1887
Volume 36, Issue 4
  • E-ISSN: 1365-2117
PDF

Abstract

[

We unravel the structural evolution of the Malay Basin using 3D seismic data and consider the consequences of trapping CO in the deep subsurface.

, Abstract

The Malay Basin is a mature hydrocarbon province currently being re‐assessed for CO storage. Selecting an appropriate storage site requires a comprehensive understanding of the structural and stratigraphic history of the basin. However, previous studies have been limited to observations from either regional 2D seismic lines or individual 3D seismic volumes. In this study, we access and utilise a basin‐wide (ca. 36,000 km2) 3D seismic and well database to describe the structural and stratigraphic features of the basin, particularly those within the uppermost ca. 4 km (Oligocene to Recent) and gain new insights into the basin's evolution. E–W transtensional rift basins first developed due to sinistral shear across an NW‐SE strike‐slip zone. The NW‐SE basin morphology seen today was generated during the late Oligocene–early Miocene, during which time dextral motion across marginal hinge zones created en‐echelon antithetic, extensional faults and pull‐apart basins, especially well preserved along the western margin of the basin. Collisional forces to the southeast during the early to middle Miocene resulted in the shallowing of the basin, intermittent connection to the South China Sea and a cyclic depositional pattern. Around 8 Ma (late Miocene), a significant uplift of the basin resulted in a major unconformity with up to 4.2 km of erosion and exhumation in the southeast. In the centre and northwest of the basin, the inversion of deeper E–W rifts resulted in the folding of Miocene sequences and the formation of large anticlines parallel to the rift‐bounding faults. The Pliocene to Pleistocene history is more tectonically quiescent, but some extensional faulting continued to affect the northwest part of the basin. Larger glacio‐eustatic sea‐level fluctuations during this time resulted in major changes in sedimentation and erosion on the Sunda Shelf, including the formation of a middle‐Pliocene unconformity. These structural events have created a variety of hydrocarbon traps across the basin of different ages, including transpressional anticlines, rollover anticlines and tilted fault blocks. Each of these has discrete and distinct trap elements with important implications for their CO storage potential.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12885
2024-07-07
2024-09-16
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/4/bre12885.html?itemId=/content/journals/10.1111/bre.12885&mimeType=html&fmt=ahah

References

  1. Abd Rahman, I. Z., Abang Hasbollah, D. Z., Mohd Yunus, N. Z., Kasiman, E. H., & Mazlan, A. N. (2022). Carbon dioxide storage potential in Malaysian sandstone aquifer: An overview. IOP Conference Series: Earth and Environmental Science, 971(1), 012022. https://doi.org/10.1088/1755‐1315/971/1/012022
    [Google Scholar]
  2. Ahmed Satti, I., Wan Yusoff, W. I., & Ghosh, D. (2016). Overpressure in the Malay Basin and prediction methods. Geofluids, 16(2), 301–313. https://doi.org/10.1111/gfl.12149
    [Google Scholar]
  3. Almasgari, A. A., Elsaadany, M., Latiff, A. H. A., Hermana, M., Rahman, A. H. B. A., Babikir, I., Imran, Q. S., Appiah, N. F., & Adeleke, T. O. (2020). Application of seismic attributes to delineate the geological features of the Malay Basin. Bulletin. Geological Society of Malaysia, 69, 97–110. https://doi.org/10.7186/bgsm69202009
    [Google Scholar]
  4. Alqahtani, F. A., Jackson, C. A.‐L., Johnson, H. D., & Som, M. R. B. (2017). Controls on the geometry and evolution of humid‐tropical fluvial systems: Insights from 3D seismic geomorphological analysis of the Malay Basin, Sunda Shelf, Southeast Asia. Journal of Sedimentary Research, 87(1), 17–40. https://doi.org/10.2110/jsr.2016.88
    [Google Scholar]
  5. Alqahtani, F. A., Johnson, H. D., Jackson, C.A.‐L., & Som, M. R. B. (2015). Nature, origin and evolution of a Late Pleistocene incised valley‐fill, Sunda Shelf, Southeast Aasia. Sedimentology, 62(4), 1198–1232. https://doi.org/10.1111/sed.12185
    [Google Scholar]
  6. Argus, D. F., Gordon, R. G., & DeMets, C. (2011). Geologically current motion of 56 plates relative to the no‐net‐rotation reference frame: NNR‐MORVEL56. Geochemistry, Geophysics, Geosystems, 12(11). 1–13. https://doi.org/10.1029/2011GC003751
    [Google Scholar]
  7. Armitage, J. H., & Viotti, C. (1977). Stratigraphic nomenclature‐southern end Malay Basin. Proceedings of the Indonesian Petroleum Association, 6th Annual Convention https://doi.org/10.29118/IPA.1281.69.94
  8. Arshad, A. R. M., Mhd, D., & Tjia, H. D. (1995). A deep seismic section across the Malay Basin: Processing of data and tectonic interpretation. Warta Geologi (Newsletter of the Geological Society of Malaysia), 21(6), 412.
    [Google Scholar]
  9. Babikir, I., Salim, A. M. A., Hermana, M., Abdul Latiff, A. H., & Al‐Masgari, A. A.‐S. (2022). Characterizing the subsea Pleistocene fluvial system of the Sunda shelf, offshore Malaysia, using multiattribute corendering and self‐organizing maps. Interpretation, 10(2), T291–T304. https://doi.org/10.1190/INT‐2021‐0005.1
    [Google Scholar]
  10. Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3), 2001GC000252. https://doi.org/10.1029/2001GC000252
    [Google Scholar]
  11. Bishop, M. (2002). Petroleum systems of the Malay Basin Province, Malaysia. Open‐File Report, U.S. Geological Survey, 99‐50.
  12. Bustin, R. M., & Chonchawalit, A. (1995). Formation and tectonic evolution of the Pattani Basin, gulf of Thailand. International Geology Review, 37(10), 866–892. https://doi.org/10.1080/00206819509465431
    [Google Scholar]
  13. Clift, P., Lee, G. H., Anh Duc, N., Barckhausen, U., Van Long, H., & Zhen, S. (2008). Seismic reflection evidence for a dangerous grounds miniplate: No extrusion origin for the South China Sea. Tectonics, 27(3), 2007TC002216. https://doi.org/10.1029/2007TC002216
    [Google Scholar]
  14. Darmadi, Y., Willis, B. J., & Dorobek, S. L. (2007). Three‐dimensional seismic architecture of fluvial sequences on the low‐gradient Sunda shelf, offshore Indonesia. Journal of Sedimentary Research, 77(3), 225–238. https://doi.org/10.2110/jsr.2007.024
    [Google Scholar]
  15. Doust, H. (2017). Petroleum systems in Southeast Asian Tertiary basins. Bulletin. Geological Society of Malaysia, 64(1), 1–16. https://doi.org/10.7186/bgsm64201701
    [Google Scholar]
  16. Doust, H., & Sumner, H. S. (2007). Petroleum systems in rift basins—A collective approach in Southeast Asian basins. Petroleum Geoscience, 13(2), 127–144. https://doi.org/10.1144/1354‐079307‐746
    [Google Scholar]
  17. Du Bois, E. P. (1985). Review of principal hydrocarbon‐bearing basins around the South China Sea. Bulletin. Geological Society of Malaysia, 18, 167–209. https://doi.org/10.7186/bgsm18198508
    [Google Scholar]
  18. Fyhn, M. B. W., Boldreel, L. O., & Nielsen, L. H. (2010). Escape tectonism in the Gulf of Thailand: Paleogene left‐lateral pull‐apart rifting in the Vietnamese part of the Malay Basin. Tectonophysics, 483(3–4), 365–376. https://doi.org/10.1016/j.tecto.2009.11.004
    [Google Scholar]
  19. GEBCO Compilation Group . (2023). GEBCO 2023 grid. https://doi.org/10.5285/F98B053B‐0CBC‐6C23‐E053‐6C86ABC0AF7B
  20. Ginger, D. C., Ardjakusumah, W. O., Hedley, R. J., & Pothecary, J. (1993). Inversion history of the West Natuna Basin: Examples from the Cumi‐Cumi PSC. Proceedings Indonesian Petroleum Association: 22nd Annual Convention, 635–658.
  21. Hall, R., Clements, B., & Smyth, H. R. (2009). Sundaland: Basement character, structure and plate tectonic development. Proceedings of the Indonesian Petroleum Association, thirty‐third annual convention https://doi.org/10.29118/IPA.2374.09.G.134
  22. Hall, R., & Morley, C. K. (2004). Sundaland basins. In P.Clift, W.Kuhnt, P.Wang, & D.Hayes (Eds.), Geophysical monograph series (Vol. 149, pp. 55–85). American Geophysical Union. https://doi.org/10.1029/149GM04
    [Google Scholar]
  23. Hasbollah, D. Z. A., Junin, R., Taib, A. M., & Mazlan, A. N. (2020). Basin evaluation of CO2 geological storage potential in Malay Basin, Malaysia. In P.Duc Long & N. T.Dung (Eds.), Geotechnics for sustainable infrastructure development (Vol. 62, pp. 1405–1410). Springer. https://doi.org/10.1007/978‐981‐15‐2184‐3_184
    [Google Scholar]
  24. Heflin, M., Donnellan, A., Parker, J., Lyzenga, G., Moore, A., Ludwig, L. G., Rundle, J., Wang, J., & Pierce, M. (2020). Automated estimation and tools to extract positions, velocities, breaks, and seasonal terms from daily GNSS measurements: Illuminating nonlinear salton trough deformation. Earth and space. Science, 7(7), e2019EA000644. https://doi.org/10.1029/2019EA000644
    [Google Scholar]
  25. Hou, J., Takahashi, T., Katoh, A., Jaroonsitha, S., Chumsena, K. P., & Nakayama, K. (2008). Application of seismic attributes and neural network for sand probability prediction—A case study in the North Malay Basin. Bulletin. Geological Society of Malaysia, 54, 115–121. https://doi.org/10.7186/bgsm54200818
    [Google Scholar]
  26. Hutchison, C. S. (2005). Geology of North‐West Borneo: Sarawak, Brunei and Sabah (1st ed.). Elsevier.
    [Google Scholar]
  27. Hutchison, C. S., Bergman, S. C., Swauger, D. A., & Graves, J. E. (2000). A Miocene collisional belt in north Borneo: Uplift mechanism and isostatic adjustment quantified by thermochronology. Journal of the Geological Society, 157(4), 783–793. https://doi.org/10.1144/jgs.157.4.783
    [Google Scholar]
  28. Jirin, S., Mohamed, M., & Hasan, S. S. (2013). Transgressive‐regressive cycles in the Malay Basin: New insights. IPTC https://doi.org/10.2523/IPTC‐16838‐Abstract
  29. de Jonge‐Anderson, I., Ramachandran, H., Nicholson, U., Geiger, S., Widyanita, A., & Doster, F. (2024). Determining CO2 storage efficiency within a saline aquifer using reduced complexity models. Advances in Geo‐Energy Research, 13(1), 22–31.
    [Google Scholar]
  30. Jumari, N. I., Mohaman, H., & Ahman, N. (2011). Seismic facies analysis of group L and M reservoirs southeast of Malay Basin. Warta Geologi (Newsletter of the Geological Society of Malaysia), 37(1), 55.
    [Google Scholar]
  31. Kessler, F. L., Jong, J., & Madon, M. (2021). Sedimentary record of Paleogene sequences in the Penyu and Malay basins, offshore peninsular Malaysia. Berita Sedimentologi, 46(1), 6–20. https://doi.org/10.51835/bsed.2020.46.1.57
    [Google Scholar]
  32. Kuang, K. S. (1988). Structural history of the Malay Basin, a classical tertiary wrench basin. Warta Geologi (Newsletter of the Geological Society of Malaysia), 14(6), 263.
    [Google Scholar]
  33. Liew, K. K. (1994). Structural development at the west‐central margin of the Malay Basin. Bulletin. Geological Society of Malaysia, 36, 67–80.
    [Google Scholar]
  34. Liew, K. K. (1997). Structural analysis of the Malay Basin. Bulletin. Geological Society of Malaysia, 40, 157–176. https://doi.org/10.7186/bgsm40199712
    [Google Scholar]
  35. Lunt, P. (2021). A reappraisal of the Cenozoic stratigraphy of the Malay and West Natuna basins. Journal of Asian Earth Sciences, 5, 100044. https://doi.org/10.1016/j.jaesx.2020.100044
    [Google Scholar]
  36. Madon, M. (1994). Depositional and diagenetic histories of reservoir sandstones in the Jerneh field, central Malay Basin. Bulletin. Geological Society of Malaysia, 36, 31–53.
    [Google Scholar]
  37. Madon, M. (1997). The kinematics of extension and inversion in the Malay Basin, offshore peninsular Malaysia. Bulletin. Geological Society of Malaysia, 41, 127–138. https://doi.org/10.7186/bgsm41199711
    [Google Scholar]
  38. Madon, M. (2007). Overpressure development in rift basins: An example from the Malay Basin, offshore peninsular Malaysia. Petroleum Geoscience, 13(2), 169–180. https://doi.org/10.1144/1354‐079307‐744
    [Google Scholar]
  39. Madon, M. (2011). Transgressive‐regressive cycles in the Malay Basin: The interplay of tectonics and sea level changes in a Silled Basin. PGCE, 2011, 76–77. https://doi.org/10.3997/2214‐4609‐pdb.251.49
    [Google Scholar]
  40. Madon, M. (2021). Five decades of petroleum exploration and discovery in the Malay Basin (1968‐2018) and remaining potential. Bulletin. Geological Society of Malaysia, 72, 63–88. https://doi.org/10.7186/bgsm72202106
    [Google Scholar]
  41. Madon, M., Abolins, P., Hoesni, M. J., & Ahmad, B. (1999). Malay Basin. In The petroleum geology and resources of Malaysia (pp. 173–217). Petronas.
    [Google Scholar]
  42. Madon, M., Jong, J., Kessler, F. L., Damanhuri, M. H., & Amin, M. K. A. (2020). Pre‐tertiary basement subcrops beneath the Malay and Penyu basins, offshore peninsular Malaysia: Their recognition and hydrocarbon potential. Bulletin. Geological Society of Malaysia, 70(1), 163–193. https://doi.org/10.7186/bgsm70202014
    [Google Scholar]
  43. Madon, M., Jong, J., Kessler, F. L., Murphy, C., Your, L., Hamid, A. M., & Sharef, N. (2019). Overview of the structural framework and hydrocarbon plays in the Penyu Basin, offshore peninsular Malaysia. Bulletin. Geological Society of Malaysia, 68, 1–23. https://doi.org/10.7186/bgsm68201901
    [Google Scholar]
  44. Madon, M., Karim, R. B. A., & Fatt, R. W. H. (1999). Tertiary stratigraphy and correlation schemes. In The Petroleum Geology and Resources of Malaysia (pp. 115–137). Petronas.
    [Google Scholar]
  45. Madon, M., & Watts, A. B. (1998). Gravity anomalies, subsidence history and the tectonic evolution of the Malay and Penyu Basins (offshore Peninsular Malaysia). Basin Research, 10(4), 375–392. https://doi.org/10.1046/j.1365‐2117.1998.00074.x
    [Google Scholar]
  46. Madon, M., Yang, J.‐S., Abolins, P., Abu Hassan, R., Yakzan, M., & Zainal, S. B. (2006). Petroleum systems of the northern Malay Basin. Bulletin. Geological Society of Malaysia, 49, 125–134. https://doi.org/10.7186/bgsm49200620
    [Google Scholar]
  47. Mansor, M. Y., Rahman, A. H. A., Menier, D., & Pubellier, M. (2014). Structural evolution of Malay Basin, its link to Sunda block tectonics. Marine and Petroleum Geology, 58, 736–748. https://doi.org/10.1016/j.marpetgeo.2014.05.003
    [Google Scholar]
  48. Matthews, S. J., Fraser, A. J., Lowe, S., Todd, S. P., & Peel, F. J. (1997). Structure, stratigraphy and petroleum geology of the SE Nam con Son Basin, offshore Vietnam. Geological Society, London, Special Publications, 126(1), 89–106. https://doi.org/10.1144/GSL.SP.1997.126.01.07
    [Google Scholar]
  49. McGrath, S. M., Clemens, S. C., & Huang, Y. (2023). Pleistocene Sunda shelf submersion‐exposure cycles initiate vegetation Walker circulation feedback. Geology, 51, 1053–1056. https://doi.org/10.1130/G51412.1
    [Google Scholar]
  50. Metcalfe, I. (2009). Late Palaeozoic and Mesozoic tectonic and palaeogeographical evolution of SE Asia. Geological Society, London, Special Publications, 315(1), 7–23. https://doi.org/10.1144/SP315.2
    [Google Scholar]
  51. Metcalfe, I. (2011). Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research, 19(1), 3–21. https://doi.org/10.1016/j.gr.2010.02.016
    [Google Scholar]
  52. Metcalfe, I. (2017). Tectonic evolution of Sundaland. Bulletin. Geological Society of Malaysia, 63, 27–60. https://doi.org/10.7186/bgsm63201702
    [Google Scholar]
  53. Miall, A. D. (2002). Architecture and sequence stratigraphy of Pleistocene fluvial systems in the Malay Basin, based on seismic time‐slice analysis. AAPG Bulletin, 86, 1201–1216. https://doi.org/10.1306/61EEDC56‐173E‐11D7‐8645000102C1865D
    [Google Scholar]
  54. Molnar, P., & Tapponnier, P. (1975). Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India‐Eurasia collision. Science, 189(4201), 419–426. https://doi.org/10.1126/science.189.4201.419
    [Google Scholar]
  55. Morley, C. K. (2002). A tectonic model for the tertiary evolution of strike–slip faults and rift basins in SE Asia. Tectonophysics, 347(4), 189–215. https://doi.org/10.1016/S0040‐1951(02)00061‐6
    [Google Scholar]
  56. Morley, C. K. (2012). Late Cretaceous–Early Palaeogene tectonic development of SE Asia. Earth‐Science Reviews, 115(1–2), 37–75. https://doi.org/10.1016/j.earscirev.2012.08.002
    [Google Scholar]
  57. Morley, C. K. (2016). Major unconformities/termination of extension events and associated surfaces in the South China seas: Review and implications for tectonic development. Journal of Asian Earth Sciences, 120, 62–86. https://doi.org/10.1016/j.jseaes.2016.01.013
    [Google Scholar]
  58. Morley, R. J., Morley, H. P., & Restrepo‐Pace, P. (2003). Unravelling the tectonically controlled stratigraphy of the West Natuna Basin by means of palaeo‐derived mid Tertiary climate changes. Proceedings, Indonesian Petroleum Association: 29th Annual Convention & Exhibition, October 2003.
  59. Murray, M. R., & Dorobek, S. L. (2004). Sediment supply, tectonic subsidence, and basin‐filling patterns across the southwestern South China Sea during Pliocene to recent time. In P.Clift, W.Kuhnt, P.Wang, & D.Hayes (Eds.), Geophysical monograph series (Vol. 149, pp. 235–254). American Geophysical Union. https://doi.org/10.1029/149GM13
    [Google Scholar]
  60. Nayak, S., Masoudi, R., Tarang Patrick Panting, A., BM Diah, M. A., B Roslan, M. R., BM Amin, M. F., R Iyer, S., Aarssen, B. V., Fun, S., & Mishra, S. (2023). Insights on the origin and distribution of CO2 in Malay Basin, offshore Peninsular Malaysia: A petroleum system modelling approach, IPTC‐22832‐EA. https://doi.org/10.2523/IPTC‐22832‐EA
  61. Ng, T. S. (1987). Trap styles of the Tenggol arch and the southern part of the Malay Basin. Bulletin. Geological Society of Malaysia, 21, 177–193. https://doi.org/10.7186/bgsm21198710
    [Google Scholar]
  62. Ngah, K., Madon, M., & Tjia, H. D. (1996). Role of pre‐tertiary fractures in formation and development of the Malay and Penyu basins. Geological Society, London, Special Publications, 106(1), 281–289. https://doi.org/10.1144/GSL.SP.1996.106.01.18
    [Google Scholar]
  63. Petersen, H. I., Mathiesen, A., Fyhn, M. B. W., Dau, N. T., Bojesen‐Koefoed, J. A., Nielsen, L. H., & Nytoft, H. P. (2011). Modeling of petroleum generation in the Vietnamese part of the Malay Basin using measured kinetics. AAPG Bulletin, 95(4), 509–536. https://doi.org/10.1306/09271009171
    [Google Scholar]
  64. Pubellier, M., & Morley, C. K. (2014). The basins of Sundaland (SE Asia): Evolution and boundary conditions. Marine and Petroleum Geology, 58, 555–578. https://doi.org/10.1016/j.marpetgeo.2013.11.019
    [Google Scholar]
  65. Ramli, M. D. (1988). Stratigraphy and palaeofacies development of Carigali's operating areas in the Malay Basin, South China Sea. Bulletin. Geological Society of Malaysia, 22, 153–187. https://doi.org/10.7186/bgsm22198808
    [Google Scholar]
  66. Rice‐Oxley, E., & Abu‐Bakar, A. (2022). Historical and emerging super basins of Southeast Asia. AAPG Bulletin, 106(3), 633–653. https://doi.org/10.1306/09152121048
    [Google Scholar]
  67. Rosly, S. F. M., Abdullah, M. S., Bukhari, M. K. A. M., Tazarudin, N., Nawawi, H. A. B. M., Pendkar, N., Panting, A. T. P., Zhou, J., & Torres, J. A. P. (2019). M‐70 sand: Realizing the group m hidden opportunity in Malay Basin. APGCE, 2019, 1–5. https://doi.org/10.3997/2214‐4609.201903410
    [Google Scholar]
  68. Sarr, A.C., Husson, L., Sepulchre, P., Pastier, A.M., Pedoja, K., Elliot, M., Arias‐Ruiz, C., Solihuddin, T., Aribowo, S., & Susilohadi. (2019). Subsiding Sundaland. Geology, 47(2), 119–122. https://doi.org/10.1130/G45629.1
    [Google Scholar]
  69. Shing, C. Y. (1992). Petrographic and diagenetic studies of the reservoir sandstone of the Malay Basin. Bulletin. Geological Society of Malaysia, 32, 261–283. https://doi.org/10.7186/bgsm32199216
    [Google Scholar]
  70. Straume, E. O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J. M., Abdul Fattah, R., Doornenbal, J. C., & Hopper, J. R. (2019). Globsed: Updated total sediment thickness in the world's oceans. Geochemistry, Geophysics, Geosystems, 20(4), 1756–1772. https://doi.org/10.1029/2018GC008115
    [Google Scholar]
  71. Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R., & Cobbold, P. (1982). Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611. https://doi.org/10.1130/0091‐7613(1982)10<611:PETIAN>2.0.CO;2
    [Google Scholar]
  72. Thye, Y. K. (1996). Sequence stratigraphy of the group J, tapis field, Malay Basin. Warta Geologi (Newsletter of the Geological Society of Malaysia), 22(6), 421–422.
    [Google Scholar]
  73. Tingay, M. R., Morley, C., Laird, A. P., Limpornpipat, O., Krisadasima, K., Pabchanda, S., & Macintyre, H. (2011). Overpressures in the northern Malay Basin: Part 1—Origin and distribution. All Days, IPTC‐15345‐MS. https://doi.org/10.2523/IPTC‐15345‐MS
    [Google Scholar]
  74. Tingay, M. R. P., Morley, C. K., Laird, A., Limpornpipat, O., Krisadasima, K., Pabchanda, S., & Macintyre, H. R. (2013). Evidence for overpressure generation by kerogen‐to‐gas maturation in the northern Malay Basin. AAPG Bulletin, 97(4), 639–672. https://doi.org/10.1306/09041212032
    [Google Scholar]
  75. Tjia, H. D. (1994). Inversion tectonics in the Malay Basin: Evidence and timing of events. Bulletin. Geological Society of Malaysia, 36, 119–126.
    [Google Scholar]
  76. Tjia, H. D. (1998). Origin and tectonic development of Malay‐Penyu‐west Natuna basins. Bulletin. Geological Society of Malaysia, 42, 147–160. https://doi.org/10.7186/bgsm42199813
    [Google Scholar]
  77. Tjia, H. D. (2014). Wrench‐slip reversals and structural inversions: Cenozoic slide‐rule tectonics in Sundaland. Indonesian Journal on Geoscience, 1(1), 35–52.
    [Google Scholar]
  78. Tjia, H. D., & Liew, K. K. (1996). Changes in tectonic stress field in northern Sunda shelf basins. Geological Society, London, Special Publications, 106(1), 291–306. https://doi.org/10.1144/GSL.SP.1996.106.01.19
    [Google Scholar]
  79. Twarog, M. R., Culver, S. J., Mallinson, D. J., Leorri, E., Donovan, B., Harrison, E. I., Hindes, H., Reed, D., Horsman, E., Shazili, N. A. M., & Parham, P. R. (2021). Depositional environments and sequence stratigraphy of post‐last glacial maximum incised valley‐fill, Malay Basin, northern Sunda shelf. Marine Geology, 436, 106457. https://doi.org/10.1016/j.margeo.2021.106457
    [Google Scholar]
  80. Vincelette, R. R., Beaumont, E. A., & Foster, N. H. (1999). Classification of exploration traps. In E. A.Beaumont & N. H.Foster (Eds.), Exploring for oil and gas traps. American Association of Petroleum Geologists. https://doi.org/10.1306/TrHbk624C2
    [Google Scholar]
  81. Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., … Zachos, J. C. (2020). An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science, 369(6509), 1383–1387. https://doi.org/10.1126/science.aba6853
    [Google Scholar]
  82. Woolands, M. A., & Haw, D. (1976). Tertiary stratigraphy and sedimentation in the Gulf of Thailand. Offshore South East Asia Conference, 1976, 63–84.
    [Google Scholar]
  83. Yakzan, M. A., Harun, A., Md Nasib, B., & Morley, R. J. (1996). Integrated biostratigraphic zonation for the Malay Basin. Bulletin. Geological Society of Malaysia, 39, 157–184. https://doi.org/10.7186/bgsm39199615
    [Google Scholar]
  84. Yusak, S. A. M. (2012). Sedimentological characterization of deeper group M reservoirs in Malay Basin. Warta Geologi (Newsletter of the Geological Society of Malaysia), 38(2), 212.
    [Google Scholar]
/content/journals/10.1111/bre.12885
Loading
/content/journals/10.1111/bre.12885
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error