1887
Volume 36, Issue 4
  • E-ISSN: 1365-2117

Abstract

[Abstract

The Miocene sequence in the Roer Valley Rift System consists of alternating open‐to‐shallow marine, coastal and fluvio‐deltaic deposits. In this study, well logs, bio‐chronostratigraphy and seismostratigraphy are used to characterize major units and their bounding unconformities and to infer sediment dispersal patterns. Three major unconformities occur in the sequence: the early, middle and late Miocene unconformities (EMU, MMU and LMU). The EMU formed due to tectonic motions related to the Savian phase. After formation of the EMU, a broad depocentre developed in the south‐eastern part of the Roer Valley Graben (RVG). Sediment accumulation increased during this period and peaked in the middle Langhian, after which it diminished again to a low level during the late Serravallian. The decrease in sediment accumulation coincided with a period of tectonic subsidence along the major bounding fault zones (i.e. the Peel Boundary Fault System, the Feldbiss Fault System and the Veldhoven Fault System). The resulting transgression caused sediment starvation in the central RVG. Subsequently, global sea‐level fall during the early Tortonian caused large‐scale erosion, and formation of incised valleys on the highs adjacent to the RVG (Peel Block and Campine Block), as well as the south‐eastern RVG, forming the MMU. However, sedimentation continued during this period in the central part of the RVG where no erosional hiatus developed. From the Tortonian onwards, accumulation rates increased again. The depocentre shifted towards the north‐west and clinoforms developed in the RVG. During the latest Miocene, the depocentre was concentrated along the south‐western margin of the RVG. Meanwhile, the depositional environment of the entire RVRS gradually shallowed as the LMU was formed.

,

This research presents new insights into the evolution of the Miocene depocentres in the Roer Valley Rift System. A multi‐scale approach was used to establish a subdivision of the late Miocene sequence that can be regionally correlated, and further characterize the implications of the ‘Mid‐Miocene Unconformity’.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12886
2024-07-14
2024-09-16
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/4/bre12886.html?itemId=/content/journals/10.1111/bre.12886&mimeType=html&fmt=ahah

References

  1. Adriaens, R., & Vandenberghe, N. (2020). Quantitative clay mineralogy as a tool for lithostratigraphy of Neogene Formations in Belgium: A reconnaissance study. Geologica Belgica, 23(3–4), 365–378.
    [Google Scholar]
  2. Boenigk, W., & Frechen, M. (2006). The Pliocene and Quaternary fluvial archives of the Rhine system. Quaternary Science Reviews, 25(5), 550–574.
    [Google Scholar]
  3. Böhme, M. (2003). The Miocene Climatic Optimum: Evidence from ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 195(3), 389–401.
    [Google Scholar]
  4. Böhme, M., Aiglstorfer, M., Uhl, D., & Kullmer, O. (2012). The Antiquity of the Rhine River: Stratigraphic Coverage of the Dinotheriensande (Eppelsheim Formation) of the Mainz Basin (Germany). PLoS One, 7(5), e36817.
    [Google Scholar]
  5. Camelbeeck, T., & Eck, T. (1994). The Roer Valley Graben earthquake of 13 April 1992 and its seismotectonic setting. Terra Nova, 6(3), 291–300.
    [Google Scholar]
  6. Cameron, T., Crosby, A., Balson, P., Jeffery, D., Lott, G., Bulat, J., & Harrison, D. (1992). The geology of the southern North Sea United Kingdom offshore regional report. British Geological Survey and HMSO.
    [Google Scholar]
  7. Catuneanu, O. (2006). Principles of sequence stratigraphy. In Developments in sedimentology (p. 58). Elsevier.
    [Google Scholar]
  8. Catuneanu, O., Galloway, W. E., Kendall, C. G. S. C., Miall, A. D., Posamentier, H. W., Strasser, A., & Tucker, M. E. (2011). Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy, 44(3), 173–245.
    [Google Scholar]
  9. De Bruin, G., Geel, K., Houben, S., Munsterman, D., Verweij, H., Smit, J., Janssen, N., Kerstholt‐Boegehold, S., & Vandeweijer, V. (2015). MMU—Unravelling the stratigraphic and structural development of the strata found underneath and above the mid‐Miocene unconformity. TNO Report, 2015, R10425.
    [Google Scholar]
  10. De Schepper, S., Head, M., & Louwye, S. (2004). New dinoflagellate cyst and incertae sedis taxa from the Pliocene of Northern Belgium, Southern North Sea Basin. Journal of Paleontology, 78, 625–644.
    [Google Scholar]
  11. De Verteuil, L., & Norris, G. (1996). Miocene dinoflagellate stratigraphy and systematics of Maryland and Virginia. Micropaleontology, 42, i–viii.
    [Google Scholar]
  12. Deckers, J. (2015). Middle Miocene mass transport deposits in the southern part of the Roer Valley Graben. Marine and Petroleum Geology, 66, 653–659.
    [Google Scholar]
  13. Deckers, J. (2016). The Late Oligocene to Early Miocene early evolution of rifting in the south‐western part of the Roer Valley Graben. International Journal of Earth Sciences, 105, 1233–1243.
    [Google Scholar]
  14. Deckers, J., & Louwye, S. (2019). A reinterpretation of the ages and depositional environments of the lower and middle Miocene stratigraphic records in a key area along the southern margin of the North Sea Basin. Geological Magazine, 156(3), 525–532.
    [Google Scholar]
  15. Deckers, J., & Munsterman, D. (2020). Middle Miocene depositional evolution of the central Roer Valley Rift System. Geological Journal, 55(9), 6188–6197.
    [Google Scholar]
  16. Demyttenaere, R. (1989). The post‐Paleozoic geological history of north‐eastern Belgium. Letteren en Schone Kunsten van België, 51, 51–81.
    [Google Scholar]
  17. Doornenbal, J. C., & Stevenson, A. G. (Eds.). (2010). Petroleum geological atlas of the southern Permian Basin area. EAGE Publications b.v.
    [Google Scholar]
  18. Dybkjaer, K., & Rasmussen, E. S. (2000). Palynological dating of the Oligocene–Miocene successions in the Lille Bælt area, Denmark. Bulletin of the Geological Society of Denmark, 47, 87–103.
    [Google Scholar]
  19. Dybkjær, K., Rasmussen, E. S., Eidvin, T., Grosfjeld, K., Riis, F., Piasecki, S., & Sliwinksa, K. K. (2021). A new stratigraphic framework for the Miocene – Lower Pliocene deposits offshore Scandinavia: A multiscale approach. Geological Journal, 56(3), 1699–1725.
    [Google Scholar]
  20. Eidvin, T., & Rundberg, Y. (2007). Post‐Eocene strata of the southern Viking Graben, northern North Sea; intergrated biostratigraphic, strontium isotopic and lithostratigraphic study. Norwegian Journal of Geology, 87, 391–450.
    [Google Scholar]
  21. Everaert, S., Munsterman, D. K., De Schutter, P., Bosselaers, M., Van Boeckel, J., Cleemput, G., & Bor, T. (2020). Stratigraphy and palaeontology of the lower Miocene Kiel Sand Member (Berchem Formation) in temporary exposures in Antwerp (northern Belgium). Geologica Belgica, 23, 167–198.
    [Google Scholar]
  22. Flower, B. P., & Kennett, J. P. (1994). The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology, 108(3), 537–555.
    [Google Scholar]
  23. Geluk, M. C., Duin, E. J. T., & Van den Berg, M. W. (1994). Stratigraphy and tectonics of the Roer Valley Graben. Netherlands Journal of Geosciences – Geologie en Mijnbouw, 73, 129–141.
    [Google Scholar]
  24. Gibbard, P., & Lewin, J. (2003). The history of the major rivers of southern Britain during the Tertiary. Journal of the Geological Society, 160, 829–845.
    [Google Scholar]
  25. Goledowski, B., Nielsen, S. B., & Clausen, O. R. (2012). Cenozoic erosion and flexural isostasy of Scandinavia. Journal of Geodynamics, 70, 2813.
    [Google Scholar]
  26. Hampson, G. J., Sixsmith, P. J., Kieft, R. L., Jackson, C. A.‐L., & Johnson, H. D. (2009). Quantitative analysis of net‐transgressive shoreline trajectories and stratigraphic architectures: Mid‐to ‐late Jurassic of the North Sea Rift Basin. Basin Research, 21, 528–558.
    [Google Scholar]
  27. Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of Fluctuating Sea levels since the Triassic. Science, 235(4793), 1156–1167.
    [Google Scholar]
  28. Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, T., de Graciansky, P.‐C., & Vail, P. R. (1998). Mesozoic and Cenozoic sequence chronostratigraphic framework of European Basins. In P. C.de Graciansky, J.Hardenbol, T.Jacquin, & P. R.Vail (Eds.), Mesozoic and Cenozoic sequence stratigraphy of European Basins (Vol. 60, pp. 3–29). SEPM Society for Sedimentary Geology.
    [Google Scholar]
  29. Harding, R. (2015). Evolution of the giant southern North Sea shelf‐prism: testing sequence stratigraphic concepts and the global sea level curve with full‐three dimensional control. p. 296.
  30. Helland‐Hansen, W., & Hampson, G. J. (2009). Trajectory analysis: Concepts and applications. Basin Research, 21(5), 454–483.
    [Google Scholar]
  31. Helland‐Hansen, W., & Martinsen, O. J. (1996). Shoreline trajectories and sequences: Description of variable depositional dip scenarios. Journal of Sedimentary Research, B66, 670–688.
    [Google Scholar]
  32. Holbourn, A. E., Kuhnt, W., Clemens, S. C., Prell, W. L., & Andersen, N. (2013). Middle to late Miocene stepwise climate cooling: Evidence from a high‐resolution deep water isotope curve spanning 8 million years. Paleoceanography, 28(4), 688–699.
    [Google Scholar]
  33. Houtgast, R. F., & van Balen, R. T. (2000). Neotectonics of the Roer Valley Rift System, the Netherlands. Global and Planetary Change, 27, 107–123.
    [Google Scholar]
  34. Houthuys, R. (2011). A sedimentary model of the Brussels Sands. Eocene, Belgium, Geologica Belgica, 14(1–2), 55–74.
    [Google Scholar]
  35. Houthuys, R. (2014). A reinterpretation of the Neogene emersion of central Belgium based on the sedimentary environment of the Diest Formation and the origin of the drainage pattern. Geologica Belgica, 17(3–4), 211–235.
    [Google Scholar]
  36. Houthuys, R., Adriaens, R., Goolaerts, S., Laga, P., Louwye, S., Matthijs, J., Vandenberghe, N., & Verhaegen, J. (2020). The diest formation: A review of insights from the last decades. Geologica Belgica, 23(3–4), 1–20.
    [Google Scholar]
  37. Hultberg, S. U., & Malmgren, B. A. (1986). Dinoflagellate and planktonic foraminiferal paleobathymetrical indices in the boreal uppermost Cretaceous. Micropaleontology, 32, 316–323.
    [Google Scholar]
  38. Huuse, M. (2002). Cenozoic uplift and denudation of southern Norway: Insights from the North Sea Basin. Geological Society, London, Special Publications, 196(1), 209–233.
    [Google Scholar]
  39. Huuse, M., & Clausen, O. R. (2001). Morphology and origin of major Cenozoic sequence boundaries in the eastern North Sea Basin: Top Eocene, near‐top Oligocene and the mid‐Miocene unconformity. Basin Research, 13(1), 17–41.
    [Google Scholar]
  40. Knox, R. W. O., Bosch, A., Hiss, M., De Lugt, I., Kasinski, J., King, C., Kothe, A., Slodkowska, B., Standke, G., & Vandenberghe, N. (2010). Cenozoic. In Petroleum Geological Atlas of the Southern Permian Basin (pp. 211–223). EAGE Publications b.v.
    [Google Scholar]
  41. Kominz, M. A., Browning, J. V., Miller, K. G., Sugarman, P. J., Mizintseva, S., & Scotese, C. R. (2008). Late Cretaceous to Miocene sea‐level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis. Basin Research, 20(2), 211–226.
    [Google Scholar]
  42. Louwye, S. (1999). New species of organic‐walled dinoflagellates and acritarchs from the Upper Miocene Diest Formation, northern Belgium (southern North Sea Basin). Review of Palaeobotany and Palynology, 107(1), 109–123.
    [Google Scholar]
  43. Louwye, S. (2002). Dinoflagellate cyst biostratigraphy of the Upper Miocene Deurne Sands (Diest Formation) of northern Belgium, southern North Sea Basin. Geological Journal, 37(1), 55–67.
    [Google Scholar]
  44. Louwye, S. (2005). The Early and Middle Miocene transgression at the southern border of the North Sea Basin (northern Belgium). Geological Journal, 40(4), 441–456.
    [Google Scholar]
  45. Louwye, S., De Schepper, S., Laga, P., & Vandenberghe, N. (2007). The Upper Miocene of the southern North Sea Basin (northern Belgium): A palaeoenvironmental and stratigraphical reconstruction using dinoflagellate cysts. Geological Magazine, 144(1), 33–52.
    [Google Scholar]
  46. Louwye, S., Deckers, J., Verhaegen, J., Adriaens, R., & Vandenberghe, N. (2020). A review of the lower and middle Miocene of northern Belgium. Geologica Belgica, 23, 137–156.
    [Google Scholar]
  47. Meyer, W., Albers, H. J., Berners, H. P., Gehlen, K. V., Glatthaar, D., Lohnertz, W., Pfeffer, K. H., Schnutgen, A., Wienecke, K., & Zakosek, H. (1983). Pre‐Quaternary uplift in the central part of the Rhenish Massif BT. In K. Y.Fuchs, K.Gehlen, H.Malzer, H.Muawski, & A.Semmel (Eds.), Plateau uplift (pp. 39–46). Springer Berlin Heidelberg.
    [Google Scholar]
  48. Michon, L., & van Balen, R. T. (2005). Characterization and quantification of active faulting in the Roer valley rift system based on high precision digital elevation models. Quaternary Science Reviews, 24(3–4), 457–474.
    [Google Scholar]
  49. Michon, L., Van Balen, R. T., Merle, O., & Pagnier, H. (2003). The Cenozoic evolution of the Roer Valley Rift System integrated at a European scale. Tectonophysics, 367(1), 101–126.
    [Google Scholar]
  50. Miller, K. G., Browing, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., & Wright, J. D. (2020). Cenozoic sea‐level and cryospheric evolution from deep‐sea geochemical and continental margin records. Science Advances, 6(20), eaaz1346.
    [Google Scholar]
  51. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie‐Blick, N., & Pekar, S. F. (2005). The Phanerozoic Record of global sea‐level change. Science, 310(5752), 1293–1298.
    [Google Scholar]
  52. Munsterman, D. K., & Brinkhuis, H. (2004). A southern North Sea Miocene dinoflagellate cyst zonation. Netherlands Journal of Geosciences – Geologie en Mijnbouw, 83(4), 267–285.
    [Google Scholar]
  53. Munsterman, D. K., & Deckers, J. (2020). The Oligocene/Miocene boundary in the ON‐Mol‐1 and Weelde boreholes along the southern margin of the North Sea Basin, Belgium. Geologica Belgica, 23(3–4), 127–135.
    [Google Scholar]
  54. Munsterman, D. K., & Deckers, J. (2022). Biostratigraphic ages and depositional environments of the upper Oligocene to lower Miocene Veldhoven Formation in the central Roer Valley Rift System (SE Netherlands‐NE Belgium). Netherlands Journal of Geosciences – Geologie en Mijnbouw, 101, 6.
    [Google Scholar]
  55. Munsterman, D. K., Ten Veen, J. H., Menkovic, A., Deckers, J., Witmans, N., Verhaegen, J., Kerstholt‐Boegehold, S. J., Van de Ven, T., & Busschers, F. S. (2019). An updated and revised stratigraphic framework for the Miocene and earliest Pliocene strata of the Roer Valley Graben and adjacent blocks. Geologie en Mijnbouw/Netherlands Journal of Geosciences, 98, 1993–1997.
    [Google Scholar]
  56. Ogg, J., Ogg, G., & Gradstein, F. (2016). A Concise Geologic TimeScale 2016. Elsevier.
    [Google Scholar]
  57. Patruno, S., Hampson, G. J., Jackson, C. A. L., & Dreyer, T. (2015). Clinoform geometry, geomorphology, facies character and stratigraphic architecture of a sand‐rich subaqueous delta: Jurassic Sognefjord Formation, offshore Norway. Sedimentology, 62(1), 350–388.
    [Google Scholar]
  58. Patruno, S., & Helland‐Hansen, W. (2018). Clinoforms and clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth‐Science Reviews, 185, 202–233.
    [Google Scholar]
  59. Posamentier, H. W., Jervey, M. T., & Vail, P. R. (1988). Eustatic controls on clastics deposition I—Conceptual framework. In C. K.Wilgus, B. H.Hasting, C. G. S. T. C.Kendall, H. W.Posamentier, C. A.Ross, & J. C.van Wagoner (Eds.), Sea level changes: An integrated approach (pp. 109–124). SEPM, Special Publication, No. 420.
    [Google Scholar]
  60. Prinz, L., McCann, T., Schäfer, A., & Asmus, S. (2016). The geometry, distribution and development of sand bodies in the Miocene‐age Frimmersdorf Seam (Garzweiler open‐cast mine), Lower Rhine Basin, Germany: Implications for seam exploitation. Geological Magazine, 155(3), 685–706.
    [Google Scholar]
  61. Prinz, L., Schäfer, A., McCann, T., Utescher, T., Lokay, P., & Asmus, S. (2017). Facies analysis and depositional model of the Serravallian‐age Neurath Sand, Lower Rhine Basin (W Germany). Netherlands Journal of Geosciences – Geologie en Mijnbouw, 96(3), 211–231.
    [Google Scholar]
  62. Rasmussen, E. S. (2014). Development of an incised‐valley fill under the influence of tectonism and glacio‐eustatic sea‐level change: Valley morphology, fluvial style, and lithology. Journal of Sedimentary Research, 84(4), 278–300.
    [Google Scholar]
  63. Rasmussen, E. S., & Dybkjær, K. (2014). Patterns of Cenozoic sediment flux from western Scandinavia: Discussion. Basin Research, 26(2), 338–346.
    [Google Scholar]
  64. Rasmussen, E. S., Dybkjær, K., & Piasecki, S. (2010). Lithostratigraphy of the upper Oligocene – Miocene succession of Denmark. Bulletin of the Geological Survey of Denmark and Greenland, 22, 1–92.
    [Google Scholar]
  65. Rasmussen, E. S., Heilmann‐Clausen, C., Waagstein, R., & Eidvin, T. (2008). Tertiary of Norden. Episodes, 31, 66–72.
    [Google Scholar]
  66. Schäfer, A., Utescher, T., Klett, M., & Manchego, M. V. (2005). The Cenozoic Lower Rhine Basin – Rifting, sedimentation, and cyclic stratigraphy. International Journal of Earth Sciences, 94(4), 621–639.
    [Google Scholar]
  67. Shevenell, A. E., Kennett, J. P., & Lea, D. W. (2008). Middle Miocene ice sheet dynamics, deep‐sea temperatures, and carbon cycling: A Southern Ocean perspective. Geochemistry, Geophysics, Geosystems, 9(2), Q02006.
    [Google Scholar]
  68. Sissingh, W. (2003). Tertiary paleogeographic and tectonostratigraphic evolution of the Rhenish Triple Junction. Palaeogeography, Palaeoclimatology, Palaeoecology, 196, 229–263.
    [Google Scholar]
  69. Slupik, A., & Janse, A. C. (2008). The geological record of the Breda Formation in the subsurface of the Island of Noord‐Beveland (Province of Zeeland, The Netherlands) from the Colijnsplaat borehole (42G24‐1): A sequence‐stratigraphic approach. Deinsea.
    [Google Scholar]
  70. Sørensen, J. C., Gregersen, U., Breiner, M., & Michelsen, O. (1997). High‐frequency sequence stratigraphy of Upper Cenozoic deposits in the central and southeastern North Sea areas. Marine and Petroleum Geology, 14(2), 99–123.
    [Google Scholar]
  71. Steel, R., Porebski, S. J., Plink‐Bjorklund, P., & Mellere, D. (2003). Shelf‐edge delta types and their sequence‐stratigraphic relationships. Shelf Margin Deltas and Linked Down Slope Petroleum Systems: 23rd Annual, 205–230.
  72. Steel, R. J., & Olsen, T. (2002). Clinoforms, clinoform trajectory and deepwater sands. In J. M.Armentrout & N. C.Rosen (Eds.), Sequence stratigraphic models for exploration and production: Evolving methodology, emerging models and application histories (pp. 367–381). GCS‐SEPM Special Publication.
    [Google Scholar]
  73. Thöle, H., Gaedicke, C., Kuhlmann, G., & Reinhardt, L. (2014). Late Cenozoic sedimentary evolution of the German North Sea – A seismic stratigraphic approach. Newsletters on Stratigraphy, 47(3), 299–329.
    [Google Scholar]
  74. TNO‐GDN . (2024). Stratigraphic nomenclature of the Netherlands. TNO—Geological Survey of the Netherlands. https://www.dinoloket.nl/en/stratigraphic‐nomenclature
  75. Utescher, T., Ashraf, A., Kern, A. K., & Mosbruger, V. (2021). Diversity patterns in microfloras recovered from Miocene brown coals of the lower Rhine Basin reveal distinct coupling of the structure of the peat‐forming vegetation and continental climate variability. Geological Journal, 56(2), 768–785.
    [Google Scholar]
  76. Utescher, T., Mosbrugger, V., & Ashraf, A. (2000). Terrestrial climate evolution in Northwest Germany over the last 25 million years. PALAIOS, 15, 430–449.
    [Google Scholar]
  77. Utescher, T., Mosbrugger, V., & Ashraf, A. R. (2002). Facies and paleogeography of the Tertiary of the Lower Rhine Basin—sedimentary versus climatic control. Netherlands Journal of Geosciences – Geologie en Mijnbouw, 81(2), 185–191.
    [Google Scholar]
  78. Van Adrichem Boogaert, H. A., & Kouwe, W. F. P. (1993). Stratigraphic nomenclature of the Netherlands; revision and update by RGD and NOGEPA. Mededelingen Rijks Geologische Dienst, 50, 1–39.
    [Google Scholar]
  79. Van Balen, R. T., Verweij, J. M., Van Wees, J. D. A. M., Simmelink, H., Van Bergen, F., & Pagnier, H. (2002). Deep subsurface temperatures in the Roer Valley Graben and the Peelhorst, the Netherlands‐new results. Netherlands Journal of Geosciences – Geologie en Mijnbouw, 81, 19–26.
    [Google Scholar]
  80. Vandenberghe, N., Burleigh Harris, W., Wampler, J. M., Houthuys, R., Louwye, S., Adriaens, R., Vos, K., Lanckacker, T., Matthijs, J., & Deckers, J. (2014). The implications of K‐Ar glauconite dating of the diest formation on the paleogeography of the upper miocene in Belgium. Geologica Belgica, 17(2), 161–174.
    [Google Scholar]
  81. Vandenberghe, N., Laga, P., Louwye, S., Vanhoorne, R., Marquet, R., De Meuter, F., Wouters, K., & Hagemann, H. W. (2005). Stratigraphic interpretation of the Neogene marine‐continental record in the Maaseik well (49W0220) in the Roer Valley Graben, NE Belgium. Memoirs of the Geological Survey of Belgium, 52, 39.
    [Google Scholar]
  82. Vandenberghe, N., Laga, P., Steurbaut, E., Hardenbol, J., & Vail, P. R. (1998). Tertiary sequence stratigraphy at the southern border of the North Sea Basin in Belgium. Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, 60, 119–154.
    [Google Scholar]
  83. Verbeek, J. W., de Leeuw, C. S., Parker, N., & Wong, T. E. (2002). Characterisation and correlation of Tertiary seismostratigraphic units in the Roer Valley Graben. Netherlands Journal of Geosciences – Geologie en Mijnbouw, 81(2), 159–166.
    [Google Scholar]
  84. Wang, R., Colombera, L., & Mountney, N. P. (2020). Quantitative analysis of the stratigraphic architecture of incised‐valley fills: A global comparison of Quaternary systems. Earth‐Science Reviews, 200, 102988.
    [Google Scholar]
  85. Westerhoff, W. E., Kemna, H. A., & Boenigk, W. (2008). The confluence area of Rhine, Meuse, and Belgian rivers: Late Pliocene and Early Pleistocene fluvial history of the northern Lower Rhine Embayment. Netherlands Journal of Geosciences – Geologie en Mijnbouw, 87(1), 107–125.
    [Google Scholar]
  86. Whitcombe, D. N. (2002). Extended elastic impedance for fluid and lithology predication. Geophysics, 67, 63–67.
    [Google Scholar]
  87. Wong, T. E., Parker, N., & Horst, P. (2001). Tertiary sedimentary development of the Broad Fourteens area, the Netherlands. Netherlands Journal of Geosciences – Geologie en Mijnbouw, 80(1), 85–94.
    [Google Scholar]
  88. Zagwijn, W. H., & Hager, H. (1987). Correlations of continental and marine Neogene deposits in the south‐eastern Netherlands and the Lower Rhine District. Medewerkers Werkgroep Tertair Kwartair Geologie, 24(1–2), 59–78.
    [Google Scholar]
  89. Ziegler, P. A. (1990). Geological atlas of western and central Europe (2nd ed.). Shell Internationale Petroleum Maatschappij.
    [Google Scholar]
  90. Ziegler, P. A. (1994). Cenozoic rift system of western and central Europe: An overview. Netherlands Journal of Geosciences – Geologie en Mijnbouw, 73(2–4), 99–127.
    [Google Scholar]
/content/journals/10.1111/bre.12886
Loading
/content/journals/10.1111/bre.12886
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error