1887
Volume 36, Issue 4
  • E-ISSN: 1365-2117

Abstract

[Abstract

The shelf‐slope margin is a geomorphic zone with a change in gradient between subaqueous shelves and slopes, which extends towards the submarine basin‐floor. It is important because it partitions distinct sedimentary and biogenic processes between the shallow and deep‐water realms. The initiation of a shelf‐slope profile from pre‐existing conditions, and the evolution of shelf margins in space and time has been the focus of numerous studies, particularly from seismic data sets on passive margins, although markedly less‐so from active tectonic settings. This study documents the initiation and evolution of a shelf‐slope margin in the well‐studied Eocene Aínsa Basin (Spanish Pyrenees) through the segmentation of a mixed carbonate‐siliciclastic ramp via contractional tectonics and differential subsidence. The basinward propagation of a series of thrusts through the ramp allowed the maintenance of shallow‐water, predominantly carbonate sedimentation on their uplifted hanging wall anticlines. Conversely, the deepened foot wall synclines became muddy slope environments, and their axes became the main loci of siliciclastic turbidity current bypass and deposition. The deflection of turbidity currents around uplifted areas towards the synclinal lows allowed for the continuation of carbonate production at the bathymetric highs, which kept pace with subsidence. The interface between shallow‐ and deep‐water sedimentation (i.e. the shelf‐slope margin) was an erosional and composite submarine scarp surface generated by several phases of large‐scale mass wasting of the aggrading shelf carbonates, and healing by onlap of slope turbidites against the scarp. Continued thrust propagation and basin deepening led to the progressive headward degradation of the surfaces, resulting in an apparent retrogradation of the shelf‐slope margin and onlapping slope deposits. This model for the tectonically controlled conversion of a submarine ramp into a shelf‐slope profile contrasts with conventional models that consider shelf‐slope margins to be inherently progradational after initiation. This study also challenges the notion that large‐scale degradational surfaces and thick successions of submarine landslides are inherently diagnostic of canyons and their fill.

,

In this study we document the conversion of a mixed carbonate‐clastic shelf/ramp to a shelf‐slope‐basin‐floor profile by synsedimentary thrusting in the Eocene of the Aínsa Basin (Spanish Pyrenees). As thrusts began to propagate through the shelf/ramp, the tops of thrust hanging wall anticlines became the restricted loci for shallow marine mixed carbonate‐clastic deposition, whilst the axes of footwall synclines became dominated by muddy slope environments with turbidity current bypass and deposition. The shelf‐slope margin was a composite surface, developed through phases of mass wasting of shelf carbonates, and healing by onlap of slope turbidies against failure scarps. This study demonstrates that: 1) tectonically controlled shelf‐slope margins can be net‐retrogradational contrasting conventional models for passive margin settings; and 2) large‐scale degradational surfaces and thick successions of submarine landslides are not inherently diagnostic of submarine canyons and their fill.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12884
2024-07-22
2024-09-16
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/4/bre12884.html?itemId=/content/journals/10.1111/bre.12884&mimeType=html&fmt=ahah

References

  1. Allen, J. R. L. (1970). Sediments of the modern Niger Delta: A summary and review. In J.Morgan & R.Shaver (Eds.), Deltaic sedimentation, modern and ancient (Vol. 15, pp. 138–151). SEPM Special Publication.
    [Google Scholar]
  2. Allen, J. R. L. (1982). Sedimentary structures: Their character and physical basis. Elsevier, 592 pp.
    [Google Scholar]
  3. Almeida Junior, F. N., Steel, R. J., Olariu, C., Gan, Y., & Gomes Paim, P. S. (2020). River‐dominated and tide‐influenced shelf‐edge delta systems: Coarse‐grained deltas straddling the Early–Middle Jurassic shelf–slope break and transforming downslope, Lajas–Los Molles formations, Neuquén Basin, Argentina. Sedimentology, 67, 2883–2916.
    [Google Scholar]
  4. Alsop, G. I., Weinberger, R., Marco, S., & Levi, T. (2020). Folding during soft sediment deformation. Geological Society, London, Special Publications, 487, 81–104.
    [Google Scholar]
  5. Amy, L. A., McCaffrey, W. D., & Kneller, B. C. (2004). The influence of a lateral basin‐slope on the depositional patterns of natural and experimental turbidity currents. Geological Society, London, Special Publications, 221, 311–330.
    [Google Scholar]
  6. Ayckbourne, A. (2023). A slippery slope: Submarine slope processes on tectonically active basin margins. University of Manchester, 266 pp.
    [Google Scholar]
  7. Ayckbourne, A. J. M., Jerrett, R. M., Poyatos‐Moré, M., Watkinson, M. P., Kane, I. A., & Taylor, K. G. (2023). The influence of creeping slope failure on turbidity current behaviour. Sedimentology, 70, 335–361.
    [Google Scholar]
  8. Bailey, L. P., Clare, M. A., Rosenberger, K. J., Cartigny, M. J. B., Talling, P. J., Paull, C. K., Gwiazda, R., Parsons, D. R., Simmons, S. M., Xu, J., Haigh, I. D., Maier, K. L., McGann, M., & Lundsten, E. (2021). Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers. Earth and Planetary Science Letters, 562, 116845.
    [Google Scholar]
  9. Barnolas, A., & Gil‐Peña, I. (2001). Ejemplos de relleno sedimentario multiepisódico en una cuenca de antepaís fragmentada: La Cuenca Surpirenaica. Boletín Geológico y Minero, 112, 17–38.
    [Google Scholar]
  10. Bauer, D. B., Hubbard, S. M., Covault, J. A., & Romans, B. W. (2020). Inherited depositional topography control on shelf‐margin oversteepening, readjustment, and coarse‐grained sediment delivery to deep water, Magallanes Basin, Chile. Frontiers in Earth Science, 7, 1–22.
    [Google Scholar]
  11. Bayliss, N. J., & Pickering, K. T. (2014). Transition from deep‐marine lower‐slope erosional channels to proximal basin‐floor stacked channel‐levée‐overbank deposits, and syn‐sedimentary growth structures, Middle Eocene Banastón System, Ainsa Basin, Spanish Pyrenees. Earth‐Science Reviews, 144, 23–46.
    [Google Scholar]
  12. Bentham, P., & Burbank, D. W. (1996). Chronology of Eocene foreland basin evolution along the western oblique margin of the South–Central Pyrenees. In C. J.Dabrio & P. F.Friend (Eds.), Tertiary basins of Spain: The stratigraphic record of crustal kinematics (pp. 144–152). Cambridge University Press.
    [Google Scholar]
  13. Bhattacharya, J. P., & MacEachern, J. A. (2009). Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. Journal of Sedimentary Research, 79, 184–209.
    [Google Scholar]
  14. Bouma, A. (1962). Sedimentology of some flysch deposits: A graphic approach to facies interpretation. Elsevier, 168 pp.
    [Google Scholar]
  15. Brunt, R. L., McCaffrey, W. D., & Kneller, B. C. (2004). Experimental modeling of the spatial distribution of grain size developed in a fill‐and‐spill Mini‐Basin setting. Journal of Sedimentary Research, 74, 438–446.
    [Google Scholar]
  16. Cantalejo, B., & Pickering, K. T. (2015). Orbital forcing as principal driver for fine‐grained deep‐marine siliciclastic sedimentation, Middle‐Eocene Ainsa Basin, Spanish Pyrenees. Palaeogeography Palaeoclimatology Palaeoecology, 421, 24–47.
    [Google Scholar]
  17. Cantalejo, B., Pickering, K. T., McNiocaill, C., Bown, P., Johansen, K., & Grant, M. (2020). A revised age‐model for the Eocene deep‐marine siliciclastic systems, Aínsa Basin, Spanish Pyrenees. Journal of the Geological Society, 178, 1–18.
    [Google Scholar]
  18. Casciano, C. I., Patacci, M., Longhitano, S. G., Tropeano, M., McCaffrey, W. D., & Di Celma, C. (2019). Multi‐scale analysis of a migrating submarine channel system in a tectonically‐confined basin: The Miocene Gorgoglione Flysch Formation, southern Italy. Sedimentology, 66, 205–240.
    [Google Scholar]
  19. Castelltort, S., Honegger, L., Adatte, T., Clark, J. D., Puigdefàbregas, C., Spangenberg, J. E., Dykstra, M. L., & Fildani, A. (2017). Detecting eustatic and tectonic signals with carbon isotopes in deep‐marine strata, Eocene Ainsa Basin, Spanish Pyrenees. Geology, 45, 707–710.
    [Google Scholar]
  20. Chanvry, E., Deschamps, R., Joseph, P., Puigdefàbregas, C., Poyatos‐Moré, M., Serra‐Kiel, J., Garcia, D., & Teinturier, S. (2018). The influence of intrabasinal tectonics in the stratigraphic evolution of piggyback basin fills: Towards a model from the Tremp‐Graus‐Ainsa Basin (South‐Pyrenean Zone, Spain). Sedimentary Geology, 377, 34–62.
    [Google Scholar]
  21. Chen, C.‐T. A., & Borges, A. V. (2009). Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near‐shore ecosystems as sources of atmospheric CO2. Deep Sea Research Part II: Topical Studies in Oceanography, 56, 578–590.
    [Google Scholar]
  22. Clark, J. D., Puigdefàbregas, C., Castelltort, S., & Andrea, F. (2017). Propagation of environmental signals within source‐to‐sink stratigraphy. In SEPM field trip guidebook 13. SEPM (Society for Sedimentary Geology), 124 pp.
    [Google Scholar]
  23. Covault, J. A., Fildani, A., Romans, B. W., & McHargue, T. (2011). The natural range of submarine canyon‐and‐channel longitudinal profiles. Geosphere, 7, 313–332.
    [Google Scholar]
  24. Cunha, R. S., Tinterri, R., & Muzzi Magalhaes, P. (2017). Annot sandstone in the Peïra Cava basin: An example of an asymmetric facies distribution in a confined turbidite system (SE France). Marine and Petroleum Geology, 87, 60–79.
    [Google Scholar]
  25. Dalrymple, R. W., & Choi, K. (2007). Morphologic and facies trends through the fluvial–marine transition in tide‐dominated depositional systems: A schematic framework for environmental and sequence‐stratigraphic interpretation. Earth‐Science Reviews, 81, 135–174.
    [Google Scholar]
  26. Dreyer, T., Corregidor, J., Arbués, P., & Puigdefàbregas, C. (1999). Architecture of the tectonically influenced Sobrarbe deltaic complex in the Ainsa Basin, northern Spain. Sedimentary Geology, 127, 127–169.
    [Google Scholar]
  27. Duke, W. L. (1990). Geostrophic circulation or shallow marine turbidity currents? The dilemma of paleoflow patterns in strom‐influenced prograding shoreline systems. Journal of Sedimentary Research, 60, 870–883.
    [Google Scholar]
  28. Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. American Association of Petroleum Geologists, 1, 108–121.
    [Google Scholar]
  29. Farrell, S. G., Williams, G. D., & Atkinson, C. D. (1987). Constraints on the age of movement of the Montsech and Cotiella thrusts, south central Pyrenees, Spain. Journal of the Geological Society of London, 144, 907–914.
    [Google Scholar]
  30. Fernández, O., Muñoz, J. A., Arbués, P., & Falivene, O. (2012). 3D structure and evolution of an oblique system of relaying folds: The Ainsa basin (Spanish Pyrenees). Journal of the Geological Society, 169, 545–559.
    [Google Scholar]
  31. Fisher, W. L., Galloway, W. E., Steel, R. J., Olariu, C., Kerans, C., & Mohrig, D. (2021). Deep‐water depositional systems supplied by shelf‐incising submarine canyons: Recognition and significance in the geologic record. Earth‐Science Reviews, 214, 103531.
    [Google Scholar]
  32. Gomis‐Cartesio, L. E., Poyatos‐Moré, M., Hodgson, D. M., & Flint, S. S. (2018). Shelf‐margin clinothem progradation, degradation and readjustment: Tanqua depocentre, Karoo Basin (South Africa). Sedimentology, 65, 809–841.
    [Google Scholar]
  33. Harris, P. T., & Whiteway, T. (2011). Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Marine Geology, 285, 69–86.
    [Google Scholar]
  34. Hedberg, D. H. (1970). Continental margins from viewpoint of the petroleum geologist. American Association of Petroleum Geologists Bulletin, 54, 3–43.
    [Google Scholar]
  35. Heijnen, M. S., Clare, M. A., Cartigny, M. J., Talling, P. J., Hage, S., Lintern, D. G., Stacey, C., Parsons, D. R., Simmons, S. M., Chen, Y., Sumner, E. J., Dix, J. K., & Hughes Clarke, J. E. (2020). Rapidly‐migrating and internally‐generated knickpoints can control submarine channel evolution. Nature Communications, 11, 3129.
    [Google Scholar]
  36. Helland‐Hansen, W., & Hampson, G. J. (2009). Trajectory analysis: Concepts and applications. Basin Research, 21, 454–483.
    [Google Scholar]
  37. Helland‐Hansen, W., Steel, R. J., & Sømme, T. (2012). Shelf genesis revisited. Journal of Sedimentary Research, 82, 133–148.
    [Google Scholar]
  38. Hodgson, D. M., & Haughton, P. D. W. (2004). Impact of syndepositional faulting on gravity current behaviour and deep‐water stratigraphy: Tabernas‐Sorbas Basin, SE Spain. Geological Society, London, Special Publications, 222, 135–158.
    [Google Scholar]
  39. Hodgson, D. M., van der Merwe, W. C., & Flint, S. S. (2012). Distribution of submarine mass movement deposits: An Exhumed Basin perspective. In Y.Yamada, K.Kawamura, K.Ikehara, Y.Ogawa, R.Urgeles, D.Mosher, J.Chaytor, & M.Strasser (Eds.), Submarine mass movements and their consequences (pp. 619–628). Springer.
    [Google Scholar]
  40. Hughes Clarke, J. E. (2016). First wide‐angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics. Nature Communications, 7, 11896.
    [Google Scholar]
  41. Jobe, Z. R., Lowe, D. R., & Morris, W. R. (2012). Climbing‐ripple successions in turbidite systems: Depositional environments, sedimentation rates and accumulation times. Sedimentology, 59, 867–898.
    [Google Scholar]
  42. Jobe, Z. R., Lowe, D. R., & Uchytil, S. J. (2011). Two fundamentally different types of submarine canyons along the continental margin of Equatorial Guinea. Marine and Petroleum Geology, 28, 843–860.
    [Google Scholar]
  43. Johannessen, E. P., & Steel, R. J. (2005). Shelf‐margin clinoforms and prediction of deepwater sands. Basin Research, 17, 521–550.
    [Google Scholar]
  44. Jones, G. E. D., Hodgson, D. M., & Flint, S. S. (2013). Contrast in the process response of stacked clinothems to the shelf‐slope rollover. Geosphere, 9, 299–316.
    [Google Scholar]
  45. Jones, G. E. D., Hodgson, D. M., & Flint, S. S. (2015). Lateral variability in clinoform trajectory, process regime, and sediment dispersal patterns beyond the shelf‐edge rollover in exhumed basin margin‐scale clinothems. Basin Research, 27, 657–680.
    [Google Scholar]
  46. Kane, I. A., & Hodgson, D. M. (2011). Sedimentological criteria to differentiate submarine channel levee subenvironments: Exhumed examples from the Rosario Fm. (upper cretaceous) of Baja California, Mexico, and the fort Brown Fm. (Permian), Karoo Basin, S. Africa. Marine and Petroleum Geology, 28, 807–823.
    [Google Scholar]
  47. Kennett, J. P. (1982). Marine geology. Prentice‐Hall. 813 pp.
    [Google Scholar]
  48. Kineke, G. C., Sternberg, R. W., Trowbridge, J. H., & Geyer, W. R. (1996). Fluid‐mud processes on the Amazon continental shelf. Continental Shelf Research, 16, 667–696.
    [Google Scholar]
  49. Kneller, B. C., & Branney, M. J. (1995). Sustained high‐density turbidity currents and the deposition of thick massive sands. Sedimentology, 42, 607–616.
    [Google Scholar]
  50. Kneller, B. C., Dykstra, M. L., Fairweather, L., & Milana, J. P. (2016). Mass‐transport and slope accommodation: Implications for turbidite sandstone reservoirs. American Association of Petroleum Geologists, 100, 213–235.
    [Google Scholar]
  51. Lowe, D. R. (1982). Sediment gravity flows; II, depositional models with special reference to the deposits of high‐density turbidity currents. Journal of Sedimentary Research, 52, 279–297.
    [Google Scholar]
  52. Martinez‐Doñate, A., Soutter, E. L., Kane, I. A., Poyatos‐Moré, M., Hodgson, D. M., Ayckbourne, A. J. M., Taylor, W. J., Bouwmeester, M. J., & Flint, S. S. (2023). Submarine crevasse lobes controlled by lateral slope failure in tectonically‐active settings: An exhumed example from the Eocene Aínsa depocentre (Spain). Sedimentologika, 1, 1–25.
    [Google Scholar]
  53. McCave, I. N., & Swift, S. A. (1976). A physical model for the rate of deposition of fine‐grained sediments in the deep sea. GSA Bulletin, 87, 541–546.
    [Google Scholar]
  54. Millington, J. J., & Clark, J. D. (1995). The Charo/Arro canyon‐mouth sheet system, south‐central Pyrenees, Spain: A structurally influenced zone of sediment dispersal. Journal of Sedimentary Research, 65, 443–454.
    [Google Scholar]
  55. Mortimer, E., Gupta, S., & Cowie, P. (2005). Clinoform nucleation and growth in coarse‐grained deltas, Loreto basin, Baja California Sur, Mexico: A response to episodic accelerations in fault displacement. Basin Research, 17, 337–359.
    [Google Scholar]
  56. Mulder, T., Migeon, S., Savoye, B., & Faugères, J.‐C. (2001). Inversely graded turbidite sequences in the deep Mediterranean: A record of deposits from flood‐generated turbidity currents?Geo‐Marine Letters, 21, 86–93.
    [Google Scholar]
  57. Mulder, T., Syvitski, J. P. M., Migeon, S., Faugères, J.‐C., & Savoye, B. (2003). Marine hyperpycnal flows: Initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20, 861–882.
    [Google Scholar]
  58. Muñoz, J. A. (2002). The Pyrenees. In W.Gibbons & T.Moreno (Eds.), The geology of Spain (pp. 370–385). Geological Society.
    [Google Scholar]
  59. Muñoz, J. A., Beamud, E., Fernández, O., Arbués, P., Dinarès‐Turell, J., & Poblet, J. (2013). The Ainsa Fold and thrust oblique zone of the central Pyrenees: Kinematics of a curved contractional system from paleomagnetic and structural data. Tectonics, 32, 1142–1175.
    [Google Scholar]
  60. Muñoz, J. A., McClay, K., & Poblet, J. (1994). Synchronous extension and contraction in frontal thrust sheets of the Spanish Pyrenees. Geology, 22, 921–924.
    [Google Scholar]
  61. Muñoz, J. A., Mencos, J., Roca, E., Carrera, N., Gratacós, O., Ferrer, O., & Fernández, O. (2018). The structure of the South‐Central Pyrenean fold and thrust belt as constrained by subsurface data. Geologica Acta, 16, 439–460.
    [Google Scholar]
  62. Mutti, E. (1977). Distinctive thin‐bedded turbidite facies and related depositional environments in the Eocene Hecho Group (south‐central Pyrenees, Spain). Sedimentology, 24, 107–131.
    [Google Scholar]
  63. Mutti, E. (1992). Turbidite sandstones. Istituto di Geologia, Universit'a di Parma, 275 pp.
    [Google Scholar]
  64. Mutti, E., Luterbacher, H. P., Ferrer, J., & Rosell, J. (1972). Schema stratigrafico e lineamenti di facies del Paleogene marino della zona centrale sudpirenaica tra temp (Catalogna) e Pamplona (Navarra). Memorie Della società Geologica Italiana, 11, 391–416.
    [Google Scholar]
  65. Mutti, E., & Normark, W. R. (1987). Comparing examples of modern and ancient Turbidite systems: Problems and concepts. In J. K.Leggett & G. G.Zuffa (Eds.), Marine clastic sedimentology (pp. 1–38). Springer.
    [Google Scholar]
  66. Mutti, E., Remacha, E., Scavetti, M., Rosell, J., Valloni, R. & Zamorano, M. (1985) Stratigraphy and facies characteristics of the Eocene Hecho Group turbidite systems, south‐central Pyrenees. In M. D.Mila & J.Rosell (Eds.), 6th IAS European regional meeting, Lleida, IAS, 519–576.
  67. Nijman, W. (1998). Cyclicity and basin axis shift in a piggyback basin: Towards modelling of the Eocene Tremp‐Ager Basin, South Pyrenees, Spain. Geological Society, London, Special Publications, 134, 135–162.
    [Google Scholar]
  68. Normark, W. R., Piper, D. J. W., Romans, B. W., Covault, J. A., Dartnell, P., Sliter, R. W., & Lee, H. J. (2009). Submarine canyon and fan systems of the California Continental Borderland. Earth Science in the Urban Ocean: The Southern California Continental Borderland: Geological Society of America, Special Paper, 454, 141–168.
    [Google Scholar]
  69. Ogata, K., Mutti, E., Pini, G. A., & Tinterri, R. (2012). Mass transport‐related stratal disruption within sedimentary mélanges: Examples from the northern Apennines (Italy) and south‐central Pyrenees (Spain). Tectonophysics, 568–569, 185–199.
    [Google Scholar]
  70. Olariu, C., Steel, R. J., Vann, N. K., Tudor, E. P., Shin, M., Winter, R. R., Gan, Y. P., Jung, E., De Almeida Jr, F. N., & Giacomone, G. (2020). Criteria for recognizing shelf‐slope clinoforms in outcrop; Jurassic Lajas and Los Molles formations, S. Neuquén Basin, Argentina. Basin Research, 32, 279–292.
    [Google Scholar]
  71. Ortiz‐Karpf, A., Hodgson, D. M., & McCaffrey, W. D. (2015). The role of mass‐transport complexes in controlling channel avulsion and the subsequent sediment dispersal patterns on an active margin: The Magdalena Fan, offshore Colombia. Marine and Petroleum Geology, 64, 58–75.
    [Google Scholar]
  72. Patruno, S., Hampson, G. J., & Jackson, C. A.‐L. (2015). Quantitative characterisation of deltaic and subaqueous clinoforms. Earth‐Science Reviews, 142, 79–119.
    [Google Scholar]
  73. Payros, A., Tosquella, J., Bernaola, G., Dinarès‐Turell, J., Orue‐Etxebarria, X., & Pujalte, V. (2009). Filling the North European Early/Middle Eocene (Ypresian/Lutetian) boundary gap: Insights from the Pyrenean continental to deep‐marine record. Palaeogeography Palaeoclimatology Palaeoecology, 280, 313–332.
    [Google Scholar]
  74. Pettinga, L. A., & Jobe, Z. R. (2021). How submarine channels (re) shape continental margins. Journal of Sedimentary Research, 90, 1581–1600.
    [Google Scholar]
  75. Pickering, K., Stow, D., Watson, M., & Hiscott, R. (1986). Deep‐water facies, processes and models: A review and classification scheme for modern and ancient sediments. Earth‐Science Reviews, 23, 75–174.
    [Google Scholar]
  76. Pickering, K. T., & Bayliss, N. J. (2009). Deconvolving tectono‐climatic signals in deep‐marine siliciclastics, Eocene Ainsa basin, Spanish Pyrenees: Seesaw tectonics versus eustasy. Geology, 37, 203–206.
    [Google Scholar]
  77. Pickering, K. T., & Corregidor, J. (2005). Mass transport complexes and tectonic control on confined basin‐floor submarine fans, Middle Eocene, south Spanish Pyrenees. Geological Society, London, Special Publications, 244, 51–74.
    [Google Scholar]
  78. Piper, D. J. W., & Normark, W. R. (2009). Processes that initiate turbidity currents and their influence on turbidites: A marine geology perspective. Journal of Sedimentary Research, 79, 347–362.
    [Google Scholar]
  79. Poblet, J., Muñoz, J. A., Travé, A., & Serra‐Kiel, J. (1998). Quantifying the kinematics of detachment folds using three‐dimensional geometry: Application to the Mediano anticline (Pyrenees, Spain). GSA Bulletin, 110, 111–125.
    [Google Scholar]
  80. Porębski, S. J., & Steel, R. J. (2003). Shelf‐margin deltas: Their stratigraphic significance and relation to deepwater sands. Earth‐Science Reviews, 62, 283–326.
    [Google Scholar]
  81. Poyatos‐Moré, M. (2014). Physical stratigraphy and facies analysis of the castissent tecto‐sedimentary unit (south‐Central Pyrenees, Spain). [PhD thesis]. Universitat Autònoma de Barcelona, 282 pp.
  82. Poyatos‐Moré, M., Jones, G. D. E. D., Brunt, R. L., Tek, D. E., Hodgson, D. M., & Flint, S. S. (2019). Clinoform architecture and along‐strike facies variability through an exhumed erosional to accretionary basin margin transition. Basin Research, 31, 920–947.
    [Google Scholar]
  83. Poyatos‐Moré, M., Jones, G. E. D., Brunt, R. L., Hodgson, D. M., Wild, R. J., & Flint, S. S. (2016). Mud‐dominated basin‐margin progradation: Processes and implications. Journal of Sedimentary Research, 86, 863–878.
    [Google Scholar]
  84. Prather, B. (2000). Calibration and visualization of depositional process models for above‐grade slopes: A case study from the Gulf of Mexico. Marine and Petroleum Geology, 17, 619–638.
    [Google Scholar]
  85. Prather, B., Booth, J. R., Steffens, G. S., & Craig, P. A. (1998). Classification, Lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep‐water Gulf of Mexico. American Association of Petroleum Geologists Bulletin, 82, 34–60.
    [Google Scholar]
  86. Prather, B., O'Byrne, C., Pirmez, C., & Sylvester, Z. (2017). Sediment partitioning, continental slopes and base‐of‐slope systems. Basin Research, 29, 394–416.
    [Google Scholar]
  87. Pratson, L. F., & Coakley, B. J. (1996). A model for the headward erosion of submarine canyons induced by downslope‐eroding sediment flows. GSA Bulletin, 108, 225–234.
    [Google Scholar]
  88. Pratson, L. F., Hutton, E. W. H., Kettner, A. J., Syvitski, J. P. M., Hill, P. S., George, D. A., & Milligan, T. G. (2007). The impact of floods and storms on the acoustic reflectivity of the inner continental shelf: A modeling assessment. Continental Shelf Research, 27, 542–559.
    [Google Scholar]
  89. Puigdefàbregas, C., Muñoz, J. A., & Vergés, J. (1992). Thrusting and foreland basin evolution in the southern Pyrenees. In K. R.McClay (Ed.), Thrust tectonics (pp. 247–254). Springer.
    [Google Scholar]
  90. Remacha, E., & Fernández, L. P. (2003). High‐resolution correlation patterns in the turbidite systems of the Hecho group (South‐Central Pyrenees, Spain). Marine and Petroleum Geology, 20, 711–726.
    [Google Scholar]
  91. Rosenbaum, G., Lister, G. S., & Duboz, C. (2002). Relative motions of Africa, Iberia and Europe during alpine orogeny. Tectonophysics, 359, 117–129.
    [Google Scholar]
  92. Ross, W. C., Halliwell, B. A., May, J. A., Watts, D. E., & Syvitski, J. P. M. (1994). Slope readjustment: A new model for the development of submarine fans and aprons. Geology, 22, 511–514.
    [Google Scholar]
  93. Ryan, M. C., Helland‐Hansen, W., Johannessen, E. P., & Steel, R. J. (2009). Erosional vs. accretionary shelf margins: The influence of margin type on deepwater sedimentation: An example from the Porcupine Basin, offshore western Ireland. Basin Research, 21, 676–703.
    [Google Scholar]
  94. Sammartini, M., Moernaut, J., Anselmetti, F. S., Hilbe, M., Lindhorst, K., Praet, N., & Strasser, M. (2019). An atlas of mass‐transport deposits in lakes. In Submarine landslides (pp. 201–226). AGU.
    [Google Scholar]
  95. Scotchman, J. I., Bown, P., Pickering, K. T., BouDagher‐Fadel, M., Bayliss, N. J., & Robinson, S. A. (2015). A new age model for the middle Eocene deep‐marine Ainsa Basin, Spanish Pyrenees. Earth‐Science Reviews, 144, 10–22.
    [Google Scholar]
  96. Shanmugam, G. (2019). Slides, slumps, debris flows, turbidity currents, Hyperpycnal flows, and bottom currents. In J. K.Cochran, H. J.Bokuniewicz, & P.L.B.T.‐E. of O.S. (Third E. Yager) (Eds.), Encyclopedia of ocean sciences (pp. 228–257). Elsevier.
    [Google Scholar]
  97. Shaw, J. H., Novoa, E., & Connors, C. D. (2004). Structural controls on growth stratigraphy in contractional fault‐related folds. In K. R.McClay (Ed.), Thrust tectonics and hydrocarbon systems: AAPG memoir (Vol. 82, pp. 400–412). AAPG Memoir.
    [Google Scholar]
  98. Sinclair, H. D. (1994). The influence of lateral basinal slopes on turbidite sedimentation in the Annot sandstones of SE France. Journal of Sedimentary Research, 64, 42–54.
    [Google Scholar]
  99. Soler, M., & Garrido‐Megias, A. (1970). La terminación occidental del manto de Cotiella. Pirineos, 96, 5–20.
    [Google Scholar]
  100. Soutter, E. L., Kane, I. A., Fuhrmann, A., Cumberpatch, Z. A., & Huuse, M. (2019). The stratigraphic evolution of onlap in siliciclastic deep‐water systems: Autogenic modulation of allogenic signals. Journal of Sedimentary Research, 89, 890–917.
    [Google Scholar]
  101. Srivastava, S. P., & Roest, W. R. (1991). Kinematics of the plate boundaries between Eurasia, Iberia, and Africa in the North Atlantic from the late cretaceous to the present. Geology, 19, 613–616.
    [Google Scholar]
  102. Stevenson, C. J., Jackson, C. A.‐L., Hodgson, D. M., Hubbard, S. M., & Eggenhuisen, J. T. (2015). Deep‐water sediment bypass. Journal of Sedimentary Research, 85, 1058–1081.
    [Google Scholar]
  103. Stow, D., Reading, H., & Collinson, J. (1996). Deep seas. In H.Reading (Ed.), Sedimentary environments: Processes, facies and stratigraphy (3rd ed., pp. 395–484). Blackwell Science Ltd.
    [Google Scholar]
  104. Stow, D. A. V., & Shanmugam, G. (1980). Sequence of structures in fine‐grained turbidites: Comparison of recent deep‐sea and ancient flysch sediments. Sedimentary Geology, 25, 23–42.
    [Google Scholar]
  105. Sumner, E. J., Amy, L. A., & Talling, P. J. (2008). Deposit structure and processes of sand deposition from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529–547.
    [Google Scholar]
  106. Suter, J. R. (2006). Facies models revisited: Clastic shelves. Facies Models Revisited, 84, 339–397.
    [Google Scholar]
  107. Tagliaferri, A., Tinterri, R., Pontiggia, M., Da Pra, A., Davoli, G., & Bonamini, E. (2018). Basin‐scale, high‐resolution three‐dimensional facies modeling of tectonically confined turbidites: An example from the Firenzuola system (Marnoso‐arenacea formation, northern Apennines, Italy). American Association of Petroleum Geologists Bulletin, 102, 1601–1626.
    [Google Scholar]
  108. Talling, P. J., Masson, D. G., Sumner, E. J., & Malgesini, G. (2012). Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59, 1937–2003.
    [Google Scholar]
  109. Tek, D. E., Poyatos‐Moré, M., Patacci, M., McArthur, A., Colombera, L., Cullen, T. M., & McCaffrey, W. D. (2020). Syndepositional tectonics and mass‐transport deposits control channelized, bathymetrically complex deep‐water systems (Aínsa depocenter, Spain). Journal of Sedimentary Research, 90, 729–762.
    [Google Scholar]
  110. Tinterri, R., Laporta, M., & Ogata, K. (2017). Asymmetrical cross‐current turbidite facies tract in a structurally‐confined mini‐basin (Priabonian‐Rupelian, Ranzano Sandstone, northern Apennines, Italy). Sedimentary Geology, 352, 63–87.
    [Google Scholar]
  111. Tinterri, R., Muzzi Magalhaes, P., Tagliaferri, A., & Cunha, R. S. (2016). Convolute laminations and load structures in turbidites as indicators of flow reflections and decelerations against bounding slopes. Examples from the Marnoso‐arenacea Formation (northern Italy) and Annot Sandstones (south eastern France). Sedimentary Geology, 344, 382–407.
    [Google Scholar]
  112. Tinterri, R., & Tagliaferri, A. (2015). The syntectonic evolution of foredeep turbidites related to basin segmentation: Facies response to the increase in tectonic confinement (Marnoso‐arenacea Formation, Miocene, northern Apennines, Italy). Marine and Petroleum Geology, 67, 81–110.
    [Google Scholar]
  113. Uroza, C. A., & Steel, R. J. (2008). A highstand shelf‐margin delta system from the Eocene of West Spitsbergen, Norway. Sedimentary Geology, 203, 229–245.
    [Google Scholar]
  114. Van der Merwe, W. C., Hodgson, D. M., & Flint, S. S. (2009). Widespread syn‐sedimentary deformation on a muddy deep‐water basin‐floor: The Vischkuil Formation (Permian), Karoo Basin, South Africa. Basin Research, 21, 389–406.
    [Google Scholar]
  115. Vergés, J., Marzo, M., & Muñoz, J. A. (2002). Growth strata in foreland settings. Sedimentary Geology, 146, 1–9.
    [Google Scholar]
  116. Waldron, W. F., & Gagnon, J.‐F. (2011). Recognizing soft‐sediment structures in deformed rocks of orogens. Journal of Structural Geology, 33, 271–279.
    [Google Scholar]
  117. Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. The Journal of Geology, 30, 377–392.
    [Google Scholar]
  118. Wiberg, P. (2000). A Perfect Storm: Formation and potential for preservation of storm beds on the continental shelf. Oceanography, 13, 93–99.
    [Google Scholar]
  119. Wild, R., Flint, S. S., & Hodgson, D. M. (2009). Stratigraphic evolution of the upper slope and shelf edge in the Karoo Basin, South Africa. Basin Research, 21, 502–527.
    [Google Scholar]
  120. Wild, R. J., Hodgson, D. M., & Flint, S. S. (2005). Architecture and stratigraphic evolution of multiple, vertically‐stacked slope channel complexes, Tanqua depocentre, Karoo Basin, South Africa. Geological Society, London, Special Publications, 244, 89–111.
    [Google Scholar]
  121. Wright, V. P., & Burchette, T. P. (1996). Shallow‐water carbonate environments. In H. G.Reading (Ed.), Sedimentary environments: Processes, facies, and stratigraphy (pp. 325–394). Blackwell Science.
    [Google Scholar]
  122. Yool, A., & Fasham, M. J. R. (2001). An examination of the “Continental shelf pump” in an open ocean general circulation model. Global Biogeochem Cycles, 15, 831–844.
    [Google Scholar]
  123. Zavala, C., & Pan, S. (2018). Hyperpycnal flows and hyperpycnites: Origin and distinctive characteristics. Lithologic Reservoirs, 30, 1–27.
    [Google Scholar]
/content/journals/10.1111/bre.12884
Loading
/content/journals/10.1111/bre.12884
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error