1887
Volume 36, Issue 5
  • E-ISSN: 1365-2117

Abstract

[Abstract

Unravelling source‐to‐sink relationships of sediment in coastal regions can be particularly challenging due to a variety of transport directions and mixing within varying local environments in response to sea level fluctuations. Post‐glacial sea level rise in the Holocene has resulted in the flooding of former continental margins, locally leading to the separation of islands such as Rottnest in southwest Australia. Rottnest lies approximately 20 km offshore from the mouth of the Swan River, one of the largest permanent river systems across thousands of kilometres of west Australian coastline. In this contribution, we investigate the size, U–Pb age distribution and α‐dose values of detrital zircon grains within 13 sand samples collected from three upstream tributaries that drain the Archean Yilgarn Craton, the Swan River estuary, offshore waters surrounding Rottnest Island and modern beaches. We explore sediment derivation, storage and mixing on this passive margin. Carbonate–silicate sands of the region contain detrital zircon with Archean, Mesoproterozoic and Cambro‐Neoproterozoic age modes, reflecting regional crystalline basement. Eo‐ to Paleoarchean zircon grains, including a previously enigmatic >3500 Ma component, are traced from offshore into the estuary, and specifically the Avon River tributary. Detrital mixing models imply an overall fluvial contribution to the estuary and offshore systems of up to 50–65%. By contrast, modern beach samples are dominated by Swan Coastal Plain recycled sediment of up to 96%. The α‐dose values of the prominent 3300–3150 Ma age component suggest more efficient fluvial discharge in the Paleo‐Swan River than in more recent times. Modern estuary samples have lower average and progressively lower downstream zircon α‐dose values, consistent with prolonged chemical and physical reworking and loss of metamict grains with transport distance in the river. We conclude that fluvial drainage networks distribute a locally persistent catchment signal whilst coastal plains in tectonically quiescent settings appear characterized by sediment reprocessing and mixed provenance.

,

Coastal plains and continental shelves in passive margin settings, as exemplified by the Perth area in southwest Australia, are characterized by abundant sediment reprocessing and homogenized provenance. However, source input from river catchments can remain locally well preserved in the detrital zircon record, here demonstrated for the modern Swan River estuary and a flooded continental margin offshore.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70001
2024-10-18
2024-11-14
Loading full text...

Full text loading...

References

  1. Allen, G. P. (1991). Sedimentary processes and facies in the Gironde estuary: A recent model for macrotidal estuarine systems. In D. G.Smith, G. E.Reinson, B. A.Zatlin, & R. A.Rahmani (Eds.), Clastic tidal sedimentology (Vol. 16, pp. 29–40). Canadian Society of Petroleum Geologists Memoir.
    [Google Scholar]
  2. Amidon, W. H., Burbank, D. W., & Gehrels, G. E. (2005a). Construction of detrital mineral populations: Insights from mixing of U–Pb zircon ages in Himalayan rivers. Basin Research, 17, 463–485. https://doi.org/10.1111/j.1365‐2117.2005.00279.x
    [Google Scholar]
  3. Amidon, W. H., Burbank, D. W., & Gehrels, G. E. (2005b). U–Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya. Earth and Planetary Science Letters, 235, 244–260. https://doi.org/10.1016/j.epsl.2005.03.019
    [Google Scholar]
  4. Anand, R. R., & Paine, M. (2002). Regolith geology of the Yilgarn craton, Western Australia: Implications for exploration. Australian Journal of Earth Sciences, 49, 3–162. https://doi.org/10.1046/j.1440‐0952.2002.00912.x
    [Google Scholar]
  5. Andersen, T., van Niekerk, H., & Elburg, M. A. (2022). Detrital zircon in an active sedimentary recycling system: Challenging the ‘source‐to‐sink’ approach to zircon‐based provenance analysis. Sedimentology, 69, 2436–2462. https://doi.org/10.1111/sed.12996
    [Google Scholar]
  6. Backhouse, J. (1984). Revised late Jurassic and early Cretaceous stratigraphy in the Perth Basin. Geological Survey of Western Australia Report, 12, 1–6.
    [Google Scholar]
  7. Barham, M., Kirkland, C. L., & Handoko, A. D. (2022). Understanding ancient tectonic settings through detrital zircon analysis. Earth and Planetary Science Letters, 583, 117425. https://doi.org/10.1016/j.epsl.2022.117425
    [Google Scholar]
  8. Barham, M., Kirkland, C. L., & Hollis, J. (2019). Spot the difference: Zircon disparity tracks crustal evolution. Geology, 47, 435–439. https://doi.org/10.1130/G45840.1
    [Google Scholar]
  9. Baxter, J. L. (1977). Heavy mineral sand deposits of Western Australia. Geological Survey of Western Australia Mineral Resources Bulletin, 10, 148.
    [Google Scholar]
  10. Ben‐Israel, M., Armon, M., ASTER Team , & Matmon, A. (2022). Sediment residence times in large rivers quantified using a cosmogenic nuclides based transport model and implications for buffering of continental erosion signals. Journal of Geophysical Research: Earth Surface, 127, e2021JF006417. https://doi.org/10.1029/2021JF006417
    [Google Scholar]
  11. Biggs, R. B., & Howell, B. A. (1984). The Estuary as a sediment trap: Alternate approaches to estimating its filtering efficiency. In V. S.Kennedy (Ed.), The estuary as a filter (pp. 107–129). Elsevier. https://doi.org/10.1016/B978‐0‐12‐405070‐9.50012‐8
    [Google Scholar]
  12. Bird, M. I., Austin, W. E. N., Wurster, C. M., Fifield, L. K., Mojtahid, M., & Sargeant, C. (2010). Punctuated eustatic sea‐level rise in the early mid‐Holocene. Geology, 38, 803–806. https://doi.org/10.1130/G31066.1
    [Google Scholar]
  13. Blum, M. D., & Törnqvist, T. E. (2000). Fluvial responses to climate and sea‐level change: A review and look forward. Sedimentology, 47, 2–48. https://doi.org/10.1046/j.1365‐3091.2000.00008.x
    [Google Scholar]
  14. Brooke, B. (2001). The distribution of carbonate eolianite. Earth‐Science Reviews, 55, 135–164. https://doi.org/10.1016/S0012‐8252(01)00054‐X
    [Google Scholar]
  15. Brooke, B., Creasey, J., & Sexton, M. (2010). Broad‐scale geomorphology and benthic habitats of the Perth coastal plain and Rottnest shelf, Western Australia, identified in a merged topographic and bathymetric digital relief model. International Journal of Remote Sensing, 31, 6223–6237. https://doi.org/10.1080/01431160903403052
    [Google Scholar]
  16. Brooke, B. P., Olley, J. M., Pietsch, T., Playford, P. E., Haines, P. W., Murray‐Wallace, C. V., & Woodroffe, C. D. (2014). Chronology of Quaternary coastal aeolianite deposition and the drowned shorelines of southwestern Western Australia—A reappraisal. Quaternary Science Reviews, 93, 106–124. https://doi.org/10.1016/j.quascirev.2014.04.007
    [Google Scholar]
  17. Bureau of Meteorology . (2021). National water account 2021. Climate and water. http://www.bom.gov.au/water/nwa/2021/perth/climateandwater/climateandwater.shtml
    [Google Scholar]
  18. Caracciolo, L. (2020). Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development. Earth‐Science Reviews, 209, 103226. https://doi.org/10.1016/j.earscirev.2020.103226
    [Google Scholar]
  19. Cawood, P. A., Hawkesworth, C. J., & Dhuime, B. (2012). Detrital zircon record and tectonic setting. Geology, 40, 875–878. https://doi.org/10.1130/G32945.1
    [Google Scholar]
  20. Cawood, P. A., & Nemchin, A. A. (2000). Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia. Sedimentary Geology, 134, 209–234. https://doi.org/10.1016/S0037‐0738(00)00044‐0
    [Google Scholar]
  21. Cawood, P. A., Nemchin, A. A., Freeman, M., & Sircombe, K. (2003). Linking source and sedimentary basin: Detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth and Planetary Science Letters, 210, 259–268. https://doi.org/10.1016/S0012‐821X(03)00122‐5
    [Google Scholar]
  22. Chew, D., O'Sullivan, G., Caracciolo, L., Mark, C., & Tyrrell, S. (2020). Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U‐Pb provenance analysis. Earth‐Science Reviews, 202, 103093. https://doi.org/10.1016/j.earscirev.2020.103093
    [Google Scholar]
  23. Churchill, D. M. (1959). Late quaternary eustatic changes in the Swan River district. Journal of the Royal Society of Western Australia, 42, 53–55.
    [Google Scholar]
  24. Cockbain, A. E., & Playford, P. E. (1973). Stratigraphic nomenclature of cretaceous rocks in the Perth Basin. Geological Survey of Western Australia Annual Report for the Year, 1972, 26–31.
    [Google Scholar]
  25. Collins, L. B. (1988). Sediments and history of the Rottnest Shelf, southwest Australia: A swell‐dominated, non‐tropical carbonate margin. Sedimentary Geology, 60, 15–49. https://doi.org/10.1016/0037‐0738(88)90109‐1
    [Google Scholar]
  26. Collins, L. B., & Baxter, J. L. (1984). Heavy mineral‐bearing strandline deposits associated with high‐energy beach environments, southern Perth Basin, Western Australia. Australian Journal of Earth Sciences, 31, 287–292.
    [Google Scholar]
  27. Compston, W., Williams, I. S., & McCulloch, M. T. (1986). Contrasting zircon U‐Pb and model Sm‐Nd ages for the Archaean Logue Brook Granite. Australian Journal of Earth Sciences, 33, 193–200. https://doi.org/10.1080/08120098608729359
    [Google Scholar]
  28. Covault, J. A., & Fildani, A. (2014). Continental shelves as sediment capacitors or conveyors: Source‐to‐sink insights from the tectonically active Oceanside shelf, southern California, USA. Geological Society, London, Memoirs, 41, 315–326. https://doi.org/10.1144/M41.23
    [Google Scholar]
  29. Dalrymple, R. W., Mackay, D. A., Ichaso, A. A., & Choi, K. S. (2012). Processes, morphodynamics, and facies of tide‐dominated estuaries. In R.Davis, Jr. & R. W.Dalrymple (Eds.), Principles of tidal sedimentology (pp. 79–107). Springer. https://doi.org/10.1007/978‐94‐007‐0123‐6_5
    [Google Scholar]
  30. Dalrymple, R. W., Zaitlin, B. A., & Boyd, R. (1992). Estuarine facies models: Conceptual basis and stratigraphic implications. Journal of Sedimentary Petrology, 62(6), 1130–1146. https://doi.org/10.1306/D4267A69‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  31. Davidson, W. A. (1995). Hydrogeology and groundwater resources of the Perth Region, Western Australia. Western Australia Geological Survey Bulletin, 142, 257.
    [Google Scholar]
  32. de Broekert, P. P., Wilde, S. A., & Kennedy, A. K. (2004). Variety, age and origin of zircons in the mid‐Cenozoic Westonia Formation, southwestern Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 51, 157–171. https://doi.org/10.1111/j.1440‐0952.2004.01052.x
    [Google Scholar]
  33. Descourvieres, C., Douglas, G., Leyland, L., Hartog, N., & Prommer, H. (2011). Geochemical reconstruction of the provenance, weathering and deposition of detrital‐dominated sediments in the Perth Basin: The cretaceous Leederville formation, south‐west Australia. Sedimentary Geology, 236, 62–76. https://doi.org/10.1016/j.sedgeo.2010.12.006
    [Google Scholar]
  34. Dickinson, W. R., & Gehrels, G. E. (2008). U‐Pb ages of detrital zircons in relation to paleogeography: Triassic paleodrainage networks and sediment dispersal across southwest Laurentia. Journal of Sedimentary Research, 78, 745–764. https://doi.org/10.2110/jsr.2008.088
    [Google Scholar]
  35. Dillinger, A., George, A. D., & Parra‐Avila, L. A. (2018). Early Permian sediment provenance and paleogeographic reconstructions in southeastern Gondwana using detrital zircon geochronology (northern Perth Basin, Western Australia). Gondwana Research, 59, 57–75. https://doi.org/10.1016/j.gr.2018.02.020
    [Google Scholar]
  36. Dortch, J., & Dortch, C. (2019). Late quaternary aboriginal hunter‐gatherer occupation of the Greater Swan Region, south‐western Australia. Australian Archaeology, 85, 15–29. https://doi.org/10.1080/03122417.2019.1594556
    [Google Scholar]
  37. Draper, N. (2015). Islands of the dead? Prehistoric occupation of Kangaroo Island and other southern offshore islands and watercraft use by aboriginal Australians. Quaternary International, 385, 229–242. https://doi.org/10.1016/j.quaint.2015.01.008
    [Google Scholar]
  38. Dröllner, M., Barham, M., & Kirkland, C. L. (2022). Gaining from loss: Detrital zircon source‐normalized α‐dose discriminates first‐versus multi‐cycle grain histories. Earth and Planetary Science Letters, 579, 117346. https://doi.org/10.1016/j.epsl.2021.117346
    [Google Scholar]
  39. Dröllner, M., Barham, M., Kirkland, C. L., & Ware, B. (2021). Every zircon deserves a date: Selection bias in detrital geochronology. Geological Magazine, 158, 1135–1142. https://doi.org/10.1017/S0016756821000145
    [Google Scholar]
  40. Dröllner, M., Kirkland, C. L., Barham, M., Evans, N. J., & McDonald, B. J. (2022). A persistent Hadean‐Eoarchean protocrust in the western Yilgarn Craton, Western Australia. Terra Nova, 34, 458–464. https://doi.org/10.1111/ter.12610
    [Google Scholar]
  41. Fairbridge, R. W. (1961). Eustatic changes in sea level. Physics and Chemistry of the Earth, 4, 99–185. https://doi.org/10.1016/0079‐1946(61)90004‐0
    [Google Scholar]
  42. Gartmair, G., Barham, M., & Kirkland, C. L. (2022). Detrital zircon perspectives on heavy mineral sands systems, Eucla Basin, Australia. Economic Geology, 117, 383–399. https://doi.org/10.5382/econgeo.4871
    [Google Scholar]
  43. Garzanti, E., & Andò, S. (2007). Heavy mineral concentration in modern sands: Implications for provenance interpretation. Developments in Sedimentology, 58, 517–545. https://doi.org/10.1016/S0070‐4571(07)58020‐9
    [Google Scholar]
  44. Garzanti, E., Resentini, A., Vezzoli, G., Andò, S., Malusà, M., & Padoan, M. (2012). Forward compositional modelling of Alpine orogenic sediments. Sedimentary Geology, 280, 149–164. https://doi.org/10.1016/j.sedgeo.2012.03.012
    [Google Scholar]
  45. Garzanti, E., Vermeesch, P., Rittner, M., & Simmons, M. (2018). The zircon story of the Nile: Time‐structure maps of source rocks and discontinuous propagation of detrital signals. Basin Research, 30, 1098–1117. https://doi.org/10.1111/bre.12293
    [Google Scholar]
  46. Garzanti, E., Vermeesch, P., Vezzoli, G., Andò, S., Botti, E., Limonta, M., Dinis, P., Hahn, A., Baudet, D., De Grave, J., & Kitambala Yaya, N. (2019). Congo River sand and the equatorial quartz factory. Earth‐Science Reviews, 197, 102918. https://doi.org/10.1016/j.earscirev.2019.102918
    [Google Scholar]
  47. Gehrels, G. (2012). Detrital zircon U‐Pb geochronology: Current methods and new opportunities. In C.Busby & A.Azor (Eds.), Tectonics of sedimentary basins: Recent advances (pp. 47–62). Blackwell Publishing Ltd. https://doi.org/10.1002/9781444347166.ch2
    [Google Scholar]
  48. Geyer, M. R., Woodruff, J. D., & Traykovski, P. (2001). Sediment transport and trapping in the Hudson River estuary. Estuaries, 24, 670–679. https://doi.org/10.2307/1352875
    [Google Scholar]
  49. Glenister, B. F., Hassell, C. W., & Kneebone, E. W. S. (1959). Geology of Rottnest Island. Journal of the Royal Society of Western Australia, 42, 69–70.
    [Google Scholar]
  50. Gouramanis, C., Dodson, J., Wilkins, D., De Deckker, P., & Chase, B. M. (2012). Holocene palaeoclimate and sea level fluctuation recorded from the coastal Barker Swamp, Rottnest Island, south‐western Western Australia. Quaternary Science Reviews, 54, 40–57. https://doi.org/10.1016/j.quascirev.2012.05.007
    [Google Scholar]
  51. Gozzard, J. R. (2007). Geology and landforms of the Perth region (p. 126). Western Australia Geological Survey.
    [Google Scholar]
  52. Halpin, J. A., Daczko, N. R., Kobler, M. E., & Whittaker, J. M. (2017). Strike‐slip tectonics during the Neoproterozoic–Cambrian assembly of East Gondwana: Evidence from a newly discovered microcontinent in the Indian Ocean (Batavia Knoll). Gondwana Research, 51, 137–148. https://doi.org/10.1016/j.gr.2017.08.002
    [Google Scholar]
  53. Harris, L. B. (1994). Structural and tectonic synthesis for the Perth Basin, Western Australia. Journal of Petroleum Geology, 17, 129–156. https://doi.org/10.1111/j.1747‐5457.1994.tb00123.x
    [Google Scholar]
  54. Heap, A. D., Edwards, J., Fountain, L., Spinnocia, Hughes, M., Mathews, E., Griffin, J., Borissova, I., Blevin, J., Mitchell, C., & Krassay, A. (2008). Geomorphology, sedimentology and stratigraphy of submarine canyons on the SW Australian slope—Post survey report. Geoscience Australia record 2008/16, 138 pp.
  55. Heap, A. D., & Harris, P. T. (2008). Geomorphology of the Australian margin and adjacent seafloor. Australian Journal of Earth Sciences, 55, 555–585. https://doi.org/10.1080/08120090801888669
    [Google Scholar]
  56. Hearty, P. J., & O'Leary, M. J. (2008). Carbonate eolianites, quartz sands, and Quaternary sea‐level cycles, Western Australia: A chronostratigraphic approach. Quaternary Geochronology, 3, 26–55. https://doi.org/10.1016/j.quageo.2007.10.001
    [Google Scholar]
  57. Holland, H. D., & Gottfried, D. (1955). The effect of nuclear radiation on the structure of zircon. Acta Crystallographica, 8, 291–300. https://doi.org/10.1107/S0365110X55000947
    [Google Scholar]
  58. Horstwood, M. S. A., Košler, J., Gehrels, G., Jackson, S. E., McLean, N. M., Paton, C., Pearson, N. J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J. F., Condon, D. J., & Schoene, B. (2016). Community‐derived standards for LA‐ICP‐MS U‐(Th‐)Pb geochronology—Uncertainty propagation, age interpretation and data reporting. Geostandards and Geoanalytical Research, 40, 311–332. https://doi.org/10.1111/j.1751‐908X.2016.00379.x
    [Google Scholar]
  59. Huang, Z., Nichol, S. L., Harris, P. T., & Caley, M. J. (2014). Classification of submarine canyons of the Australian continental margin. Marine Geology, 357, 362–383. https://doi.org/10.1016/j.margeo.2014.07.007
    [Google Scholar]
  60. Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation‐inductively coupled plasma‐mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 211, 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    [Google Scholar]
  61. Kendrick, G. W., Wyrwoll, K.‐H., & Szabo, B. J. (1991). Pliocene‐Pleistocene coastal events and history along the western margin of Australia. Quaternary Science Reviews, 10, 419–439. https://doi.org/10.1016/0277‐3791(91)90005‐F
    [Google Scholar]
  62. Kirkland, C. L., Barham, M., & Danišík, M. (2020). Find a match with triple‐dating: Antarctic sub‐ice zircon detritus on the modern shore of Western Australia. Earth and Planetary Science Letters, 531, 115953. https://doi.org/10.1016/j.epsl.2019.115953
    [Google Scholar]
  63. Kirkland, C. L., Dröllner, M., Quentin de Gromard, R., Ribeiro, B. V., Olierook, H. K. H., Hartnady, M. I. H., Barham, M., Liebmann, J., Smithies, R. H., & Zametzer, A. (2024). Cryptic geological histories accessed through entombed and matrix geochronometers in dykes. Communications Earth & Environment, 5, 311. https://doi.org/10.1038/s43247‐024‐01469‐6
    [Google Scholar]
  64. Krogh, T. E., & Davis, G. L. (1975). Alteration in zircons and differential dissolution of altered and metamict zircon. Carnegie Institution of Washington Yearbook, 74, 619–623.
    [Google Scholar]
  65. Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 1–27. https://doi.org/10.1007/BF02289565
    [Google Scholar]
  66. Ksienzyk, A. K., Jacobs, J., Boger, S. D., Košler, J., Sircombe, K. N., & Whitehouse, M. J. (2012). U–Pb ages of metamorphic monazite and detrital zircon from the Northampton Complex: Evidence of two orogenic cycles in Western Australia. Precambrian Research, 198–199, 37–50. https://doi.org/10.1016/j.precamres.2011.12.011
    [Google Scholar]
  67. Lewis, C. J. (2017). SHRIMP U‐Pb detrital zircon ages from GSWA Harvey 1, Western Australia: July 2013–June 2015. Geoscience Australia Record 2017/20, 110 pp. https://doi.org/10.11636/Record.2017.020
  68. Lewis, S. E., Sloss, C. R., Murray‐Wallace, C. V., Woodroffe, C. D., & Smithers, S. G. (2013). Post‐glacial sea‐level changes around the Australian margin: A review. Quaternary Science Reviews, 74, 115–138. https://doi.org/10.1016/j.quascirev.2012.09.006
    [Google Scholar]
  69. Lipar, M., & Webb, J. A. (2014). Middle–late Pleistocene and Holocene chronostratigraphy and climate history of the Tamala Limestone, Cooloongup and Safety Bay Sands, Nambung National Park, southwestern Western Australia. Australian Journal of Earth Sciences, 61, 1023–1039. https://doi.org/10.1080/08120099.2014.966322
    [Google Scholar]
  70. Lipp, A., & Vermeesch, P. (2023). Short communication: The Wasserstein distance as a dissimilarity metric for comparing detrital age spectra and other geological distributions. Geochronology, 5, 263–270. https://doi.org/10.5194/gchron‐5‐263‐2023
    [Google Scholar]
  71. Ludwig, K. R. (1998). On the treatment of concordant uranium‐lead ages. Geochimica et Cosmochimica Acta, 62, 665–676. https://doi.org/10.1016/S0016‐7037(98)00059‐3
    [Google Scholar]
  72. Lyon, R. M. (1833). A glance at the manners and language of the aboriginal inhabitants of Western Australia, with a short vocabulary. Perth Gazette and Western Australian Journal, 13, 51–52.
    [Google Scholar]
  73. Makuluni, P., Kirkland, C. L., & Barham, M. (2019). Zircon grain shape holds provenance information: A case study from southwestern Australia. Geological Journal, 54, 1279–1293. https://doi.org/10.1002/gj.3225
    [Google Scholar]
  74. Malkowski, M. A., Johnstone, S. A., Sharman, G. R., White, C. J., Scheirer, D. S., & Barth, G. A. (2022). Continental shelves as detrital mixers: U–Pb and Lu–Hf detrital zircon provenance of the Pleistocene–Holocene Bering Sea and its margins. The Depositional Record, 8, 1008–1030. https://doi.org/10.1002/dep2.203
    [Google Scholar]
  75. Malkowski, M. A., Sharman, G. R., Johnstone, S. A., Grove, M. J., Kimbrough, D. L., & Graham, S. A. (2019). Dilution and propagation of provenance trends in sand and mud: Geochemistry and detrital zircon geochronology of modern sediment from central California (U.S.A.). American Journal of Science, 319(10), 846–902. https://doi.org/10.2475/10.2019.02
    [Google Scholar]
  76. Malusà, M. G., Anfinson, O. A., Dafov, L. N., & Stockli, D. F. (2016). Tracking Adria indentation beneath the Alps by detrital zircon U‐Pb geochronology: Implications for the Oligocene–Miocene dynamics of the Adriatic microplate. Geology, 44(2), 155–158. https://doi.org/10.1130/G37407.1
    [Google Scholar]
  77. Malusà, M. G., Resentini, A., & Garzanti, E. (2016). Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Research, 31, 1–19. https://doi.org/10.1016/j.gr.2015.09.002
    [Google Scholar]
  78. Markwitz, V., & Kirkland, C. L. (2018). Source to sink zircon grain shape: Constraints on selective preservation and significance for Western Australian Proterozoic basin provenance. Geoscience Frontiers, 9, 415–430. https://doi.org/10.1016/j.gsf.2017.04.004
    [Google Scholar]
  79. Markwitz, V., Kirkland, C. L., & Evans, N. J. (2017). Early Cambrian metamorphic zircon in the northern Pinjarra Orogen: Implications for the structure of the west Australian craton margin. Lithosphere, 9, 3–13. https://doi.org/10.1130/L569.1
    [Google Scholar]
  80. Markwitz, V., Kirkland, C. L., Mehnert, A., Gessner, K., & Shaw, J. (2017). 3‐D characterization of detrital zircon grains and its implications for fluvial transport, mixing, and preservation bias. Geochemistry, Geophysics, Geosystems, 18, 4655–4673. https://doi.org/10.1002/2017GC007278
    [Google Scholar]
  81. Marsh, J. H., Jørgensen, T. R. C., Petrus, J. A., Hamilton, M. A., & Mole, D. R. (2019). U‐Pb, trace element, and hafnium isotope composition of the Maniitsoq zircon: A potential new Archean zircon reference material. Conference Presentation, Goldschmidt 2019, Barcelona, 2161.
  82. Mattinson, J. M. (2005). Zircon U–Pb chemical abrasion (“CA‐TIMS”) method: Combined annealing and multi‐step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220, 47–66. https://doi.org/10.1016/j.chemgeo.2005.03.011
    [Google Scholar]
  83. McKanna, A. J., Koran, I., Schoene, B., & Ketcham, R. A. (2023). Chemical abrasion: The mechanics of zircon dissolution. Geochronology, 5, 127–151. https://doi.org/10.5194/gchron‐5‐127‐2023
    [Google Scholar]
  84. McKanna, A. J., Schoene, B., & Szymanowski, D. (2024). Geochronological and geochemical effects of zircon chemical abrasion: Insights from single‐crystal stepwise dissolution experiments. Geochronology, 6, 1–20. https://doi.org/10.5194/gchron‐6‐1‐2024
    [Google Scholar]
  85. Mole, D. R., Kirkland, C. L., Fiorentini, M. L., Barnes, S. J., Cassidy, K. F., Isaac, C., Belousova, E. A., Hartnady, M., & Thebaud, N. (2019). Time‐space evolution of an Archean craton: A Hf‐isotope window into continent formation. Earth‐Science Reviews, 196, 102831. https://doi.org/10.1016/j.earscirev.2019.04.003
    [Google Scholar]
  86. Moore, G. F. (1842). A descriptive vocabulary of the language in common use amongst the aborigines of Western Australia (Facsimile ed.). William S. Orr & Co.
    [Google Scholar]
  87. Moore, G. F. (1978 [1884]). Diary of ten years eventful life of an early settler in Western Australia incorporating a descriptive vocabulary of the language of the aborigines (Facsimile ed.). University of Western Australia Press.
    [Google Scholar]
  88. Morón, S., Cawood, P. A., Haines, P. W., Gallagher, S. J., Zahirovic, S., Lewis, C. J., & Moresi, L. (2019). Long‐lived transcontinental sediment transport pathways of East Gondwana. Geology, 47, 513–516. https://doi.org/10.1130/G45915.1
    [Google Scholar]
  89. Murakami, T., Chakoumakos, B. C., Ewing, R. C., Lumpkin, G. R., & Weber, W. J. (1991). Alpha‐decay event damage in zircon. American Mineralogist, 76, 1510–1532.
    [Google Scholar]
  90. Nanson, R. A., Borissova, I., Huang, Z., Post, A., Nichol, S. L., Spinoccia, M., Siwabessy, J. W., Sikes, E. L., & Picard, K. (2022). Cretaceous to Cenozoic controls on the genesis of the shelf‐incising Perth Canyon: Insights from a two‐part geomorphology mapping approach. Marine Geology, 445, 106731. https://doi.org/10.1016/j.margeo.2022.106731
    [Google Scholar]
  91. Nordsvan, A. R., Kirscher, U., Kirkland, C. L., Barham, M., & Brennan, D. T. (2020). Resampling (detrital) zircon age distributions for accurate multidimensional scaling solutions. Earth‐Science Reviews, 204, 103149. https://doi.org/10.1016/j.earscirev.2020.103149
    [Google Scholar]
  92. Nunn, P. D. (2016). Australian aboriginal traditions about coastal change reconciled with postglacial sea‐level history: A first synthesis. Environmental History, 22, 393–420. https://doi.org/10.3197/096734016X1466154021931
    [Google Scholar]
  93. Nunn, P. D., & Reid, N. J. (2016). Aboriginal memories of inundation of the Australian coast dating from more than 7000 years ago. Australian Geographer, 47, 11–47. https://doi.org/10.1080/00049182.2015.1077539
    [Google Scholar]
  94. Olierook, H. K. H., Barham, M., Fitzsimons, I. C. W., Timms, N. E., Jiang, Q., Evans, N. J., & McDonald, B. J. (2019). Tectonic controls on sediment provenance evolution in rift basins: Detrital zircon U‐Pb and Hf isotope analysis from the Perth Basin, Western Australia. Gondwana Research, 66, 126–142. https://doi.org/10.1016/j.gr.2018.11.002
    [Google Scholar]
  95. Olierook, H. K. H., Kirkland, C. L., Hollis, J. A., Gardiner, N. J., Yakymchuk, C., Szilas, K., Hartnady, M. I. H., Barham, M., McDonald, B. J., Evans, N. J., Steenfelt, A., & Waterton, P. (2021). Regional zircon U‐Pb geochronology for the Maniitsoq region, southwest Greenland. Scientific Data, 8, 139. https://doi.org/10.1038/s41597‐021‐00922‐x
    [Google Scholar]
  96. Olierook, H. K. H., Timms, N. E., Wellmann, J. F., Corbel, S., & Wilkes, P. G. (2015). 3D structural and stratigraphic model of the Perth Basin, Western Australia: Implications for sub‐basin evolution. Australian Journal of Earth Sciences, 62, 447–467. https://doi.org/10.1080/08120099.2015.1054882
    [Google Scholar]
  97. Pastore, G., Garzanti, E., Vermeesch, P., Bayon, G., Resentini, A., Braquet, N., & Overare, B. (2023). The zircon story of The Niger River: Time‐structure maps of the West African Craton and discontinuous propagation of provenance signals across a disconnected sediment‐routing system. JGR Earth Surface, 128, e2023JF007342. https://doi.org/10.1029/2023JF007342
    [Google Scholar]
  98. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectromic data. Journal of Analytical Atomic Spectrometry, 26, 2508–2518. https://doi.org/10.1039/C1JA10172B
    [Google Scholar]
  99. Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A., & Maas, R. (2010). Improved laser ablation U‐Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 11, Q0AA06. https://doi.org/10.1029/2009GC002618
    [Google Scholar]
  100. Perillo, G. M. E. (1995). Geomorphology and sedimentology of estuaries. Developments in Sedimentology, 53, 471.
    [Google Scholar]
  101. Pettit, B. S., Blum, M., Pecha, M., McLean, N., Bartschi, N. C., & Saylor, J. E. (2019). Detrital‐zircon U‐Pb paleodrainage reconstruction and geochronology of the Campanian Blackhawk–Castlegate succession, Wasatch Plateau and Book Cliffs, Utah, U.S.A. Journal of Sedimentary Research, 89(4), 273–292. https://doi.org/10.2110/jsr.2019.18
    [Google Scholar]
  102. Pidgeon, R. T. (2014). Zircon radiation damage ages. Chemical Geology, 367, 13–22. https://doi.org/10.1016/j.chemgeo.2013.12.010
    [Google Scholar]
  103. Pidgeon, R. T., Nemchin, A. A., & Cliff, J. (2013). Interaction of weathering solutions with oxygen and U–Pb isotopic systems of radiation‐damaged zircon from an Archean granite, Darling Range Batholith, Western Australia. Contributions to Mineralogy and Petrology, 166, 511–523. https://doi.org/10.1007/s00410‐013‐0888‐z
    [Google Scholar]
  104. Pidgeon, R. T., Nemchin, A. A., & Whitehouse, M. J. (2017). The effect of weathering on U–Th–Pb and oxygen isotope systems of ancient zircons from the Jack Hills, Western Australia. Geochimica et Cosmochimica Acta, 197, 142–166. https://doi.org/10.1016/j.gca.2016.10.005
    [Google Scholar]
  105. Playford, P. E. (1983). Geological research on Rottnest Island. Journal of the Royal Society of Western Australia, 66, 10–14.
    [Google Scholar]
  106. Playford, P. E. (1988). Guidebook to the geology of Rottnest Island. Geological Survey of Western Australia Excursion Guidebook, 2, 67.
    [Google Scholar]
  107. Playford, P. E. (2004). Chapter 27—Geology and hydrogeology of Rottnest Island, Western Australia. In H. L.Vacher & T. M.Quinn (Eds.), Geology and hydrogeology of Carbonate Islands, Elsevier. Developments in Sedimentology (Vol. 54, pp. 783–810). https://doi.org/10.1016/S0070‐4571(04)80049‐9
    [Google Scholar]
  108. Playford, P. E., Cockbain, A. E., & Low, G. H. (1976). Geology of the Perth Basin, Western Australia. Geological Survey of Western Australia Bulletin, 124, 311.
    [Google Scholar]
  109. Quentin de Gromard, R., Ivanic, T. J., & Zibra, I. (2021). Pre‐Mesozoic interpreted bedrock geology of the southwest Yilgarn. Geological Survey of Western Australia, digital layers.
  110. Quilty, P. G. (1974). Cainozoic stratigraphy in the Perth area. Journal of the Royal Society of Western Australia, 57, 16–33.
    [Google Scholar]
  111. Quilty, P. G. (1977). Cenozoic sedimentation cycles in Western Australia. Geology, 5, 336–340. https://doi.org/10.1130/0091‐7613(1977)5<336:CSCIWA>2.0.CO;2
    [Google Scholar]
  112. Reid, A., Keeling, J., Boyd, D., Belousova, E., & Hou, B. (2013). Source of zircon in world‐class heavy mineral placer deposits of the Cenozoic Eucla Basin, southern Australia from LA‐ICPMS U–Pb geochronology. Sedimentary Geology, 286–287, 1–19. https://doi.org/10.1016/j.sedgeo.2012.10.008
    [Google Scholar]
  113. Resentini, A., Andò, S., Garzanti, E., Malusà, M. G., Pastore, G., Vermeesch, P., Chanvry, E., & Dall'Asta, M. (2020). Zircon as a provenance tracer: Coupling Raman spectroscopy and U–Pb geochronology in source‐to‐sink studies. Chemical Geology, 555, 119828. https://doi.org/10.1016/j.chemgeo.2020.119828
    [Google Scholar]
  114. Roy, P. S. (1999). Heavy mineral beach placers in southeastern Australia; their nature and genesis. Economic Geology, 94(4), 567–588. https://doi.org/10.2113/gsecongeo.94.4.567
    [Google Scholar]
  115. Saylor, J. E., & Sundell, K. E. (2016). Quantifying comparison of large detrital geochronology data sets. Geosphere, 12, 203–220. https://doi.org/10.1130/GES01237.1
    [Google Scholar]
  116. Searle, D. J., & Semeniuk, V. (1985). The natural sectors of the inner Rottnest shelf coast adjoining the Swan Coastal Plain. Journal of the Royal Society of Western Australia, 67, 116–136.
    [Google Scholar]
  117. Searle, D. J., & Woods, P. J. (1986). Detailed documentation of a Holocene sea‐level record in the Perth region, southern Western Australia. Quaternary Research, 26, 299–308. https://doi.org/10.1016/0033‐5894(86)90091‐8
    [Google Scholar]
  118. Semeniuk, V. (1996). An early Holocene record of rising sea level along a bathymetrically complex coast in southwestern Australia. Marine Geology, 131, 177–193. https://doi.org/10.1016/0025‐3227(96)00007‐2
    [Google Scholar]
  119. Sircombe, K. N., & Freeman, M. J. (1999). Provenance of detrital zircons on the Western Australia coastline—Implications for the geologic history of the Perth basin and denudation of the Yilgarn craton. Geology, 27, 879–882. https://doi.org/10.1130/0091‐7613(1999)027<0879:PODZOT>2.3.CO;2
    [Google Scholar]
  120. Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., & Whitehouse, M. J. (2008). Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
    [Google Scholar]
  121. Song, T., & Cawood, P. A. (2000). Structural styles in the Perth Basin associated with the Mesozoic break‐up of greater India and Australia. Tectonophysics, 317, 55–72. https://doi.org/10.1016/S0040‐1951(99)00273‐5
    [Google Scholar]
  122. Spencer, C. J., & Kirkland, C. L. (2016). Visualizing the sedimentary response through the orogenic cycle: A multidimensional scaling approach. Lithosphere, 8, 29–37. https://doi.org/10.1130/L479.1
    [Google Scholar]
  123. Spencer, C. J., Kirkland, C. L., & Roberts, N. M. W. (2018). Implications of erosion and bedrock composition on zircon fertility: Examples from South America and Western Australia. Terra Nova, 30, 289–295. https://doi.org/10.1111/ter.12338
    [Google Scholar]
  124. Stern, R. A., Bodorkos, S., Kamo, S. L., Hickman, A. H., & Corfu, F. (2009). Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostandards and Geoanalytical Research, 33, 145–168. https://doi.org/10.1111/j.1751‐908X.2009.00023.x
    [Google Scholar]
  125. Sundell, K. E., & Saylor, J. E. (2017). Unmixing detrital geochronology age distributions. Geochemistry, Geophysics, Geosystems, 18, 2872–2886. https://doi.org/10.1002/2016GC006774
    [Google Scholar]
  126. Sweet, M. L., & Blum, M. D. (2016). Connections between fluvial to shallow marine environments and submarine canyons: Implications for sediment transfer to deep water. Journal of Sedimentary Research, 86(10), 1147–1162. https://doi.org/10.2110/jsr.2016.64
    [Google Scholar]
  127. Veevers, J. J. (2006). Updated Gondwana (Permian–Cretaceous) earth history of Australia. Gondwana Research, 9, 231–260. https://doi.org/10.1016/j.gr.2005.11.005
    [Google Scholar]
  128. Veevers, J. J., Belousova, E. A., Saeed, A., Sircombe, K., Cooper, A. F., & Read, S. E. (2006). Pan‐Gondwanaland detrital zircons from Australia analysed for Hf‐isotopes and trace elements reflect an ice‐covered Antarctic provenance of 700–500 Ma age, TDM of 2.0–1.0 Ga, and alkaline affinity. Earth‐Science Reviews, 76, 135–174. https://doi.org/10.1016/j.earscirev.2005.11.001
    [Google Scholar]
  129. Veevers, J. J., Powell, C. M. A., & Johnson, B. D. (1975). Greater India's place in Gondwanaland and in Asia. Earth and Planetary Science Letters, 27, 383–387. https://doi.org/10.1016/0012‐821X(75)90056‐4
    [Google Scholar]
  130. Veevers, J. J., Saeed, A., Belousova, E. A., & Griffin, W. L. (2005). U–Pb ages and source composition by Hf‐isotope and trace‐element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn craton. Earth‐Science Reviews, 68, 245–279. https://doi.org/10.1016/j.earscirev.2004.05.005
    [Google Scholar]
  131. Vermeesch, P. (2012). On the visualisation of detrital age distributions. Chemical Geology, 312–313, 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021
    [Google Scholar]
  132. Vermeesch, P. (2013). Multi‐sample comparison of detrital age distributions. Chemical Geology, 341, 140–146. https://doi.org/10.1016/j.chemgeo.2013.01.010
    [Google Scholar]
  133. Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9, 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
    [Google Scholar]
  134. Vermeesch, P. (2021). On the treatment of discordant detrital zircon U‐Pb data. Geochronology, 3, 247–257. https://doi.org/10.5194/gchron‐3‐247‐2021
    [Google Scholar]
  135. Vermeesch, P., & Garzanti, E. (2015). Making geological sense of ‘Big Data’ in sedimentary provenance analysis. Chemical Geology, 409, 20–27. https://doi.org/10.1016/j.chemgeo.2015.05.004
    [Google Scholar]
  136. Voice, P. J., Kowalewski, M., & Eriksson, K. A. (2011). Quantifying the timing and rate of crustal evolution: Global compilation of radiometrically dated detrital zircon grains. The Journal of Geology, 119, 109–126. https://doi.org/10.1086/658295
    [Google Scholar]
  137. Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C., & Spiegel, W. (1995). Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses. Geostandards Newsletter, 19, 1–23. https://doi.org/10.1111/j.1751‐908X.1995.tb00147.x
    [Google Scholar]
  138. Wiedenbeck, M., Hanchar, J. M., Peck, W. H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.‐P., Greenwood, R. C., Hinton, R., Kita, N., Mason, P. R. D., Norman, M., Ogasawara, M., Piccoli, P. M., … Zheng, Y.‐F. (2004). Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research, 28, 9–39. https://doi.org/10.1111/j.1751‐908X.2004.tb01041.x
    [Google Scholar]
  139. Wilde, S. A. (2001). Jimperding and Chittering metamorphic belts, southwestern Yilgarn craton, Western Australia—A field guide. Geological survey of Western Australia record 2001/12, 54 p.
  140. Wilde, S. A., & Pidgeon, R. T. (1986). Geology and geochronology of the Saddleback Greenstone Belt in the Archaean Yilgarn Block, southwestern Australia. Australian Journal of Earth Sciences, 33, 491–501. https://doi.org/10.1080/08120098608729386
    [Google Scholar]
  141. Wingate, M. T. D., Fielding, I. O. H., Lu, Y., & Ivanic, T. J. (2022). 248205: Siliciclastic schist, Julimar prospect. Geological Survey of Western Australia Geochronology Record, 1899, 8.
    [Google Scholar]
  142. Wittmann, H., Oelze, M., Gaillardet, J., Garzanti, E., & von Blanckenburg, F. (2020). A global rate of denudation from cosmogenic nuclides in the Earth's largest rivers. Earth‐Science Reviews, 204, 103147. https://doi.org/10.1016/j.earscirev.2020.103147
    [Google Scholar]
  143. Yassini, I., & Kendrick, G. W. (1988). Middle Holocene ostracodes, foraminifers and environments of beds at Point Waylen, Swan River Estuary, southwestern Australia. Alcheringa, 12, 107–121. https://doi.org/10.1080/03115518808618999
    [Google Scholar]
/content/journals/10.1111/bre.70001
Loading
/content/journals/10.1111/bre.70001
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error