1887
Volume 36, Issue 4
  • E-ISSN: 1365-2117

Abstract

[

Based on the experimental results, we have delineated the evolutionary process of the Yinggehai Basin through four distinct phases. Furthermore, we have provided a detailed portrayal of the roles played by the Red River Shear Zone and the opening of the South China Sea in the formation of the Yinggehai Basin. Additionally, the experimental outcomes have replicated the characteristics of deponcenter migration within the basin.

, Abstract

The Yinggehai Basin is situated at the junction of Indochina and the northern South China Sea (SCS). The origin of the Yinggehai Basin is generally believed to be controlled by the rotation of the Indochina block along the Red River shear zone (RRSZ), which was formed by the collision of India with Asia during the Oligocene. However, the Eocene structural mechanisms of this basin remain debatable. Some studies suggest that the Eocene reactivation of the palaeo‐suture zone (which serves as a precursor to the RRSZ) has influenced the region. In contrast, others propose that the NNW–SSE extension of the northern SCS caused by the subduction of the palaeo‐SCS towards Borneo in the Eocene has played a significant role. To address these controversies, our study takes into account these two crucial factors using physical analogue modelling. The experimental results, including slow sinistral strike‐slip along the palaeo‐suture zone and the adjacent NNW–SSE extension, successfully explain the observed fault pattern during the Eocene period. It is noteworthy that the former primarily controlled the Eocene structure in the northern region of the Yinggehai Basin, whereas the latter played a pivotal role in shaping the ENE–WSW Eocene structures on the eastern slope of the basin. The westward propagating faults of the Qiongdongnan basin are cut off by the Yinggehai Basin structures at later large‐scale rotation stage. The experiment indicates that the basin evolution exhibits diachronous characteristics, with subsidence in the south occurring later than in the north. Our modelling results provide valuable insights into the key controlling factors that shaped the evolution of the basin during each stage. Furthermore, our findings offer evidence of the interaction between two significant tectonic processes: Indochina extrusion and the opening of the SCS.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12888
2024-07-23
2024-09-16
Loading full text...

Full text loading...

References

  1. Adam, J., Urai, J. L., Wieneke, B., Oncken, O., Pfeiffer, K., Kukowski, N., Lohrmann, J., Hoth, S., van der Zee, W., & Schmatz, J. (2005). Shear localisation and strain distribution during tectonic faulting—New insights from granular‐flow experiments and high‐resolution optical image correlation techniques. Journal of Structural Geology, 27, 283–301. https://doi.org/10.1016/j.jsg.2004.08.008
    [Google Scholar]
  2. Andersen, C., Mathiesen, A., Nielsen, L. H., Tiem, P. V., Petersen, H. I., & Diem, P. T. (2005). Distribution of source rocks and maturity modelling in the northern Cenozoic Song Hong Basin (Gulf of Tonkin), Vietname. Journal of Petroleum Geology, 28, 167–184. https://doi.org/10.1111/j.1747–5457.2005.tb00078.x
    [Google Scholar]
  3. Bai, Y., Wu, S., Liu, Z., Müller, R. D., Williams, S. E., Zahirovic, S., & Dong, D. (2015). Full‐fit reconstruction of the South China Sea conjugate margins. Tectonophysics, 661, 121–135. https://doi.org/10.1016/j.tecto.2015.08.028
    [Google Scholar]
  4. Briais, A., Patriat, P., & Tapponnier, P. (1993). Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research, 98, 6299–6328. https://doi.org/10.1029/92jb02280
    [Google Scholar]
  5. Clift, P., Lee, G. H., Duc, N. A., Barckhausen, U., Long, H. V., & Sun, Z. (2008). Seismic reflection evidence for a Dangerous Grounds miniplate: No extrusion origin for the South China Sea. Tectonics, 27, TC3008. https://doi.org/10.1029/2007TC002216
    [Google Scholar]
  6. Clift, P. D., Brune, S., & Quinteros, J. (2015). Climate changes control offshore crustal structure at South China Sea continental margin. Earth and Planetary Science Letters, 420, 66–72. https://doi.org/10.1016/j.epsl.2015.03.032
    [Google Scholar]
  7. Calignano, E., Sokoutis, D., Willingshofer, E., Brun, J. P., Gueydan, F., & Cloetingh, S. (2017). Oblique contractional reactivation of inherited heterogeneities: Cause for arcuate orogens. Tectonics, 36(3), 542–558. https://doi.org/10.1002/2016TC004424
    [Google Scholar]
  8. Clift, P. D., & Lin, J. (2001). Preferential mantle lithospheric extension under the South China margin. Marine and Petroleum Geology, 18, 929–945. https://doi.org/10.1016/S0264‐8172(01)00037‐X
    [Google Scholar]
  9. Clift, P. D., Lin, J., & Barckhausen, U. (2002). Evidence of low flexural rigidity and low viscosity lower continental crust during continental break‐up in the South China Sea. Marine and Petroleum Geology, 19(8), 951–970. https://doi.org/10.1016/S0264‐8172(02)00108‐3
    [Google Scholar]
  10. Clift, P. D., & Sun, Z. (2006). The sedimentary and tectonic evolution of the Yinggehai‐Song Hong Basin and the southern Hainan margin, South China Sea: Implications for Tibetan uplift and monsoon intensification. Journal of Geophysical Research: Solid Earth, 111, B06405. https://doi.org/10.1029/2005JB004048
    [Google Scholar]
  11. Fan, C. W. (2018). Tectonic deformation features and petroleum geological significance in Yinggehai large strike‐slip basin, South China Sea. Petroleum Exploration & Development, 45(2), 204–214. https://doi.org/10.1016/S1876‐3804(18)30024‐7
    [Google Scholar]
  12. Funahara, S., Nishiwaki, N., Murata, F., Otofuji, Y. I., & Wang, Y. Z. (1993). Clockwise rotation of the red river fault inferred from paleomagnetic study of cretaceous rocks in the shan‐thai‐malay block of western Yunnan, China. Earth and Planetary Science Letters, 117(1–2), 29–42. https://doi.org/10.1016/0012‐821X(93)90115‐P
    [Google Scholar]
  13. Guan, C. Y., Cheng, Y., Zhao, G. C., Liu, C., & Bai, X. D. (2017). Constraint conditions and dynamic models for the forming of Yinggehai Basin. Science Technology and Engineering, 17(29), 1671–1815.
    [Google Scholar]
  14. Guo, L. Z., Zhong, Z. H., Wang, L. S., Shi, Y. S., Li, H., & Liu, S. W. (2001). Regional tectonic evolution around Yinggehai Basin of South China Sea. Geological Journal of China Universities, 7(1), 1–12. https://doi.org/10.16108/j.issn1006‐7493.2001.01.001
    [Google Scholar]
  15. Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer based reconstructions, model and animations. Journal of Asian Earth Sciences, 20, 353–431. https://doi.org/10.1016/S1367‐9120(01)00069‐4
    [Google Scholar]
  16. Han, B. Y. (2018). Structural deformation anatomy and sandbox simulation experiment in Yinggehai Basin. Master's thesis. China University of Petroleum. China National Knowledge Infrastructure https://www.cnki.net/. https://doi.org/10.27643/d.cnki.gsybu.2018.000801
    [Google Scholar]
  17. Hu, B., Wang, L., Yan, W., Liu, S., Cai, D., & Zhang, G. (2013). The tectonic evolution of the Qiongdongnan Basin in the northern margin of the South China Sea. Journal of Asian Earth Sciences, 77, 163–182. https://doi.org/10.1016/j.jseaes.2013.08.022
    [Google Scholar]
  18. Huang, X. M., Xu, Z. Q., & Zhang, J. J. (2017). Cenozoic tectonic transition and dynamic mechanism of the Ailao Shan‐Red River Fault Zone. Acta Geoscientica Sinica, 38, 7–10. https://doi.org/10.3975/cagsb.2017.s1.03
    [Google Scholar]
  19. Hutchison, C. S. (2004). Marginal basin evolution: The southern South China Sea. Marine and Petroleum Geology, 21(9), 1129–1148. https://doi.org/10.1016/j.marpetgeo.2004.07.002
    [Google Scholar]
  20. Lacassin, R., Maluski, H., Leloup, H., Tapponnier, P., Hinthong, C., Siribhakdi, K., Chuaviroj, S., & Charoenravat, A. (1997). Tertiary diachronic extrusion and deformation of western Indochina: Structural and 40Ar/39Ar evidence from NW Thailand. Journal of Geophysical Research: Solid Earth, 102(B5), 10013–10037. https://doi.org/10.1029/96JB03831
    [Google Scholar]
  21. Lei, C., Ren, J., Clift, P. D., Wang, Z., Li, X., & Tong, C. (2011). The structure and formation of diapirs in the Yinggehai‐Song Hong Basin, South China Sea. Marine and Petroleum Geology, 28, 980–991. https://doi.org/10.1016/j.marpetgeo.2011.01.001
    [Google Scholar]
  22. Lei, C., Ren, J., Pei, J., Liu, B., Zuo, X., Liu, J., & Zhu, S. (2022). Tectonics of the offshore Red River Fault recorded in the junction of the Yinggehai and Qiongdongnan Basins. Scientia Sinica Terrae, 64(11), 1893–1908. https://doi.org/10.1007/s11430‐020‐9796‐2
    [Google Scholar]
  23. Lei, C., Ren, J., Sternai, P., Fox, M., Willett, S., Xie, X., Clift, P. D., Liao, J., & Wang, Z. (2015). Structure and sediment budget of Yinggehai‐Song Hong Basin, South China Sea: Implications for Cenozoic tectonics and river basin reorganization in Southeast Asia. Tectonophysics, 655, 177–190. https://doi.org/10.1016/j.tecto.2015.05.024
    [Google Scholar]
  24. Leloup, P. H., Arnaud, N., Lacassin, R., Kienast, J. R., Harrison, T. M., Phan Trong, T. T., Replumaz, A., & Tapponnier, P. (2001). New constraints on the structure, thermochronology, and timing of the Ailao Shan‐Red River shear zone, SE Asia. Journal of Geophysical Research: Atmospheres, 106, 6683–6732. https://doi.org/10.1029/2000JB900322
    [Google Scholar]
  25. Leloup, P. H., Lacassin, R., Tapponnier, P., Schärer, U., Dalai, Z., Xiaohan, L., Liangshang, Z., Shaocheng, J., & Trinh, P. T. (1995). The Ailao ShanRed River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251(1–4), 3–10. https://doi.org/10.1016/0040‐1951(95)00070‐4
    [Google Scholar]
  26. Lepvrier, C., Maluski, H., Vu, V. T., Leyreloup, A., Phan, T. T., & Nguyen, V. V. (2004). The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif): Implications for the geodynamic evolution of Indochina. Tectonophysics, 393, 87–118. https://doi.org/10.1016/j.tecto.2004.07.030
    [Google Scholar]
  27. Li, C. F., Li, J. B., Ding, W. W., & Fanke, D. (2015). Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research, 120(3), 1377–1399. https://doi.org/10.1002/2014JB011686
    [Google Scholar]
  28. Li, C. F., Xu, X., Lin, J., Sun, Z., Zhu, J., & Yao, Y. J. (2014). Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry Geophysics Geosystems, 15(12), 4958–4983. https://doi.org/10.1002/2014GC005567
    [Google Scholar]
  29. Li, S. H., Advokaat, E. L., Van Hinsbergen, D. J. J., Koymans, M., Deng, C., & Zhu, R. (2017). Paleomagnetic constraints on the Mesozoic‐Cenozoic paleolatitudinal and rotational history of Indochina and South China: Review and updated kinematic reconstruction. Earth‐Science Reviews, 171, 58–77. https://doi.org/10.1016/j.earscirev.2017.05.007
    [Google Scholar]
  30. Liu, J., Jia, D., Yin, H., Shen, L., Fan, X., He, Z., Cui, J., Yang, S., & Zhang, Y. (2021). Sandbox modeling of transrotational tectonics with changeable poles: Implications for the Yinggehai Basin. Frontiers of Earth Science, 9, 687789. https://doi.org/10.3389/feart.2021.687789
    [Google Scholar]
  31. Liu, J., Sun, Z., Wang, Z., Sun, Z., Zhao, Z., & Wang, Z. (2015). Tectonic differences between eastern and western sub‐basins of the Qiongdongnan Basin and their dynamics. Marine Geophysical Research, 36(1), 61–79. https://doi.org/10.1007/s11001‐014‐9247‐3
    [Google Scholar]
  32. Liu, Y. Q. (2019). Temporal‐spatial Basin structure differences and their controlling factors of the Cenozoic Basins around the South China Sea (Doctoral dissertation). China University of Petroleum. China National Knowledge Infrastructure https://www.cnki.net/. https://doi.org/10.27644/d.cnki.gsydu.2019.000002
    [Google Scholar]
  33. Lu, B., Wang, P., Zhang, G., Zhang, B., Sun, X., Li, W., & Lang, Y. (2011). Basement structures of an epicontinental basin in the northern South China Sea and their significance in petroleum prospect. Acta Petrolei Sinica, 32(4), 580–587. (in Chinese with English abstract).
    [Google Scholar]
  34. Mazur, S., Green, C., Stewart, M. G., Whittaker, J. M., Williams, S., & Bouatmani, R. (2012). Displacement along the Red River fault constrained by extension estimates and plate reconstructions. Tectonics, 31(5), TC5008. https://doi.org/10.1029/2012tc003174
    [Google Scholar]
  35. McClay, K. R., & White, M. J. (1995). Analogue modelling of orthogonal and oblique rifting. Marine and Petroleum Geology, 12(2), 137–151. https://doi.org/10.1016/0264‐8172(95)92835‐K
    [Google Scholar]
  36. Metcalfe, I. (1996). Pre‐Cretaceous evolution of SE Asian terranes. Geological Society London Special Publications, 106, 97–122. https://doi.org/10.1144/GSL.SP.1996.106.01.09
    [Google Scholar]
  37. Molnar, N., Cruden, A., & Betts, P. (2020). The role of inherited crustal and lithospheric architecture during the evolution of the Red Sea: Insights from three dimensional analogue experiments. Earth and Planetary Science Letters, 544, 116377. https://doi.org/10.1016/j.epsl.2020.116377
    [Google Scholar]
  38. Morley, C. K. (2002). A tectonic model for Tertiary evolution of strike‐slip faults and rift basins in SE Asia. Tectonophysics, 347(4), 189–215. https://doi.org/10.1016/S0040‐1951(02)00061‐6
    [Google Scholar]
  39. Morley, C. K. (2012). Late Cretaceous‐Early Palaeogene tectonic development of SE Asia. Earth‐Science Reviews, 115(1–2), 37–75. https://doi.org/10.1016/j.earscirev.2012.08.002
    [Google Scholar]
  40. Naylor, M. A., Mandl, G., & Supesteijn, C. H. K. (1986). Fault geometries in basement‐induced wrench faulting under different initial stress states. Journal of Structural Geology, 8(7), 737–752. https://doi.org/10.1016/0191‐8141(86)90022‐2
    [Google Scholar]
  41. Nielsen, L. H., Mathiesen, A., Bidstrup, T., Vejbaek, O. V., Dien, P. T., & Tiem, P. V. (1999). Modelling of hydrocarbon generation in the Cenozoic Song Hong Basin, Vietnam: a highly prospective basin. Journal of Asian Earth Sciences, 17(1–2), 269–294. https://doi.org/10.1016/S0743‐9547(98)00063‐4
    [Google Scholar]
  42. Ramberg, H. (1981). Gravity, deformation and the Earth's Crust (2nd ed., p. 452). Academic Press.
    [Google Scholar]
  43. Rangin, C., Van Trong, L., Klein, M., Roques, D., & Le Pichon, X. (1995). The Red River fault system in the Tonkin Gulf, Vietnam. Tectonophysics, 243, 209–222. https://doi.org/10.1016/0040‐1951(94)00207‐P
    [Google Scholar]
  44. Ren, J. Y., & Lei, C. (2011). Tectonic stratigraphic framework of Yinggehai‐Qiongdongnan Basins and its implication for tectonic province division in South China Sea. Chinese Journal of Geophysics, 54(12), 3303–3314. https://doi.org/10.3969/j.issa.0001‐5733.2011.12.028
    [Google Scholar]
  45. Riedel, W. (1929). Zur Mechanik geologischer Brucherscheinungen. Centralblatt für Mineralogie. Geologie und Paläontologie, 8, 354–368.
    [Google Scholar]
  46. Ru, K. (1988). The development of superimposed basin on the northern margin of the South China Sea and its tectonic significance. Oil & Gas Geology, 1, 22–31.
    [Google Scholar]
  47. Santimano, T., & Pysklywec, R. (2020). The influence of lithospheric mantle scars and rheology on intraplate deformation and orogenesis: Insights from tectonic analog models. Tectonics, 39(5), e2019TC005841. https://doi.org/10.1029/2019TC005841
    [Google Scholar]
  48. Schellart, W. P., & Strak, V. (2016). A review of analogue modelling of geodynamic processes: Approaches, scaling, materials and quantification, with an application to subduction experiments. Journal of Geodynamics, 100, 7–32. https://doi.org/10.1016/j.jog.2016.03.009
    [Google Scholar]
  49. Schoenbohm, L. M., Burchfiel, B. C., Chen, L. Z., & Yin, J. Y. (2006). Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper‐crustal rotation, and lower‐crustal flow. GSA Bulletin, 118, 672–688. https://doi.org/10.1130/B25816.1
    [Google Scholar]
  50. Sibuet, J. C., Yeh, Y. C., & Lee, C. S. (2016). Geodynamics of the South China Sea. Tectonophysics, 692, 98–119. https://doi.org/10.1016/j.tecto.2016.02.022
    [Google Scholar]
  51. Sokoutis, D., & Willingshofer, E. (2011). Decoupling during continental collision and intra‐plate deformation. Earth and Planetary Science Letters, 305, 435–444. https://doi.org/10.1016/j.epsl.2011.03.028
    [Google Scholar]
  52. Sone, M., & Metcalfe, I. (2008). Parallel Tethyan sutures in mainland Southeast Asia: New insights for Palaeo‐Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience, 340(2‐3), 166–179. https://doi.org/10.1016/j.crte.2007.09.008
    [Google Scholar]
  53. Su, D., White, N., & McKenzie, D. (1989). Extension and subsidence of the Pearl River mouth basin, northern South China Sea. Basin Research, 2, 205–222. https://doi.org/10.1111/j.1365‐2117.1989.tb00036.x
    [Google Scholar]
  54. Sun, X. Y., & Ren, J. Y. (2003). Dynamical mechanism for generation and evolution of Yinggehai basin, the South China Sea. Marine Geology and Quanternary Geology, 23(4), 45–50. https://doi.org/10.16562/j.cnki.0256‐1492.2003.04.008
    [Google Scholar]
  55. Sun, Z., Wang, Z., Sun, Z., Wang, Z., Zhang, W., & He, L. (2015). Structure and kinematic analysis of the deepwater area of the Qiongdongnan Basin through a seismic interpretation and analogue modeling experiments. Acta Oceanologica Sinica, 34(4), 32–40. https://doi.org/10.1007/s13131‐015‐0585‐z
    [Google Scholar]
  56. Sun, Z., Zhong, Z., Zhou, D., Qiu, X., & Wu, S. (2003). Deformation mechanism of Red River fault zone during Cenozoic and experimental evidences related to Yinggehai basin formation. Tropic Oceanology, 22(2), 1–9.
    [Google Scholar]
  57. Sun, Z., Zhong, Z., Zhou, D., & Zeng, Z. (2004). Continent‐ocean interactions along the Red River fault zone, South China Sea. In Continent‐Ocean interactions in the east Asian marginal seas (Geophysical Monograph Series, Vol. 149, pp. 109–120). AGU. https://doi.org/10.1029/149GM06
    [Google Scholar]
  58. Sun, Z., Zhou, D., Zhong, Z., Zeng, Z., Hu, G., & Zhao, P. (2001). Analogue modeling of the formation mechanism for the Yinggehai basin, South China Sea. Tropic Oceanology, 20(2), 35–40.
    [Google Scholar]
  59. Sun, Z., Zhou, D., Zhong, Z., Zeng, Z., & Wu, S. (2003). Experimental evidence for the dynamics of the formation of the Yinggehai basin, NW South China Sea. Tectonophysics, 372, 41–58. https://doi.org/10.1016/S0040‐1951(03)00230‐0
    [Google Scholar]
  60. Tapponnier, P., Lacassin, R., Leloup, P. H., Schärer, U., Dalai, Z., Wu, H. W., Liu, X. H., Ji, S. C., Zhang, L. S., & Zhong, J. Y. (1990). The Ailao Shan/Red River metamorphic belt: Tertiary left‐lateral shear between Indochina and south China. Nature, 343, 431–437. https://doi.org/10.1038/343431a0
    [Google Scholar]
  61. Tapponnier, P., Peltzer, G., & Armijo, R. (1986). On the mechanics of the collision between India and Asia. Geological Society of London Special Publications, 19, 113–157. https://doi.org/10.1144/GSL.SP.1986.019.01.07
    [Google Scholar]
  62. Tchalenko, J. (1970). Similarities between Shear Zones of different magnitudes. Geological Society of America Bulletin, 81, 1625–1640. https://doi.org/10.1130/0016‐7606(1970)81[1625:SBSZOD]2.0.CO;2
    [Google Scholar]
  63. Tong, H., Meng, L., Cai, D., Wu, Y., Li, X., & Liu, M. (2009). Fault formation and evolution in rift basins‐sandbox modeling and cognition. Acta Geologica Sinica, 83(6), 759–774. https://doi.org/10.1016/S1874‐8651(10)60080‐4. (in Chinese with English abstract).
    [Google Scholar]
  64. Trinh, P. T., Liem, N. V., Huong, N. V., Vinh, H. Q., Thom, B. V., Thao, B. T., Mai, T. T., & Hoang, N. (2012). Late Quaternary tectonics and seismotectonics along the Red River Fault zone, North Vietnam. Earth‐Science Reviews, 114(3–4), 224–235. https://doi.org/10.1016/j.earscirev.2012.06.008
    [Google Scholar]
  65. Tron, V., & Brun, J.‐P. (1991). Experiments on oblique rifting in brittle‐ductile systems. Tectonophysics, 188(1–2), 71–84. https://doi.org/10.1016/0040‐1951(91)90315–J
    [Google Scholar]
  66. Vu, A. T., Wessel Fyhn, M. B., Xuan, C. T., Nguyen, T. T., Hoang, D. N., Pham, L. T., & Van, H. N. (2017). Cenozoic tectonic and stratigraphic development of the Central Vietnamese continental margin. Marine and Petroleum Geology, 86, 386–401. https://doi.org/10.1016/j.marpetgeo.2017.06.001
    [Google Scholar]
  67. Wang, J. H., Yin, A., Harrison, T. M., Grove, M., Zhang, Y. Q., & Xie, G. H. (2001). A tectonic model for Cenozoic igneous activities in the eastern Indo–Asian collision zone. Earth and Planetary Science Letters, 188, 123–133. https://doi.org/10.1016/S0012‐821X(01)00315‐6
    [Google Scholar]
  68. Weijermars, R., & Schmeling, H. (1986). Scaling of Newtonian and non‐Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity). Physics of the Earth & Planetary Interiors, 43(4), 316–330. https://doi.org/10.1016/0031‐9201(86)90021‐X
    [Google Scholar]
  69. Wu, G. Y. (2001). Indosinian foreland fold‐and‐thrust belt bordering Yunnan and Guangxi, China. Acta Geologica Sinica, 4, 391–397. https://doi.org/10.1111/j.1755‐6724.2001.tb00057.x
    [Google Scholar]
  70. Xie, Y., Tong, C., Fan, C., Peng, S., Hao, Z., & Tong, H. (2015). Characteristics and evolution of fault system in Qiongdongnan Basin. Geotectonica Et Metallogenia, 39(5), 795–807. https://doi.org/10.16539/j.ddgzyckx.2015.05.004
    [Google Scholar]
  71. Xu, Z. Y., & Sun, Z. (2015). Analogue modeling of reversed structural deformation in the southwestern Qiongdongnan Basin. Marine Geology Frontiers, 31(8), 47–52 (in Chinese with English abstract). https://doi.org/10.16028/j.1009‐2722.2015.08007
    [Google Scholar]
  72. Yang, G. (2019). The research on the structural physical simulation of left‐lateral strike‐slip in Red river fault zone, Yinggehai Basin (Doctoral dissertation). Chengdu University of Technologyum.
    [Google Scholar]
  73. Yang, G. X., Yin, H. W., Gan, J., Wang, W., Zhu, J. T., Jia, D., Xiong, X. F., & Xu, W. Q. (2022). Explaining structural difference between the eastern and western zones of the Qiongdongnan Basin, northern South China Sea: Insights from scaled physical models. Tectonics, 41(2), e2021tc006899. https://doi.org/10.1029/2021TC006899
    [Google Scholar]
  74. Yang, Z., & Besse, J. (1993). Paleomagnetic study of Permian and Mesozoic sedimentary rocks from northern Thailand supports the extrusion model for Indochina. Earth and Planetary Science Letters, 117(3–4), 525–552. https://doi.org/10.1016/0012‐821X(93)90101‐E
    [Google Scholar]
  75. Ye, Q., Mei, L., Shi, H., Camanni, G., Shu, Y., & Wu, J. (2018). The Late Cretaceous tectonic evolution of the South China Sea area: An overview, and new perspectives from 3D seismic reflection data. Earth‐Science Reviews, 187, 186–204. https://doi.org/10.1016/j.earscirev.2018.09.013
    [Google Scholar]
  76. Ye, Q., Mei, L., Shi, H., Du, J., Deng, P., Shu, Y., & Camanni, G. (2020). The influence of pre‐existing basement faults on the Cenozoic structure and evolution of the proximal domain, northern South China Sea rifted margin. Tectonics, 39(3), e2019TC005845. https://doi.org/10.1029/2019TC005845
    [Google Scholar]
  77. Zahirovic, S., Seton, M., & Müller, R. D. (2014). The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid Earth, 5(1), 227–273. https://doi.org/10.5194/se‐5‐227‐2014
    [Google Scholar]
  78. Zhang, Y., Tang, L. S., Gan, J., Xiong, X. F., Duan, L., & Zhu, J. T. (2020). Spatial and temporal distribution of the Cenozoic stretches in the Qiongdongnan Basin. Geotectonica et Metallogenia, 44(2), 267–275. https://doi.org/10.16539/j.ddgzyckx.2020.02.011
    [Google Scholar]
  79. Zhao, Z. X., Sun, Z., Liu, J. B., Pérez‐Gussinyé, M., & Zhuo, H. T. (2018). The continental extension discrepancy and anomalous subsidence pattern in the western Qiongdongnan Basin, South China Sea. Earth and Planetary Science Letters, 501(1), 180–191. https://doi.org/10.1016/j.epsl.2018.08.048
    [Google Scholar]
  80. Zhong, Z. H., Wang, L. S., Xia, B., Dong, W. L., Sun, Z., & Shi, Y. S. (2004). The dynamics of Yinggehai Basin formation and its tectonic significance. Acta Geologica Sinica, 78(3), 302–309.
    [Google Scholar]
  81. Zhu, M., Graham, S., & McHargue, T. (2009). The Red River Fault Zone in the Yinggehai Basin, South China Sea. Tectonophysics, 476, 397–417. https://doi.org/10.1016/j.tecto.2009.06.015
    [Google Scholar]
  82. Zwaan, F., Chenin, P., Erratt, D., Manatschal, G., & Schreurs, G. (2021). Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models. Solid Earth, 12(7), 1473–1495. https://doi.org/10.5194/se‐12‐1473‐2021
    [Google Scholar]
  83. Zwaan, F., Chenin, P., Erratt, D., Manatschal, G., & Schreurs, G. (2022). Competition between 3D structural inheritance and kinematics during rifting: Insights from analogue models. Basin Research, 34(2), 824–854. https://doi.org/10.1111/bre.12642
    [Google Scholar]
  84. Zwaan, F., Schreurs, G., & Adam, J. (2018). Effects of sedimentation on rift segment evolution and rift interaction in orthogonal and oblique extensional settings: Insights from analogue models analysed with 4D X‐ray computed tomography and digital volume correlation techniques. Global and Planetary Change, 171, 110–133. https://doi.org/10.1016/j.gloplacha.2017.11.002
    [Google Scholar]
  85. Zwaan, F., Schreurs, G., & Buiter, S. J. H. (2019). A systematic comparison of experimental set‐ups for modelling extensional tectonics. Solid Earth, 10(4), 1063–1097. https://doi.org/10.5194/se‐10‐1063‐2019
    [Google Scholar]
  86. Zwaan, F., Schreurs, G., Madritsch, H., & Herwegh, M. (2022). Influence of rheologically weak layers on fault architecture: Insights from analogue models in the context of the Northern Alpine Foreland Basin. Swiss Journal of Geosciences, 115(26), 1–33. https://doi.org/10.1186/s00015‐022‐00427‐8
    [Google Scholar]
/content/journals/10.1111/bre.12888
Loading
/content/journals/10.1111/bre.12888
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error