Winsborrow, M., Sugden, D. E., & Kleman, J. (2022). The extreme yet transient nature of glacial erosion. Nature Communications, 13(1), 1–14.
    [Google Scholar]
  78. Pellegrini, C., Asioli, A., Bohacs, K. M., Drexler, T. M., Feldman, H. R., Sweet, M. L., Maselli, V., Rovere, M., Gamberi, F., & Dalla Valle, G. (2018). The late Pleistocene Po River lowstand wedge in the Adriatic Sea: Controls on architecture variability and sediment partitioning. Marine and Petroleum Geology, 96, 16–50.
    [Google Scholar]
  79. Pellegrini, C., Patruno, S., Helland‐Hansen, W., Steel, R. J., & Trincardi, F. (2020). Clinoforms and clinothems: Fundamental elements of basin infill. Basin Research, 32, 187–205.
    [Google Scholar]
  80. Petersen, T. G., Thomsen, T., Olaussen, S., & Stemmerik, L. (2016). Provenance shifts in an evolving Eurekan foreland basin: The tertiary Central Basin, Spitsbergen. Journal of the Geological Society, 173(4), 634–648.
    [Google Scholar]
  81. Piepjohn, K., von Gosen, W., & Tessensohn, F. (2016). The Eurekan deformation in the Arctic: An outline. Journal of the Geological Society, 173(6), 1007–1024.
    [Google Scholar]
  82. Plaza‐Faverola, A., Vadakkepuliyambatta, S., Singhroha, S., Hong, W.‐. L., Waghorn, K. A., Lasabuda, A. P., Ferré, B., Bünz, S., & Mienert, J. (2022). Gas hydrate related bottom‐simulating reflections along the West‐Svalbard Margin, Fram Strait. In J.Mienert, C.Berndt, A. M.Tréhu, A.Camerlenghi, & C. S.Liu (Eds.), World Atlas of submarine gas hydrates in continental margins (pp. 225–235). Springer Nature.
    [Google Scholar]
  83. Plink‐Björklund, P. (2020). Shallow‐water deltaic clinoforms and process regime. Basin Research, 32, 251–262.
    [Google Scholar]
  84. Popova, S., Utescher, T., Gromyko, D., Bruch, A., & Mosbrugger, V. (2012). Palaeoclimate evolution in Siberia and the Russian Far East from the Oligocene to Pliocene–Evidence from fruit and seed floras. Turkish Journal of Earth Sciences, 21(2), 315–334.
    [Google Scholar]
  85. Ramberg, I. B. (2008). The making of a land: Geology of Norway. Geological Society of London.
    [Google Scholar]
  86. Rasmussen, E., & Fjeldskaar, W. (1996). Quantification of the Pliocene‐Pleistocene erosion of the Barents Sea from present‐day bathymetry. Global and Planetary Change, 12(1), 119–133.
    [Google Scholar]
  87. Retallack, G. J. (2007). Cenozoic paleoclimate on land in North America. The Journal of Geology, 115(3), 271–294.
    [Google Scholar]
  88. Richardsen, G., Henriksen, E., & Vorren, T. (1991). Evolution of the Cenozoic sedimentary wedge during rifting and seafloor spreading west of the Stappen high, western Barents Sea. Marine Geology, 101(1–4), 11–30.
    [Google Scholar]
  89. Riis, F., & Fjeldskaar, W. (1992). On the magnitude of the Late Tertiary and Quaternary erosion and its significance for the uplift of Scandinavia and the Barents Sea. In R. M.Larsen, H.Brekke, B. T.Larsen, & E.Taleraas (Eds.), Structural and tectonic modelling and its application to petroleum geology (pp. 163–185). Elsevier.
    [Google Scholar]
  90. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29.
    [Google Scholar]
  91. Rydningen, T. A., Høgseth, G., Lasabuda, A. P. E., Laberg, J. S., Safronova, P., & Forwick, M. (2020). An early Neogene—Early Quaternary contourite drift system on the SW Barents Sea continental margin, Norwegian Arctic. Geochemistry, Geophysics, Geosystems, 21(11), e2020GC009142.
    [Google Scholar]
  92. Ryseth, A., Augustson, J. H., Charnock, M., Haugerud, O., Knutsen, S.‐M., Midbøe, P. S., Opsal, J. G., & Sundsbø, G. (2003). Cenozoic stratigraphy and evolution of the Sørvestsnaget Basin, southwestern Barents Sea. Norwegian Journal of Geology, 83(2), 107–130.
    [Google Scholar]
  93. Safronova, P. A., Andreassen, K., Laberg, J. S., & Vorren, T. O. (2012). Development and post‐depositional deformation of a Middle Eocene deep‐water sandy depositional system in the Sørvestsnaget Basin, SW Barents Sea. Marine and Petroleum Geology, 36(1), 83–99.
    [Google Scholar]
  94. Safronova, P. A., Henriksen, S., Andreassen, K., Laberg, J. S., & Vorren, T. O. (2014). Evolution of shelf‐margin clinoforms and deep‐water fans during the middle Eocene in Sorvestsnaget Basin. AAPG Bulletin, 98(3), 515–544.
    [Google Scholar]
  95. Samuels, J. X., & Hopkins, S. S. (2017). The impacts of Cenozoic climate and habitat changes on small mammal diversity of North America. Global and Planetary Change, 149, 36–52.
    [Google Scholar]
  96. Sangster, C., Piper, D. J., Hawie, N., Pe‐Piper, G., & Saint‐Ange, F. (2019). Forward stratigraphic modelling of sediment pathways and depocentres in salt‐influenced passive‐margin basins: Lower Cretaceous, central Scotian Basin. Basin Research, 31(4), 728–753.
    [Google Scholar]
  97. Schubert, B. A., Jahren, A. H., Davydov, S. P., & Warny, S. (2017). The transitional climate of the late Miocene Arctic: Winter‐dominated precipitation with high seasonal variability. Geology, 45(5), 447–450.
    [Google Scholar]
  98. Schubert, B. A., Jahren, A. H., Eberle, J. J., Sternberg, L. S., & Eberth, D. A. (2012). A summertime rainy season in the Arctic forests of the Eocene. Geology, 40(6), 523–526.
    [Google Scholar]
  99. Sclater, J. G., & Christie, P. A. (1980). Continental stretching: An explanation of the post‐Mid‐Cretaceous subsidence of the central North Sea Basin. Journal of Geophysical Research: Solid Earth, 85(B7), 3711–3739.
    [Google Scholar]
  100. Smelror, M., Petrov, O., Larssen, G. B., & Werner, S. (2009). Atlas: Geological history of the Barents Sea (p. 135). Norges Geologiske Undersøkelse.
    [Google Scholar]
  101. Sømme, T. O., Helland‐Hansen, W., & Granjeon, D. (2009). Impact of eustatic amplitude variations on shelf morphology, sediment dispersal, and sequence stratigraphic interpretation: Icehouse versus greenhouse systems. Geology, 37(7), 587–590.
    [Google Scholar]
  102. Sømme, T. O., Helland‐Hansen, W., Martinsen, O. J., & Thurmond, J. B. (2009). Relationships between morphological and sedimentological parameters in source‐to‐sink systems: A basis for predicting semi‐quantitative characteristics in subsurface systems. Basin Research, 21(4), 361–387.
    [Google Scholar]
  103. Sømme, T. O., Huwe, S. I., Martinsen, O. J., Sandbakken, P. T., Skogseid, J., & Valore, L. A. (2023). Stratigraphic expression of the Paleocene‐Eocene thermal maximum climate event during long‐lived transient uplift—An example from a shallow to deep‐marine clastic system in the Norwegian Sea. Frontiers in Earth Science, 11, 1082203.
    [Google Scholar]
  104. Sømme, T. O., Martinsen, O. J., & Thurmond, J. B. (2009). Reconstructing morphological and depositional characteristics in subsurface sedimentary systems: An example from the Maastrichtian–Danian Ormen Lange system, Møre Basin, Norwegian Sea. AAPG Bulletin, 93(10), 1347–1377.
    [Google Scholar]
  105. Stow, D., Hunter, S., Wilkinson, D., & Hernández‐Molina, F. (2008). The nature of contourite deposition. Developments in Sedimentology, 60, 143–156.
    [Google Scholar]
  106. Talwani, M., & Eldholm, O. (1977). Evolution of the Norwegian‐Greenland sea. Geological Society of America Bulletin, 88(7), 969–999.
    [Google Scholar]
  107. Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1–2), 123–138.
    [Google Scholar]
  108. Tucker, G. E., & Slingerland, R. L. (1994). Erosional dynamics, flexural isostasy, and long‐lived escarpments: A numerical modeling study. Journal of Geophysical Research: Solid Earth, 99(B6), 12229–12243.
    [Google Scholar]
  109. Uhl, D., Traiser, C., Griesser, U., & Denk, T. (2007). Fossil leaves as palaeoclimate proxies in the Palaeogene of Spitsbergen (Svalbard). Acta Palaeobotanica‐Krakow, 47(1), 89.
    [Google Scholar]
  110. Vågnes, E., & Amundsen, H. E. F. (1993). Late Cenozoic uplift and volcanism on Spitsbergen: Caused by mantle convection?Geology, 21(3), 251–254.
    [Google Scholar]
  111. Vorren, T. O., Richardsen, G., Knutsen, S.‐M., & Henriksen, E. (1991). Cenozoic erosion and sedimentation in the western Barents Sea. Marine and Petroleum Geology, 8(3), 317–340.
    [Google Scholar]
  112. Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S., Bohaty, S. M., De Vleeschouwer, D., & Florindo, F. (2020). An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science, 369(6509), 1383–1387.
    [Google Scholar]
  113. Willgoose, G., Bras, R. L., & Rodriguez‐Iturbe, I. (1991). A coupled channel network growth and hillslope evolution model: 1. Theory. Water Resources Research, 27(7), 1671–1684.
    [Google Scholar]
  114. Zachos, J. C., & Kump, L. R. (2005). Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene. Global and Planetary Change, 47(1), 51–66.
    [Google Scholar]
/content/journals/10.1111/bre.12883
Loading
/content/journals/10.1111/bre.12883
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Barents Sea; climate; source‐to‐sink; stratigraphic forward modelling; tectonics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error