1887
Volume 36, Issue 5
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

A two‐dimensional numerical analysis based on the finite element method and linear elasticity is used to demonstrate how the differential compaction of the basinal unit can cause the early deformation of a prograding and/or aggrading carbonate platform. Our model investigates the modification of the carbonate platform stratal architecture and stress field driven by the process of differential compaction. We compared the results of our model with observations from two Triassic carbonate platforms in the Italian Dolomites: Lastoni di Formin and Nuvolau Mts. (Passo Giau, Italy). We show that the model can explain the modification of stratal architecture, as well as fault and fracture patterns observed on these platforms. In particular, we show that (1) the slope and slope‐to‐basin transition regions are expected to experience most of the brittle deformation and, differently from what was suggested by previous numerical studies, the formation of platform‐ward dipping faults and major fractures with dip angles that tend to decrease moving dip‐ward. In addition, (2) the inner platform region can exhibit a slightly tensile regime, which may lead to the formation of syndepositional and/or syndiagenetic fractures. Moreover, (3) in the case of predominantly prograding platforms, the results of the model show a general tilting and thickening of the inner platform strata towards the shelf‐slope break.

,

We investigate the relation between the differential compaction of the basinal unit and the early deformation of a growing carbonate platform using a 2D finite element model (a). We compare the results with two Triassic carbonate platforms in the Italian Dolomites: Lastoni di Formin and Nuvolau Mts (b).

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12903
2024-09-19
2024-11-14
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/5/bre12903.html?itemId=/content/journals/10.1111/bre.12903&mimeType=html&fmt=ahah

References

  1. Atkinson, B. K. (Ed.). (2015). Fracture mechanics of rock. Elsevier. https://doi.org/10.1017/S0016756800014680
    [Google Scholar]
  2. Berra, F., & Carminati, E. (2012). Differential compaction and early rock fracturing in high‐relief carbonate platforms: Numerical modeling of a Triassic case study (Esino Limestone, Central Southern Alps, Italy). Basin Research, 24(5), 598–614. https://doi.org/10.1111/j.1365‐2117.2012.00542.x
    [Google Scholar]
  3. Berra, F., Carminati, E., Jadoul, F., & Binda, M. (2016). Does compaction‐induced subsidence control accommodation space at the top of prograding carbonate platforms? Constraints from the numerical modelling of the Triassic Esino Limestone (Southern Alps, Italy). Marine and Petroleum Geology, 78, 621–635. https://doi.org/10.1016/j.marpetgeo.2016.09.033
    [Google Scholar]
  4. Bigi, G., Castellarin, A., Coli, M., Dal Piaz, G. V., Sartori, R., Scandone, P., & Vai, G. B. (1990). Structural model of Italy scale 1:500.000, Sheet 1. Progetto Finalizzato Geodinamica, C.N.R., Ed.; SELCA. Retrieved January 10, 2022, from https://www.socgeol.it/438/structural‐model‐of‐italy‐scale‐1‐500‐000.html
    [Google Scholar]
  5. Bigi, G., Castellarin, A., Coli, M., Dal Piaz, G. V., & Vai, G. B. (1990). Structural model of Italy Scale 1:500.000, Sheet 2. Progetto Finalizzato Geodinamica, C.N.R., Ed.; SELCA. Retrieved January 10, 2022, from https://www.socgeol.it/438/structural‐model‐of‐italy‐scale‐1‐500‐000.html
    [Google Scholar]
  6. Bjørlykke, K., & Høeg, K. (1997). Effects of burial diagenesis on stresses, compaction and fluid flow in sedimentary basins. Marine and Petroleum Geology, 14(3), 267–276. https://doi.org/10.1016/S0264‐8172(96)00051‐7
    [Google Scholar]
  7. Blendinger, W., & Blendinger, E. (1989). Windward‐leeward effects on Triassic carbonate bank margin facies of the Dolomites, northern Italy. Sedimentary Geology, 64(1–3), 143–166. https://doi.org/10.1016/0037‐0738(89)90089‐4
    [Google Scholar]
  8. Bosellini, A. (1984). Progradation geometries of carbonate platforms: Examples from the Triassic of the Dolomites, northern Italy. Sedimentology, 31, 1–24. https://doi.org/10.1111/j.1365‐3091.1984.tb00720.x
    [Google Scholar]
  9. Bosellini, A., Masetti, D., & Neri, C. (1983). La geologia del Passo del Falzarego. In A.Castellarin & G. B.Vai (Eds.), Guide Geologiche Regionali—Guida alla Geologia del Sudalpino Centro‐Orientale (pp. 273–278). Pitagora.
    [Google Scholar]
  10. Brondi, A., Fuganti, A., Mittempergher, M., Murara, G., Nardin, M., Rossi, D., Scudeler Baccelle, L., Sommavilla, E., & Zirpoli, G. (1974). Note illustrative della Carta Geologica d'Italia alla scala 1: 50.000: Foglio 027‐Bolzano. Nuova Tecnica Grafica. Retrieved January 10, 2022, from https://www.isprambiente.gov.it/Media/carg/note_illustrative/27_Bolzano.pdf
    [Google Scholar]
  11. Brondi, A., Mittempergher, M., Panizza, M., Rossi, D., Sommavilla, E., & Vuillermin, F. (1977). Note illustrative della Carta Geologica d'Italia alla Scala 1: 50.000: Foglio 028‐La Marmolada. Litografia Artisitica Cartografica. Retrieved January 10, 2022, from https://www.isprambiente.gov.it/Media/carg/note_illustrative/28_Lamarmolada.pdf
    [Google Scholar]
  12. Castelletto, N., Hajibeygi, H., & Tchelepi, H. A. (2017). Multiscale finite‐element method for linear elastic geomechanics. Journal of Computational Physics, 331, 337–356. https://doi.org/10.1016/j.jcp.2016.11.044
    [Google Scholar]
  13. Chinnery, M. A. (1963). The stress changes that accompany strike‐slip faulting. Bulletin of the Seismological Society of America, 53(5), 921–932. https://doi.org/10.1785/BSSA0530050921
    [Google Scholar]
  14. Costa, V., Doglioni, C., Grandesso, P., Masetti, D., Pellegrini, G. B., & Tracanella, E. (1996). Note illustrative della Carta Geologica d'Italia alla Scala 1: 50.000: Foglio 063‐Belluno. Istituto Poligrafico e Zecca dello Stato. Retrieved January 10, 2022, from https://www.isprambiente.gov.it/Media/carg/note_illustrative/63_Belluno.pdf
    [Google Scholar]
  15. Della Porta, G., Kenter, J. A., & Bahamonde, J. R. (2004). Depositional facies and stratal geometry of an Upper Carboniferous prograding and aggrading high‐relief carbonate platform (Cantabrian Mountains, N Spain). Sedimentology, 51(2), 267–295. https://doi.org/10.1046/j.1365‐3091.2003.00621.x
    [Google Scholar]
  16. Doglioni, C. (1987). Tectonics of the Dolomites (southern Alps, northern Italy). Journal of Structural Geology, 9(2), 181–193. https://doi.org/10.1016/0191‐8141(87)90024‐1
    [Google Scholar]
  17. Enos, P., & Sawatsky, L. H. (1981). Pore networks in Holocene carbonate sediments. Journal of Sedimentary Research, 51(3), 961–985. https://doi.org/10.1306/212F7DF1‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  18. Fisher, Q. J., Casey, M., Clennell, M. B., & Knipe, R. J. (1999). Mechanical compaction of deeply buried sandstones of the North Sea. Marine and Petroleum Geology, 16(7), 605–618. https://doi.org/10.1016/S0264‐8172(99)00044‐6
    [Google Scholar]
  19. Frost, E. L., III, & Kerans, C. (2009). Platform‐margin trajectory as a control on syndepositional fracture patterns, Canning Basin, Western Australia. Journal of Sedimentary Research, 79(2), 44–55. https://doi.org/10.2110/jsr.2009.014
    [Google Scholar]
  20. Frost, E. L., III, & Kerans, C. (2010). Controls on syndepositional fracture patterns, Devonian reef complexes, Canning Basin, Western Australia. Journal of Structural Geology, 32(9), 1231–1249. https://doi.org/10.1016/j.jsg.2009.04.019
    [Google Scholar]
  21. Geoportale Nazionale of Ministero dell'Ambiente e della Tutela del Territorio e del Mare . (n.d.). Retrieved August 1, 2022, from http://www.pcn.minambiente.it
  22. Gianolla, P., Morelli, C., Cucato, M., & Siorpaes, C. (2018). Note illustrative della Carta Geologica d'Italia alla Scala 1: 50.000: Foglio 016‐Dobbiaco. ISPRA. Retrieved January 10, 2022, from https://www.isprambiente.gov.it/Media/carg/note_illustrative/16_Dobbiaco_ita.pdf
    [Google Scholar]
  23. Goldhammer, R. K. (1997). Compaction and decompaction algorithms for sedimentary carbonates. Journal of Sedimentary Research, 67(1), 26–35. https://doi.org/10.1306/D42684E1‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  24. Grammer, G. M., Crescini, C. M., McNeill, D. F., & Taylor, L. H. (1999). Quantifying rates of syndepositional marine cementation in deeper platform environments‐new insight into a fundamental process. Journal of Sedimentary Research, 69(1), 202–207. https://doi.org/10.2110/jsr.69.202
    [Google Scholar]
  25. Grammer, G. M., Ginsburg, R. N., & Harris, P. M. (1993). Chapter 4: Timing of deposition, diagenesis, and failure of steep carbonate slopes in response to a high‐amplitude/high‐frequency fluctuation in sea level, tongue of the ocean, Bahamas. AAPG/Datapages – Getting Started Series.
    [Google Scholar]
  26. Grammer, G. M., Ginsburg, R. N., Swart, P. K., McNeill, D. F., Jull, A. T., & Prezbindowski, D. R. (1993). Rapid growth rates of syndepositional marine aragonite cements in steep marginal slope deposits, Bahamas and Belize. Journal of Sedimentary Research, 63(5), 983–989. https://doi.org/10.1306/D4267C62‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  27. Hunt, D., Allsop, T., & Swarbrick, R. E. (1996). Compaction as a primary control on the architecture and development of depositional sequences: Conceptual framework, applications and implications. Geological Society, London, Special Publications, 104(1), 321–345. https://doi.org/10.1144/GSL.SP.1996.104.01.18
    [Google Scholar]
  28. Hunt, D., & Fitchen, W. M. (1999). Compaction and the dynamics of carbonate‐platform development: Insights from the Permian Delaware and Midland basins, Southeast New Mexico and West Texas, USA. In Advances in carbonate sequence stratigraphy: Application to reservoirs, outcrops and models (Vol. 63, pp. 75–106). SEMPS Special Publication.
    [Google Scholar]
  29. Inama, R. (2021). Fracture analysis and depositional geometries of a high relief carbonate platform from UAV photogrammetry and digital outcrop modeling. The case of the Lastoni di Formin (Italian dolomites) (PhD dissertation). Università degli Studi di Pavia. Retrieved October 28, 2023, from https://hdl.handle.net/11571/1431676
    [Google Scholar]
  30. Inama, R., Menegoni, N., & Perotti, C. (2020). Syndepositional fractures and architecture of the lastoni di formin carbonate platform: Insights from virtual outcrop models and field studies. Marine and Petroleum Geology, 121, 104606. https://doi.org/10.1016/j.marpetgeo.2020.104606
    [Google Scholar]
  31. Keim, L., & Schlager, W. (1999). Automicrite facies on steep slopes (Triassic, Dolomites, Italy). Facies, 41, 15–25. https://doi.org/10.1007/BF02537457
    [Google Scholar]
  32. Keim, L., & Schlager, W. (2001). Quantitative compositional analysis of a Triassic carbonate platform (Southern Alps, Italy). Sedimentary Geology, 139(3–4), 261–283. https://doi.org/10.1016/S0037‐0738(00)00163‐9
    [Google Scholar]
  33. Kenter, J. A., Harris, P. M. M., & Della Porta, G. (2005). Steep microbial boundstone‐dominated platform margins—Examples and implications. Sedimentary Geology, 178(1–2), 5–30. https://doi.org/10.1016/j.sedgeo.2004.12.033
    [Google Scholar]
  34. Kenter, J. A. M. (1990). Carbonate platform flanks: Slope angle and sediment fabric. Sedimentology, 37, 777–794. https://doi.org/10.1111/j.1365‐3091.1990.tb01825.x
    [Google Scholar]
  35. Koša, E., & Hunt, D. W. (2006). Heterogeneity in fill and properties of karst‐modified syndepositional faults and fractures: Upper Permian Capitan platform, New Mexico, USA. Journal of Sedimentary Research, 76(1), 131–151. https://doi.org/10.2110/jsr.2006.08
    [Google Scholar]
  36. Leonardi, P. L. (1968). Geologia dei Monti tra Isarco e Piave (p. 1021). Manfrini.
    [Google Scholar]
  37. Manna, L. (2024). BasinPlatform code. Zenodo. https://doi.org/10.5281/zenodo.11191911
    [Google Scholar]
  38. Marangon, A., Gattolin, G., Della Porta, G., & Preto, N. (2011). The Latemar: A flat‐topped, steep fronted platform dominated by microbialites and synsedimentary cements. Sedimentary Geology, 240(3–4), 97–114. https://doi.org/10.1016/j.sedgeo.2011.09.001
    [Google Scholar]
  39. Martel, S. (2000). Modeling elastic stresses in long ridges with the displacement discontinuity method. Pure and Applied Geophysics, 157, 1039–1057. https://doi.org/10.1007/s000240050016
    [Google Scholar]
  40. Martín‐Martín, M., & Robles‐Marín, P. (2020). Alternative methods for calculating compaction in sedimentary basins. Marine and Petroleum Geology, 113, 104132. https://doi.org/10.1016/j.marpetgeo.2019.104132
    [Google Scholar]
  41. Mase, G. T., Smelser, R. E., & Mase, G. E. (2009). Continuum mechanics for engineers. CRC Press. https://doi.org/10.1201/9781420085396
    [Google Scholar]
  42. Mavko, G., Mukerji, T., & Dvorkin, J. (2020). The rock physics handbook. Cambridge University Press. https://doi.org/10.1017/9781108333016
    [Google Scholar]
  43. Menegoni, N., Inama, R., Crozi, M., & Perotti, C. (2022). Early deformation structures connected to the progradation of a carbonate platform: The case of the Nuvolau Cassian platform (Dolomites‐Italy). Marine and Petroleum Geology, 138, 105574. https://doi.org/10.1016/j.marpetgeo.2022.105574
    [Google Scholar]
  44. Menegoni, N., Inama, R., Panara, Y., Crozi, M., & Perotti, C. (2022). Relations between fault and fracture network affecting the Lastoni di Formin carbonate platform (Italian Dolomites) and its deformation history. Geosciences, 12(12), 451. https://doi.org/10.3390/geosciences12120451
    [Google Scholar]
  45. Moore, C. H. (1989). Carbonate diagenesis and porosity. Elsevier.
    [Google Scholar]
  46. Moore, C. H., & Wade, W. J. (2013). The nature and classification of carbonate porosity. In Developments in sedimentology (Vol. 67, pp. 51–65). Elsevier. https://doi.org/10.1016/B978‐0‐444‐53831‐4.00004‐5
    [Google Scholar]
  47. Neri, C., Gianolla, P., Furlanis, S., Caputo, R., & Bosellini, A. (2007). Note Illustrative della Carta Geologica d'Italia. alla Scala 1:50.000: Foglio 029‐Cortina d'Ampezzo. ISPRA. Retrieved January 10, 2022, from https://www.isprambiente.gov.it/Media/carg/note_illustrative/29_CortinaAmpezzo.pdf
    [Google Scholar]
  48. Nolting, A. (2017). Syndepositional deformation in steep‐walled carbonate margins: Insights from outcrop and numerical modeling of carbonate platforms in the recent and ancient rock record (Doctoral dissertation). Retrieved November 30, 2023, from http://hdl.handle.net/2152/65479
    [Google Scholar]
  49. Nolting, A., & Fernández‐Ibáñez, F. (2021). Stress states of isolated carbonate platforms: Implications for development and reactivation of natural fractures post burial. Marine and Petroleum Geology, 128, 105039. https://doi.org/10.1016/j.marpetgeo.2021.105039
    [Google Scholar]
  50. Nolting, A., Zahm, C. K., Kerans, C., & Alzayer, Y. (2020). The influence of variable progradation to aggradation ratio and facies partitioning on the development of syndepositional deformation in steep‐walled carbonate platforms. Marine and Petroleum Geology, 114, 104171. https://doi.org/10.1016/j.marpetgeo.2019.104171
    [Google Scholar]
  51. Nolting, A., Zahm, C. K., Kerans, C., & Nikolinakou, M. A. (2018). Effect of carbonate platform morphology on syndepositional deformation: Insights from numerical modeling. Journal of Structural Geology, 115, 91–102. https://doi.org/10.1016/j.jsg.2018.07.003
    [Google Scholar]
  52. Nooitgedacht, C. W., Kleipool, L. M., Andeweg, B., Reolid, J., Betzler, C., Lindhorst, S., & Reijmer, J. J. (2018). New insights in the development of syn‐depositional fractures in rimmed flat‐topped carbonate platforms, Neogene carbonate complexes, Sorbas Basin, SE Spain. Basin Research, 30, 596–612. https://doi.org/10.1111/bre.12239
    [Google Scholar]
  53. Pauselli, C., & Federico, C. (2003). Elastic modeling of the Alto Tiberina normal fault (central Italy): Geometry and lithological stratification influences on the local stress field. Tectonophysics, 374(1–2), 99–113. https://doi.org/10.1016/S0040‐1951(03)00235‐X
    [Google Scholar]
  54. Preto, N., Gianolla, P., Franceschi, M., Gattolin, G., & Riva, A. (2017). Geometry and evolution of Triassic high‐relief, isolated microbial platforms in the Dolomites, Italy: The Anisian Latemar and Carnian Sella platforms compared. AAPG Bulletin, 101(4), 475–483. https://doi.org/10.1306/011817DIG17026
    [Google Scholar]
  55. Ramm, M., & Bjørlykke, K. (1994). Porosity/depth trends in reservoir sandstones: Assessing the quantitative effects of varying pore‐pressure, temperature history and mineralogy, Norwegian Shelf data. Clay Minerals, 29(4), 475–490. https://doi.org/10.1180/claymin.1994.029.4.07
    [Google Scholar]
  56. Reijmer, J. J. (2021). Marine carbonate factories: Review and update. Sedimentology, 68(5), 1729–1796. https://doi.org/10.1111/sed.12878
    [Google Scholar]
  57. Resor, P. G., & Flodin, E. A. (2010). Forward modeling synsedimentary deformation associated with a prograding steep‐sloped carbonate margin. Journal of Structural Geology, 32(9), 1187–1200. https://doi.org/10.1016/j.jsg.2009.04.015
    [Google Scholar]
  58. Rusciadelli, G., & Di Simone, S. (2007). Differential compaction as a control on depositional architectures across the Maiella carbonate platform margin (central Apennines, Italy). Sedimentary Geology, 196(1–4), 133–155. https://doi.org/10.1016/j.sedgeo.2006.06.006
    [Google Scholar]
  59. Saller, A. H. (1996). Differential compaction and basinward tilting of the prograding Capitan reef complex, Permian, west Texas and southeast New Mexico, USA. Sedimentary Geology, 101(1–2), 21–30. https://doi.org/10.1016/0037‐0738(95)00115‐8
    [Google Scholar]
  60. Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching: An explanation of the post Mid‐Cretaceous subsidence of the central North Sea basin. Journal of Geophysical Research, 85(B7), 3711–3739. https://doi.org/10.1029/JB085iB07p03711
    [Google Scholar]
  61. Servizio Geologico d'Italia—ISPRA , Compagnoni, B., Galluzzo, F., Bonomo, R., Capotorti, F., D'Ambrogi, C., Di Stefano, R., Graziano, R., Martarelli, L., Pampaloni, M. L., Pantaloni, M., Ricci, V., Compagnoni, B., Galluzzo, F., Tacchia, D., Masella, G., Pannuti, V., Ventura, R., & Vitale, V. (2011). Carta Geologica alla Scala 1 a 1000000 (5th ed.). SELCA. Retrieved January 10, 2022, from http://sgi.isprambiente.it/milione/milione5ed.html
    [Google Scholar]
  62. Shewchuk, J. R. (1996, May). Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In Workshop on applied computational geometry (pp. 203–222). Springer. https://doi.org/10.1007/BFb0014497
    [Google Scholar]
  63. Shewchuk, J. R. (2002). Delaunay refinement algorithms for triangular mesh generation. Computational Geometry, 22(1–3), 21–74. https://doi.org/10.1016/S0925‐7721(01)00047‐5
    [Google Scholar]
  64. Stefani, M., Furin, S., & Gianolla, P. (2010). The changing climate framework and depositional dynamics of Triassic carbonate platforms from the Dolomites. Palaeogeography Palaeoclimatology Palaeoecology, 290, 43–57. https://doi.org/10.1016/j.palaeo.2010.02.018
    [Google Scholar]
  65. Stefaniuk, M., & Maćkowski, T. (2000). A compacted thickness correction in the palaeotectonic reconstruction. Geological Quarterly, 44, 101–108. Retrieved January 1, 2023, from https://gq.pgi.gov.pl/article/view/8034/pdf_167
    [Google Scholar]
  66. Thiele, S. T., Bnoulkacem, Z., Lorenz, S., Bordenave, A., Menegoni, N., Madriz, Y., Dujoncquoy, E., Gloaguen, R., & Kenter, J. (2021). Mineralogical mapping with accurately corrected shortwave infrared hyperspectral data acquired obliquely from UAVs. Remote Sensing, 14(1), 5. https://doi.org/10.3390/rs14010005
    [Google Scholar]
  67. Trombetta, G. L. (2011). Facies analysis, geometry and architecture of a Carnian carbonate platform: the Settsass/Richthofen reef system (Dolomites, Southern Alps, northern Italy). Geo.Alp, 8, 56–75.
    [Google Scholar]
  68. Yang, X. S. (2001). A unified approach to mechanical compaction, pressure solution, mineral reactions and the temperature distribution in hydrocarbon basins. Tectonophysics, 330(1–2), 141–151. https://doi.org/10.1016/S0040‐1951(00)00226‐2
    [Google Scholar]
/content/journals/10.1111/bre.12903
Loading
/content/journals/10.1111/bre.12903
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error