1887
Volume 36, Issue 4
  • E-ISSN: 1365-2117

Abstract

[

Spatial morphological and sedimentary features of the submarine bedforms at canyon mouths are controlled by the combined action of down‐ and along‐slope factors. Along‐slope bottom currents influence the deposition distribution of the turbidity current at canyon mouth. However, slope breaks control the morphology of the bedforms along downslope.

, Abstract

Bedforms associated with turbidite systems are commonly observed on seafloor. Previous studies have analysed bedform morphological and sedimentary features to determine their formation mechanisms and flow dynamics. However, the seafloor topography and ocean circulation have comprehensively influenced both down‐ and along‐slope turbidity flow processes, complicating the spatial distribution of the related bedforms. Three‐dimensional seismic data (3D) were used to depict the morphological and sedimentary features of the bedforms around the canyon mouth on the slope of the Rovuma Basin (offshore Mozambique), to reveal the spatial distribution and related flow processes of the bedforms. The results show that the spatial morphological and sedimentary features of the submarine bedforms at canyon mouths are controlled by the combined action of down‐ and along‐slope factors. The along‐slope bottom currents influence the deposition distribution of the turbidity current at the canyon mouth. However, slope breaks control bedform morphological and sedimentary features during downslope turbidity currents. Coarse‐grained material of turbidity current flows along the axial zone of the canyon mouth, forming a linear series of crescent‐shaped net‐erosional cyclic steps characterized by short steep stoss sides and long gentle lee sides. The fine‐grained material of the turbidity currents is deflected towards the northern flank of the axial zone by the bottom currents and deposited as undulating net‐depositional cyclic steps at upper reach of the northern flank, showing long gentle stoss sides and short steep sides. Slope breaks enhance the erosion on cyclic steps by altering the velocity of turbidity current, forming net‐erosional cyclic steps with the manifestation of both short and steep stoss and lee sides at lower reaches of northern flank. The turbidity current in the axial zone formed lateral flow diversions caused by the obstruction of the cyclic steps. The flow diversions converge with the downslope flowing unconfined turbidity current at the northern flank and constitute a confluence characterized by continuous variation of flow properties, forming the cyclic steps featuring irregular morphology.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12887
2024-07-18
2024-09-16
Loading full text...

Full text loading...

References

  1. Amblas, D., & Dowdeswell, J. (2018). Physiographic influences on dense shelf‐water cascading down the Antarctic continental slope. Earth Science Reviews, 185, 887–900.
    [Google Scholar]
  2. Beal, L. M., Ffield, A., & Gordon, A. L. (2000). Spreading of Red Sea overflow waters in the Indian Ocean. Journal of Geophysical Research: Oceans, 105, 8549–8564.
    [Google Scholar]
  3. Breitzke, M., Wiles, E., Krocker, R., Watkeys, M. K., & Jokat, W. (2017). Seafloor morphology in the Mozambique Channel: Evidence for long‐term persistent bottom‐current flow and deep‐reaching eddy activity. Marine Geophysical Researches, 38, 241–269.
    [Google Scholar]
  4. Bull, S., Cartwright, J., & Huuse, M. (2009). A review of kinematic indicators from mass‐transport complexes using 3D seismic data. Marine and Petroleum Geology, 26, 1132–1151.
    [Google Scholar]
  5. Cartigny, M. J., Postma, G., van den Berg, J. H., & Mastbergen, D. R. (2011). A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling. Marine Geology, 280, 40–56.
    [Google Scholar]
  6. Cartigny, M. J., Ventra, D., Postma, G., & van Den Berg, J. H. (2014). Morphodynamics and sedimentary structures of bedforms under supercritical‐flow conditions: New insights from flume experiments. Sedimentology, 61, 712–748.
    [Google Scholar]
  7. Casalbore, D., Clare, M. A., Pope, E. L., Quartau, R., Bosman, A., Chiocci, F. L., Romagnoli, C., & Santos, R. (2021). Bedforms on the submarine flanks of insular volcanoes: New insights gained from high resolution seafloor surveys. Sedimentology, 68, 1400–1438.
    [Google Scholar]
  8. Catuneanu, O., Abreu, V., Bhattacharya, J., Blum, M., Dalrymple, R., Eriksson, P., Fielding, C. R., Fisher, W., Galloway, W., & Gibling, M. (2009). Towards the standardization of sequence stratigraphy. Earth‐Science Reviews, 92, 1–33.
    [Google Scholar]
  9. Chanson, H. (2004). The hydraulics of open channel flow: An Introduction (2nd ed., p. 630). Butterworth‐Heinemann.
    [Google Scholar]
  10. Chen, Y., Yao, G., Wang, X., Lv, F., Shao, D., Lu, Y., Cao, Q., & Tang, P. (2020). Flow processes of the interaction between turbidity flows and bottom currents in sinuous unidirectionally migrating channels: An example from the Oligocene channels in the Rovuma Basin, offshore Mozambique. Sedimentary Geology, 404, 105680.
    [Google Scholar]
  11. Clarke, J. E. H., Marques, C. R. V., & Pratomo, D. (2014). Imaging active mass‐wasting and sediment flows on a fjord delta, Squamish, British Columbia, Submarine mass movements and their consequences (pp. 249–260). Springer.
    [Google Scholar]
  12. Cossu, R., Wells, M., & Peakall, J. (2015). Latitudinal variations in submarine channel sedimentation patterns: The role of Coriolis forces. Journal of the Geological Society of London, 172, 161–174.
    [Google Scholar]
  13. Courgeon, S., Bachèlery, P., Jouet, G., Jorry, S. J., Bou, E., BouDagher‐Fadel, M. K., Révillon, S., Camoin, G., & Poli, E. (2018). The offshore east African rift system: New insights from the Sakalaves seamounts (Davie Ridge, SW Indian Ocean). Terra Nova, 30, 380–388.
    [Google Scholar]
  14. Covault, J. A., Kostic, S., Paull, C. K., Ryan, H. F., & Fildani, A. (2014). Submarine channel initiation, filling and maintenance from sea‐floor geomorphology and morphodynamic modelling of cyclic steps. Sedimentology, 61, 1031–1054.
    [Google Scholar]
  15. Covault, J. A., Kostic, S., Paull, C. K., Sylvester, Z., & Fildani, A. (2017). Cyclic steps and related supercritical bedforms: Building blocks of deep‐water depositional systems, western North America. Marine Geology, 393, 4–20.
    [Google Scholar]
  16. de Ruijter, W. P., Ridderinkhof, H., Lutjeharms, J. R., Schouten, M. W., & Veth, C. (2002). Observations of the flow in the Mozambique Channel. Geophysical Research Letters, 29, 140‐1–140‐3.
    [Google Scholar]
  17. Dietrich, P., Ghienne, J.‐F., Normandeau, A., & Lajeunesse, P. (2016). Upslope‐migrating bedforms in a proglacial sandur delta: Cyclic steps from river‐derived underflows?Journal of Sedimentary Research, 86, 112–122.
    [Google Scholar]
  18. Dorrell, R., Peakall, J., Sumner, E., Parsons, D., Darby, S., Wynn, R., Özsoy, E., & Tezcan, D. (2016). Flow dynamics and mixing processes in hydraulic jump arrays: Implications for channel‐lobe transition zones. Marine Geology, 381, 181–193.
    [Google Scholar]
  19. Ercilla, G., Alonso, B., Wynn, R. B., & Baraza, J. (2002). Turbidity current sediment waves on irregular slopes: Observations from the Orinoco sediment–wave field. Marine Geology, 192, 171–187.
    [Google Scholar]
  20. Fierens, R., Droz, L., Toucanne, S., Raisson, F., Jouet, G., Babonneau, N., Miramontes, E., Landurain, S., & Jorry, S. J. (2019). Late quaternary geomorphology and sedimentary processes in the Zambezi turbidite system (Mozambique Channel). Geomorphology, 334, 1–28.
    [Google Scholar]
  21. Fildani, A., Hubbard, S. M., Covault, J. A., Maier, K. L., Romans, B. W., Traer, M., & Rowland, J. C. (2013). Erosion at inception of deep‐sea channels. Marine and Petroleum Geology, 41, 48–61.
    [Google Scholar]
  22. Fildani, A., Kostic, S., Covault, J. A., Maier, K. L., Caress, D. W., & Paull, C. K. (2021). Exploring a new breadth of cyclic steps on distal submarine fans. Sedimentology, 68, 1378–1399.
    [Google Scholar]
  23. Fildani, A., Normark, W. R., Kostic, S., & Parker, G. (2006). Channel formation by flow stripping: Large‐scale scour features along the Monterey East Channel and their relation to sediment waves. Sedimentology, 53, 1265–1287.
    [Google Scholar]
  24. Fonnesu, M., Palermo, D., Galbiati, M., Marchesini, M., Bonamini, E., & Bendias, D. (2020). A new world‐class deep‐water play‐type, deposited by the syndepositional interaction of turbidity flows and bottom currents: The giant Eocene Coral Field in northern Mozambique. Marine and Petroleum Geology, 111, 179–201.
    [Google Scholar]
  25. Fuhrmann, A., Kane, I., Clare, M., Ferguson, R., Schomacker, E., Bonamini, E., & Contreras, F. (2020). Hybrid turbidite‐drift channel complexes: An integrated multiscale model. Geology, 48, 562–568.
    [Google Scholar]
  26. Gabbard, D., Huang, C., Norton, L., & Steinhardt, G. (1998). Landscape position, surface hydraulic gradients and erosion processes. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group, 23, 83–93.
    [Google Scholar]
  27. Ghienne, J. F., Normandeau, A., Dietrich, P., Bouysson, M., Lajeunesse, P., & Schuster, M. (2021). The depositional signature of cyclic steps: A late Quaternary analogue compared to modern active delta slopes. Sedimentology, 68, 1502–1538.
    [Google Scholar]
  28. Gong, C., Chen, L., & West, L. (2017). Asymmetrical, inversely graded, upstream‐migrating cyclic steps in marine settings: Late Miocene‐early Pliocene Fish Creek‐Vallecito Basin, southern California. Sedimentary Geology, 360, 35–46.
    [Google Scholar]
  29. Gong, C., Wang, Y., Rebesco, M., Salon, S., & Steel, R. J. (2018). How do turbidity flows interact with contour currents in unidirectionally migrating deep‐water channels?Geology, 46, 551–554.
    [Google Scholar]
  30. Gong, C., Wang, Y., Steel, R. J., Peakall, J., Zhao, X., & Sun, Q. L. (2016). Flow processes and sedimentation in unidirectionally migrating deep‐water channels: From a three‐dimensional seismic perspective. Sedimentology, 63, 645–661.
    [Google Scholar]
  31. Hodgson, D., Peakall, J., & Maier, K. (2022). Submarine channel mouth settings: Processes, geomorphology, and deposits. Frontiers in Earth Science, 10, 790320.
    [Google Scholar]
  32. Hofstra, M., Hodgson, D., Peakall, J., & Flint, S. (2015). Giant scour‐fills in ancient channel‐lobe transition zones: Formative processes and depositional architecture. Sedimentary Geology, 329, 98–114.
    [Google Scholar]
  33. Hofstra, M., Peakall, J., Hodgson, D. M., & Stevenson, C. J. (2018). Architecture and morphodynamics of subcritical sediment waves in an ancient channel–lobe transition zone. Sedimentology, 65, 2339–2367.
    [Google Scholar]
  34. Howlett, D. M., Ge, Z., Nemec, W., Gawthorpe, R. L., Rotevatn, A., & Jackson, C. A. L. (2019). Response of unconfined turbidity current to deep‐water fold and thrust belt topography: Orthogonal incidence on solitary and segmented folds. Sedimentology, 66, 2425–2454.
    [Google Scholar]
  35. Huang, C., & Laften, J. M. (1996). Seepage and soil erosion for a clay loam soil. Soil Science Society of America Journal, 60, 408–416.
    [Google Scholar]
  36. Komar, P. D. (1971). Hydraulic jumps in turbidity currents. Geological Society of America Bulletin, 82, 1477–1488.
    [Google Scholar]
  37. Kostic, S. (2011). Modeling of submarine cyclic steps: Controls on their formation, migration, and architecture. Geosphere, 7, 294–304.
    [Google Scholar]
  38. Kostic, S., & Parker, G. (2006). The response of turbidity currents to a canyon–fan transition: Internal hydraulic jumps and depositional signatures. Journal of Hydraulic Research, 44, 631–653.
    [Google Scholar]
  39. Kostic, S., Sequeiros, O., Spinewine, B., & Parker, G. (2010). Cyclic steps: A phenomenon of supercritical shallow flow from the high mountains to the bottom of the ocean. Journal of Hydro‐Environment Research, 3, 167–172.
    [Google Scholar]
  40. Lamb, M. P., Parsons, J. D., Mullenbach, B. L., Finlayson, D. P., Orange, D. L., & Nittrouer, C. A. (2008). Evidence for superelevation, channel incision, and formation of cyclic steps by turbidity currents in Eel Canyon, California. Geological Society of America Bulletin, 120, 463–475.
    [Google Scholar]
  41. Lee, S. E., Talling, P. J., Ernst, G. G., & Hogg, A. J. (2002). Occurrence and origin of submarine plunge pools at the base of the US continental slope. Marine Geology, 185, 363–377.
    [Google Scholar]
  42. Lewis, K. B., & Pantin, H. M. (2002). Channel‐axis, overbank and drift sediment waves in the southern Hikurangi trough, New Zealand. Marine Geology, 192, 123–151.
    [Google Scholar]
  43. Li, L., & Gong, C. (2018). Gradual transition from net erosional to net depositional cyclic steps along the submarine Distributary Channel Thalweg in the Rio Muni Basin: A joint 3‐D seismic and numerical approach. Journal of Geophysical Research: Earth Surface, 123, 2087–2106.
    [Google Scholar]
  44. Li, S., Li, W., Alves, T. M., Wang, J., Feng, Y., Sun, J., Li, J., & Wu, S. (2020). Large‐scale scours formed by supercritical turbidity currents along the full length of a submarine canyon, northeast South China Sea. Marine Geology, 424, 106158.
    [Google Scholar]
  45. Li, W., Alves, T. M., Urlaub, M., Georgiopoulou, A., Klaucke, I., Wynn, R. B., Gross, F., Meyer, M., Repschläger, J., & Berndt, C. (2017). Morphology, age and sediment dynamics of the upper headwall of the Sahara slide complex, Northwest Africa: Evidence for a large Late Holocene failure. Marine Geology, 393, 109–123.
    [Google Scholar]
  46. Li, W., Krastel, S., Alves, T. M., Urlaub, M., Mehringer, L., Schürer, A., Feldens, P., Gross, F., Stevenson, C. J., & Wynn, R. B. (2018). The Agadir slide offshore NW Africa: Morphology, emplacement dynamics, and potential contribution to the Moroccan Turbidite system. Earth and Planetary Science Letters, 498, 436–449.
    [Google Scholar]
  47. Li, W., Li, S., Alves, T. M., Rebesco, M., & Feng, Y. (2021). The role of sediment gravity flows on the morphological development of a large submarine canyon (Taiwan Canyon), north‐east South China Sea. Sedimentology, 68, 1091–1108.
    [Google Scholar]
  48. Mahanjane, E. S., & Franke, D. (2014). The Rovuma Delta deep‐water fold‐and‐thrust belt, offshore Mozambique. Tectonophysics, 614, 91–99.
    [Google Scholar]
  49. Maier, K. L., Fildani, A., Paull, C. K., Graham, S. A., McHargue, T. R., Caress, D. W., & McGann, M. (2011). The elusive character of discontinuous deep‐water channels: New insights from Lucia Chica channel system, offshore California. Geology, 39, 327–330.
    [Google Scholar]
  50. Maier, K. L., Roland, E. C., Walton, M. A., Conrad, J. E., Brothers, D. S., Dartnell, P., & Kluesner, J. W. (2018). The tectonically controlled San Gabriel channel–lobe transition zone, Catalina Basin, southern California Borderland. Journal of Sedimentary Research, 88, 942–959.
    [Google Scholar]
  51. Maselli, V., Kroon, D., Iacopini, D., Wade, B. S., Pearson, P. N., & de Haas, H. (2019). Impact of the East African Rift System on the routing of the deep‐water drainage network offshore Tanzania, western Indian Ocean. Basin Research, 32, 789–803.
    [Google Scholar]
  52. Miramontes, E., Eggenhuisen, J. T., Jacinto, R. S., Poneti, G., Pohl, F., Normandeau, A., Campbell, D. C., & Hernández‐Molina, F. J. (2020). Channel‐levee evolution in combined contour current–turbidity current flows from flume‐tank experiments. Geology, 48, 353–357.
    [Google Scholar]
  53. Miramontes, E., Thiéblemont, A., Babonneau, N., Penven, P., Raisson, F., Droz, L., Jorry, S. J., Fierens, R., Counts, J. W., & Wilckens, H. (2021). Contourite and mixed turbidite‐contourite systems in the Mozambique Channel (SW Indian Ocean): Link between geometry, sediment characteristics and modelled bottom currents. Marine Geology, 437, 106502.
    [Google Scholar]
  54. Mitchell, N. C. (2006). Morphologies of knickpoints in submarine canyons. Geological Society of America Bulletin, 118, 589–605.
    [Google Scholar]
  55. Morley, C., King, R., Hillis, R., Tingay, M., & Backe, G. (2011). Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: A review. Earth Science Reviews, 104, 41–91.
    [Google Scholar]
  56. Mutti, E., & Normark, W. R. (1987). Comparing examples of modern and ancient turbidite systems: problems and concepts, Marine clastic sedimentology (pp. 1–38). Springer.
    [Google Scholar]
  57. Normandeau, A., Campbell, D. C., & Cartigny, M. J. (2019). The influence of turbidity currents and contour currents on the distribution of deep‐water sediment waves offshore eastern Canada. Sedimentology, 66, 1746–1767.
    [Google Scholar]
  58. Normandeau, A., Lajeunesse, P., Poiré, A. G., & Francus, P. (2016). Morphological expression of bedforms formed by supercritical sediment density flows on four fjord‐lake deltas of the south‐eastern Canadian Shield (Eastern Canada). Sedimentology, 63, 2106–2129.
    [Google Scholar]
  59. Normark, W. R., Hess, G. R., Stow, D., & Bowen, A. (1980). Sediment waves on the Monterey Fan levee: A preliminary physical interpretation. Marine Geology, 37, 1–18.
    [Google Scholar]
  60. Parker, G. (1996). Some speculations on the relation between channel morphology and channel‐scale flow structures. In P.Ashworth, S. J.Bennett, J. L.Best, & S. J.McLelland (Eds.), Coherent flow structures in open channels (pp. 429–432). Wiley.
    [Google Scholar]
  61. Peakall, J., McCaffrey, B., & Kneller, B. (2000). A process model for the evolution, morphology, and architecture of sinuous submarine channels. Journal of Sedimentary Research, 70, 434–448.
    [Google Scholar]
  62. Postma, G., Kleverlaan, K., & Cartigny, M. J. (2014). Recognition of cyclic steps in sandy and gravelly turbidite sequences, and consequences for the Bouma facies model. Sedimentology, 61, 2268–2290.
    [Google Scholar]
  63. Postma, G., Lang, J., Hoyal, D. C., Fedele, J. J., Demko, T., Abreu, V., & Pederson, K. H. (2021). Reconstruction of bedform dynamics controlled by supercritical flow in the channel–lobe transition zone of a deep‐water delta (Sant Llorenç del Munt, north‐east Spain, Eocene). Sedimentology, 68, 1674–1697.
    [Google Scholar]
  64. Rasmussen, S., Lykke‐Andersen, H., Kuijpers, A., & Troelstra, S. R. (2003). Post‐Miocene sedimentation at the continental rise of Southeast Greenland: The interplay between turbidity and contour currents. Marine Geology, 196, 37–52.
    [Google Scholar]
  65. Rebesco, M., Hernández‐Molina, F. J., Van Rooij, D., & Wåhlin, A. (2014). Contourites and associated sediments controlled by deep‐water circulation processes: State‐of‐the‐art and future considerations. Marine Geology, 352, 111–154.
    [Google Scholar]
  66. Rodrigues, S., Hernández‐Molina, F., Fonnesu, M., Miramontes, E., Rebesco, M., & Campbell, D. (2022). A new classification system for mixed (turbidite‐contourite) depositional systems: Examples, conceptual models and diagnostic criteria for modern and ancient records. Earth‐Science Reviews, 230, 104030.
    [Google Scholar]
  67. Rodrigues, S., Hernández‐Molina, F., & Kirby, A. (2021). A Late Cretaceous mixed (turbidite‐contourite) system along the Argentine Margin: Paleoceanographic and conceptual implications. Marine and Petroleum Geology, 123, 104768.
    [Google Scholar]
  68. Saller, A., & Dharmasamadhi, I. N. W. (2012). Controls on the development of valleys, canyons, and unconfined channel–levee complexes on the Pleistocene Slope of East Kalimantan, Indonesia. Marine and Petroleum Geology, 29, 15–34.
    [Google Scholar]
  69. Sansom, P. (2018). Hybrid turbidite–contourite systems of the Tanzanian margin. Petroleum Geoscience, 24, 258–276.
    [Google Scholar]
  70. Sequeiros, O. E. (2012). Estimating turbidity current conditions from channel morphology: A Froude number approach. Journal of Geophysical Research: Oceans, 117(C4).
    [Google Scholar]
  71. Slootman, A., & Cartigny, M. J. (2020). Cyclic steps: Review and aggradation‐based classification. Earth Science Reviews, 201, 102949.
    [Google Scholar]
  72. Spinewine, B., Sequeiros, O. E., Garcia, M. H., Beaubouef, R. T., Sun, T., Savoye, B., & Parker, G. (2009). Experiments on wedge‐shaped deep sea sedimentary deposits in minibasins and/or on channel levees emplaced by turbidity currents. Part II. Morphodynamic evolution of the wedge and of the associated bedforms. Journal of Sedimentary Research, 79, 608–628.
    [Google Scholar]
  73. Stoker, M. S., Long, D., & Bulat, J. (2003). A record of mid‐Cenozoic strong deep‐water erosion in the Faroe–Shetland Channel. In J.Mienert & P.Weaver (Eds.), European margin sediment dynamics: Side‐scan sonar and seismic images (pp. 145–148). Springer.
    [Google Scholar]
  74. Stow, D. A. V., Hernandez‐Molina, F. J., Llave, E., Sayago‐Gil, M., del Rio, V. D., & Branson, A. (2009). Bedform‐velocity matrix: The estimation of bottom current velocity from bedform observations. Geology, 37, 327–330.
    [Google Scholar]
  75. Sun, Y., Wang, D., Canals, M., Alves, T. M., Wang, W., Zhu, Y., Qin, Y., Zeng, F., & Zheng, Y. (2024). Bedform evolution along a submarine canyon in the South China Sea: New insights from an autonomous underwater vehicle survey. Sedimentology, 71, 793–826.
    [Google Scholar]
  76. Symons, W. O., Sumner, E. J., Talling, P. J., Cartigny, M. J., & Clare, M. A. (2016). Large‐scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows. Marine Geology, 371, 130–148.
    [Google Scholar]
  77. Thiéblemont, A., Hernández‐Molina, F. J., Miramontes, E., Raisson, F., & Penven, P. (2019). Contourite depositional systems along the Mozambique channel: The interplay between bottom currents and sedimentary processes. Deep Sea Research Part I: Oceanographic Research Papers, 147, 79–99.
    [Google Scholar]
  78. Turmel, D., Locat, J., & Parker, G. (2015). Morphological evolution of a well‐constrained, subaerial–subaqueous source to sink system: Wabush Lake. Sedimentology, 62, 1636–1664.
    [Google Scholar]
  79. van Aken, H. M., Ridderinkhof, H., & de Ruijter, W. P. (2004). North Atlantic deep water in the south‐western Indian Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 51, 755–776.
    [Google Scholar]
  80. Wang, W., Wang, D., Sun, J., Shao, D., Lu, Y., Chen, Y., & Wu, S. (2020). Evolution of deepwater turbidite bedforms in the Huaguang channel–lobe transition zone revealed by 3D seismic data in the Qiongdongnan Basin, South China Sea. Geomorphology, 370, 107412.
    [Google Scholar]
  81. Wu, N., Jackson, C. A. L., Johnson, H. D., Hodgson, D. M., Clare, M. A., Nugraha, H. D., & Li, W. (2021). The formation and implications of giant blocks and fluid escape structures in submarine lateral spreads. Basin Research, 33, 1711–1730.
    [Google Scholar]
  82. Wu, N., Nugraha, H. D., Zhong, G., & Steventon, M. J. (2022). The role of mass‐transport complexes in the initiation and evolution of submarine canyons. Sedimentology, 69, 2181–2202.
    [Google Scholar]
  83. Wu, N., Zhong, G., Niyazi, Y., Wang, B., Nugraha, H. D., & Steventon, M. J. (2024). Transformation of dense shelf water cascade into turbidity currents: Insights from high‐resolution geophysical datasets. Earth and Planetary Science Letters, 626, 118547.
    [Google Scholar]
  84. Wynn, R. B., Kenyon, N. H., Masson, D. G., Stow, D. A., & Weaver, P. P. (2002). Characterization and recognition of deep‐water channel‐lobe transition zones. AAPG Bulletin, 86, 1441–1462.
    [Google Scholar]
  85. Wynn, R. B., Piper, D. J., & Gee, M. J. (2002). Generation and migration of coarse‐grained sediment waves in turbidity current channels and channel–lobe transition zones. Marine Geology, 192, 59–78.
    [Google Scholar]
  86. Wynn, R. B., & Stow, D. A. (2002). Classification and characterisation of deep‐water sediment waves. Marine Geology, 192, 7–22.
    [Google Scholar]
  87. Wynn, R. B., Weaver, P. P., Ercilla, G., Stow, D. A., & Masson, D. G. (2000). Sedimentary processes in the Selvage sediment‐wave field, NE Atlantic: New insights into the formation of sediment waves by turbidity currents. Sedimentology, 47, 1181–1197.
    [Google Scholar]
  88. Yin, S., Hernández‐Molina, F. J., Miramontes, E., Shen, Z., Yang, C., Gao, J., Liu, S., & Li, J. (2022). Sequential bedform development in mixed turbidite–contourite systems: An example from the Cosmonaut Sea, East Antarctica. Geomorphology, 410, 108287.
    [Google Scholar]
  89. Yokokawa, M., Izumi, N., Naito, K., Parker, G., Yamada, T., & Greve, R. (2016). Cyclic steps on ice. Journal of Geophysical Research: Earth Surface, 121, 1023–1048.
    [Google Scholar]
  90. Zhong, G., Cartigny, M. J., Kuang, Z., & Wang, L. (2015). Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea. Geological Society of America Bulletin, 127, 804–824.
    [Google Scholar]
/content/journals/10.1111/bre.12887
Loading
/content/journals/10.1111/bre.12887
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): bedforms; cyclic steps; flow process; Rovuma Basin; spatial distribution; turbidity current

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error