1887
Volume 36, Issue 5
  • E-ISSN: 1365-2117

Abstract

[

Breakage of an overlying seal transforms the semi‐closed system of the parent sand unit near the root of a large dyke into a major flow channel that carries overpressurised fluids and subsequently reduces the basin overpressure.

, Abstract

Large clastic dykes (the Harutori‐Taro and Harutori‐Jiro dykes) and smaller dykes are exposed in the underground Kushiro Coal Mine (KCM), Japan. This study examines these dykes as a case study to investigate the geological conditions and fluid flow history that lead to the development of large clastic dykes in basins. The composition of the dykes indicates the Beppo and/or Harutori formations as their parent unit. Crystallite size distribution (CSD) analysis reveals Ostwald ripening of the kaolinite in the kaolinitised feldspar from the dykes, suggesting stagnant conditions in the parent unit before the dyke was formed. In contrast, smectite CSDs and the high carbonate content of the dykes suggest that large volumes of fluid flowed through the dykes along the established hydraulic gradient, which was triggered by the breaking of the upper seal. The isotopic and chemical compositions of the calcite and aragonite in the dykes, with moderate siderite and rhodochrosite content, indicate the fluid was a warm (>30°C) mixture of freshwater and saltwater, which was transferred from deeper levels of the parent unit towards the crest of an anticline. Immediately after sand injection, the semi‐closed system of the parent unit near the root of the large dyke was transformed into a major flow channel for overpressurised fluids. Subsequently, a large volume of fluid flowed along the vertical conduit (or dyke) over a long period of time (>1 Myr), which removed fluid from a widespread area (i.e., several hundred square kilometres) of the basin. The results show that thin parent units, poor lateral continuity of the upper seal, and spatially heterogeneous overpressurisation do not preclude the formation of large dykes.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70002
2024-10-21
2024-11-14
Loading full text...

Full text loading...

References

  1. Andresen, K. J., & Clausen, O. R. (2014). An integrated subsurface analysis of clastic remobilization and injection: A case study from the Oligocene succession of the eastern North Sea. Basin Research, 26, 641–674. https://doi.org/10.1111/bre.12060
    [Google Scholar]
  2. Bertaut, E. F. (1950). Raies de Debye–Scherrer et repartition des dimensions des domaines de Bragg dans les poudres polycristallines. Acta Crystallographica, 3, 14–18. https://doi.org/10.1107/S0365110X50000045
    [Google Scholar]
  3. Bhattacharji, S., & Smith, C. H. (1964). Flowage differentiation. Science, 145, 150–153. https://doi.org/10.1126/science.145.3628.150
    [Google Scholar]
  4. Bjørlykke, K. (1993). Fluid flow in sedimentary basins. Sedimentary Geology, 86(1–2), 137–158. https://doi.org/10.1016/0037‐0738(93)90137‐T
    [Google Scholar]
  5. Bobos, I. (2023). Hydrothermal injection breccia with organic carbon and nitrogen in the fossil hydrothermal system of Harghita Bãi, East Carpathians, Romania: An example of magmatic and non‐magmatic element mobility in the upper continental crust. Geological Magazine, 160(2), 274–291. https://doi.org/10.1017/S0016756822000851
    [Google Scholar]
  6. Bobos, I., & Eberl, D. D. (2013). Thickness distributions and evolution of growth mechanisms of NH4‐illite from the fossil hydrothermal system of Harghita Bãi, eastern Carpathians, Romania. Clays and Clay Minerals, 61(4), 375–391. https://doi.org/10.1346/CCMN.2013.0610415
    [Google Scholar]
  7. Boehm, A., & Moore, J. C. (2002). Fluidized sandstone intrusions as an indicator of Paleostress orientation, Santa Cruz, California. Geofluids, 2(2), 147–161. https://doi.org/10.1046/j.1468‐8123.2002.00026.x
    [Google Scholar]
  8. Bohor, B. F., & Hughes, R. E. (1971). Scanning electron microscopy of clays and clay minerals. Clays and Clay Minerals, 19, 49–54. https://doi.org/10.1346/CCMN.1971.0190105
    [Google Scholar]
  9. Bouroullec, R., & Pyles, D. R. (2010). Sandstone extrusions and slope channel architecture and evolution: Mio‐Pliocene Monterey and Capistrano formations, Dana Point Harbor, Orange County, California, U.S.A. Journal of Sedimentary Research, 80, 376–392. https://doi.org/10.2110/jsr.2010.043
    [Google Scholar]
  10. Bove, D. J., Eberl, D. D., McCarty, D. K., & Meeker, G. P. (2002). Characterization and modeling of illite crystal particles and growth mechanisms in a zoned hydrothermal deposit, Lake City, Colorado. American Mineralogist, 87(11–12), 1546–1556. https://doi.org/10.2138/am‐2002‐11‐1204
    [Google Scholar]
  11. Bowen, G. J., & Wilkinson, B. (2002). Spatial distribution of δ18O in meteoric precipitation. Geology, 30(4), 315–318. https://doi.org/10.1130/0091‐7613(2002)030<0315:SDOOIM>2.0.CO;2
    [Google Scholar]
  12. Cartwright, J. (2010). Regionally extensive emplacement of sandstone intrusions: A brief review. Basin Research, 22, 502–516. https://doi.org/10.1111/j.1365‐2117.2009.00455.x
    [Google Scholar]
  13. Chapman, R. E. (1987). Fluid flow in sedimentary basins: A geologist's perspective. In J. C.Goff & B. P. J.Williams (Eds.), Fluid flow in sedimentary basins and aquifers (Vol. 34, pp. 3–18). Geological Society of London Special Publications. https://doi.org/10.1144/GSL.SP.1987.034.01.02
    [Google Scholar]
  14. Chung, F. H. (1974). Quantitative interpretation of X‐ray diffraction patterns of mixtures. I. Matrix‐flushing method for quantitative multicomponent analysis. Journal of Applied Crystallography, 7, 519–525. https://doi.org/10.1107/S0021889874010375
    [Google Scholar]
  15. Clausell, J. V., Bastida, J., Kojdecki, M. A., & Pardo, P. (2011). Crystal growth mechanism of kaolinites deduced from crystallite size distribution. In H.Fuess, P.Scardi, & U.Welzel (Eds.), European powder diffraction conference; August 2010, Darmstadt, Germany (pp. 93–98). Oldenbourg Wissenschaftsverlag. https://doi.org/10.1524/9783486991321‐019
    [Google Scholar]
  16. Cullity, B. D., & Stock, S. R. (2014). Elements of X‐ray diffraction (3rd ed., pp. 125–189). Pearson New International Edition. Pearson.
    [Google Scholar]
  17. Daëron, M., Drysdale, R. N., Peral, M., Huyghe, D., Blamart, D., Coplen, T. B., Lartaud, F., & Zanchetta, G. (2019). Most earth‐surface calcites precipitate out of isotopic equilibrium. Nature Communications, 10, 429. https://doi.org/10.1038/s41467‐019‐08336‐5
    [Google Scholar]
  18. Davies, R. J. (2003). Kilometer‐scale fluidization structures formed during early burial of a deep‐water slope channel on The Niger Delta. Geology, 31(11), 949–952. https://doi.org/10.1130/G19835.1
    [Google Scholar]
  19. Davies, R. J., Huuse, M., Hirst, P., Cartwright, J., & Yang, Y. (2006). Giant clastic intrusions primed by silica diagenesis. Geology, 34(11), 917–920. https://doi.org/10.1130/G22937A.1
    [Google Scholar]
  20. Diggs, T. N. (2007). An outcrop study of clastic injection structures in the Carboniferous Tesnus Formation, Marathon Basin, Trans‐Pecos Texas. In A.Hurst & J.Cartwright (Eds.), Sand injectites: Implications for hydrocarbon exploration and production (pp. 209–219). AAPG Memoir 87. American Association of Petroleum Geologists. https://doi.org/10.1306/1209864M873266
    [Google Scholar]
  21. Diller, J. S. (1889). Sandstone dikes. Bulletin of the Geological Society of America, 1, 411–442.
    [Google Scholar]
  22. Dixon, R. J., Schofield, K., Anderton, R., Reynolds, A. D., Alexander, R. W. S., Williams, M. C., & Davies, K. G. (1995). Sandstone diaprism and clastic intrusion in the Tertiary submarine fans of the Bruce‐Beryl Embayment, Quadrant 9, UKCS. In A. J.Hartley & D. J.Prosser (Eds.), Characterization of deep marine clastic systems (pp. 77–94). Geological Society Special Publication. https://doi.org/10.1144/GSL.SP.1995.094.01.07
    [Google Scholar]
  23. Dodd, T. J. H., McCarthy, D. J., & Clarke, S. M. (2020). Clastic injectites, internal structures and flow regime during injection: The Sea Lion Injectite System, North Falkland Basin. Sedimentology, 67(2), 1014–1044. https://doi.org/10.1111/sed.12672
    [Google Scholar]
  24. Drever, J. I. (1997). The geochemistry of natural waters (3rd ed., pp. 223–225). Prentice Hall.
    [Google Scholar]
  25. Drits, V. A., Eberl, D. D., & Środoń, J. (1998). XRD measurement of mean thickness, thickness distribution and strain for illite and illite‐smectite crystallites by the Bertaut‐Warren‐Averbach technique. Clays and Clay Minerals, 46(1), 38–50. https://doi.org/10.1346/CCMN.1998.0460105
    [Google Scholar]
  26. Dugan, B., & Flemings, P. B. (2000). Overpressure and fluid flow in the New Jersey continental slope: Implications for slope failure and cold seeps. Science, 289(5477), 288–291. https://doi.org/10.1126/science.289.5477.288
    [Google Scholar]
  27. Duranti, D. (2007). Large‐scale sand injection in the Paleogene of the North Sea: Modeling of energy and flow velocities. In A.Hurst & J.Cartwright (Eds.), Sand injectites: implications for hydrocarbon exploration and production (pp. 129–139). AAPG Memoir 87. American Association of Petroleum Geologists. https://doi.org/10.1306/1209857M873261
    [Google Scholar]
  28. Eberl, D. D., Drits, V. A., & Środoń, J. (1998). Deducing growth mechanisms for minerals from the shapes of crystal size distributions. American Journal of Science, 298(6), 499–533. https://doi.org/10.2475/ajs.298.6.499
    [Google Scholar]
  29. Eberl, D. D., Drits, V. A., Srodon, J., & Nüesch, R. (1996). MUDMASTER: A program for calculating crystallite size distributions and strain from the shapes of X‐ray diffraction peaks. U.S. Gelogical Survery Open‐File Report 96‐171.
  30. Eberl, D. D., Nüesch, R., Sucha, V., & Tsipursky, S. (1998). Measurement of fundamental illite particle thicknesses by X‐ray diffraction using PVP‐10 intercalation. Clays and Clay Minerals, 46, 89–97. https://doi.org/10.1346/CCMN.1998.0460110
    [Google Scholar]
  31. Faure, G., & Mensing, T. M. (2005). ISOTOPES principles and applications (3rd ed., pp. 75–112). John Wiley & Sons.
    [Google Scholar]
  32. Flemings, P., Stump, B., Finkbeiner, T., & Zoback, M. (2002). Flow focusing in overpressured sandstones: Theory, observations, and applications. American Journal of Science, 302(10), 827–855. https://doi.org/10.2475/ajs.302.10.827
    [Google Scholar]
  33. Fricke, H. C., & O'Neil, J. R. (1999). The correlation between 18O/16O ratios of meteoric water and surface temperature: Its use in investigating terrestrial climate change over geologic time. Earth and Planetary Science Letters, 170(3), 181–196. https://doi.org/10.1016/S0012‐821X(99)00105‐3
    [Google Scholar]
  34. Gabitov, R., Sadekov, A., Yapaskurt, V., Borrelli, C., Bychkov, A., Sabourin, K., & Perez‐Huerta, A. (2019). Elemental uptake by calcite slowly grown from seawater solution: An in‐situ study via depth profiling. Frontiers in Earth Science, 7, 51. https://doi.org/10.3389/feart.2019.00051
    [Google Scholar]
  35. Gaetani, G. A., & Cohen, A. L. (2006). Element partitioning during precipitation of aragonite from seawater: A framework for understanding paleoproxies. Geochimica et Cosmochimica Acta, 70(18), 4617–4634. https://doi.org/10.1016/j.gca.2006.07.008
    [Google Scholar]
  36. Garrels, R. M. (1984). Montmorillonite/illite stability diagrams. Clays and Clay Minerals, 32(3), 161–166. https://doi.org/10.1346/CCMN.1984.0320301
    [Google Scholar]
  37. Goździk, J., & van Loon, A. J. (2007). The origin of a giant downward directed clastic dyke in a kame (Bełchatów mine, central Poland). Sedimentary Geology, 193(1–4), 71–79. https://doi.org/10.1016/j.sedgeo.2006.02.008
    [Google Scholar]
  38. Grauls, D. J., & Baleix, J. M. (1994). Role of overpressures and in situ stresses in fault‐controlled hydrocarbon migration: A case study. Marine and Petroleum Geology, 11(6), 734–742. https://doi.org/10.1016/0264‐8172(94)90026‐4
    [Google Scholar]
  39. Gudmundsson, A. (2011). Stress concentration. In Rock fractures in geological processes (pp. 153–189). Cambridge University Press.
    [Google Scholar]
  40. Hałuszczak, A. (1994). Clastic dikes in uppermost tertiary sediments of the Kleszczów Garben and their significance to reconstruction of Quaternary diastrophism. Geological Quarterly, 38(1), 117–132.
    [Google Scholar]
  41. Hampton, R. E., Mammoli, A. A., Graham, A. L., Tetlow, N., & Altobelli, S. A. (1997). Migration of particles undergoing pressure‐driven flow in a circular conduit. Journal of Rheology, 41(3), 621–640. https://doi.org/10.1122/1.550863
    [Google Scholar]
  42. Harisma, H., Naruse, H., Asanuma, H., & Hirata, T. (2022). The origin of the Paleo‐Kuril Arc, NE Japan: Sediment provenance change and its implications for plate configuration in the NW Pacific region since the Late Cretaceous. Tectonics, 41, e2022TC007299. https://doi.org/10.1029/2022TC007299
    [Google Scholar]
  43. Hayashi, T. (1966). Clastic dikes in Japan. Japanese Journal of Geology and Geography, 37(1), 1–20.
    [Google Scholar]
  44. Hoyanagi, K., & Miyasaka, S. (2010). Kushiro coalfield and Kitami district. In The Geological Society of Japan (Ed.), Geology of Hokkaido (pp. 109–112). Asakura Publishing.
    [Google Scholar]
  45. Hubbard, S. M., Romans, B. W., & Graham, S. A. (2007). An outcrop example of large‐scale conglomeratic intrusions sourced from deep‐water channel deposits, Cerro Toro Formation, Magallanes Basin, southern Chile. In A.Hurst & J.Cartwright (Eds.), Sand injectites: Implications for hydrocarbon exploration and production (pp. 199–207). AAPG Memoir 87. American Association of Petroleum Geologists. https://doi.org/10.1306/1209863M873265
    [Google Scholar]
  46. Hurst, A., & Cartwright, J. (2007). Relevance of sand injectites to hydrocarbon exploration and production. In A.Hurst & J.Cartwright (Eds.), Sand injectites: Implications for hydrocarbon exploration and production (pp. 1–9). AAPG Memoir 87. American Association of Petroleum Geologists.
    [Google Scholar]
  47. Hurst, A., Cartwright, J., & Duranti, D. (2003). Fluidization structures produced by upward injection of sand through a sealing lithology. In P.Van Rensbergen, R. R.Hillis, A. J.Maltman, & C. K.Morley (Eds.), Subsurface sediment mobilization (pp. 123, 216–138). Geological Society, London, Special Publications. https://doi.org/10.1144/GSL.SP.2003.216.01.09
    [Google Scholar]
  48. Hurst, A., Cartwright, J., Huuse, M., Jonk, R., Schwab, A., Duranti, D., & Cronin, B. (2003). Significance of large‐scale sand injectites as long‐term fluid conduits: Evidence from seismic data. Geofluids, 3(4), 263–274. https://doi.org/10.1046/j.1468‐8123.2003.00066.x
    [Google Scholar]
  49. Hurst, A., Grippa, A., Silcock, S. Y., Huuse, M., Bowman, M., & Cobain, S. L. (2021). Introduction: Subsurface sand remobilization and injection. In S.Silcock, M.Huuse, M.Bowman, A.Hurst, & S.Cobain (Eds.), Subsurface sand remobilization and injection (pp. 1, 493–10). Geological Society, London, Special Publications. https://doi.org/10.1144/SP493‐2020‐26
    [Google Scholar]
  50. Hurst, A., Huuse, M., Cartwright, J., & Duranti, D. (2007). Chapter 120: Sand injectites in deep‐water clastic reservoirs: Are they there and do they matter? In T. H.Nilsen, R. D.Shew, G. S.Steffens, & J. R. J.Studlick (Eds.), Atlas of deep‐water outcrops (Vol. 56, pp. 1–24). AAPG Studies in Geology. https://doi.org/10.1306/12401014St561546
    [Google Scholar]
  51. Hurst, A., Luzinski, W., Zvirtes, G., Scott, T., Vigorito, M., Morton, A., & Wu, F. (2021). Some petrographic and mineralogical diagnostics of sandstone intrusions. In S.Silcock, M.Huuse, M.Bowman, A.Hurst, & S.Cobain (Eds.), Subsurface sand remobilization and injection (pp. 287, 493–302). Geological Society, London, Special Publications. https://doi.org/10.1144/sp493‐2018‐063
    [Google Scholar]
  52. Hurst, A., Scott, A., & Vigorito, M. (2011). Physical characteristics of sand injectites. Earth‐Science Reviews, 106(3–4), 215–246. https://doi.org/10.1016/j.earscirev.2011.02.004
    [Google Scholar]
  53. Huuse, M., Jackson, C. A.‐L., Van Rensbergen, P., Davies, R. J., Flemings, P. B., & Dixon, R. J. (2010). Subsurface sediment remobilization and fluid flow in sedimentary basins: An overview. Basin Research, 22, 342–360. https://doi.org/10.1111/j.1365‐2117.2010.00488.x
    [Google Scholar]
  54. Hyakkoku, H. (1966). Studies on the sedimentation of the Harutori Formation in the eastern half of the Kushiro Coal Field. Mining Geology, 16(78), 172–182.
    [Google Scholar]
  55. Iijima, A. (1996). Evolution of the Paleogene sedimentary basins in Hokkaido. Journal of Geography, 105(2), 178–197. https://doi.org/10.5026/jgeography.105.2_178
    [Google Scholar]
  56. Ikawa, R., Machida, I., Koshigai, M., Nishizaki, S., & Marui, A. (2014). Coastal aquifer system in late Pleistocene to Holocene deposits at Horonobe in Hokkaido, Japan. Hydrogeology Journal, 22, 987–1002. https://doi.org/10.1007/s10040‐014‐1106‐4
    [Google Scholar]
  57. Inoue, A., Minato, H., & Utada, M. (1978). Mineralogical properties and occurrence of illite/montmorillonite mixed layer minerals formed from Miocene volcanic glass in Waga‐Omono district. Clay Science, 5(3), 123–136. https://doi.org/10.11362/jcssjclayscience1960.5.123
    [Google Scholar]
  58. Ishii, M., Kito, S., Tajika, J., & Miyasaka, S. (2016). Hokkaido shizen Tanken Jiosaito Hyakunana no Tabi (pp. 266–269). Hokkaido University Press.
    [Google Scholar]
  59. Jolly, R. J. H., & Lonergan, L. (2002). Mechanisms and controls on the formation of sand intrusions. Journal of the Geological Society, 159, 605–617. https://doi.org/10.1144/0016‐764902‐025
    [Google Scholar]
  60. Jomori, Y. (2014). Particle‐size dependence of 87Sr/86Sr in stream sediments and its application to geochemical mapping. Doctoral Dissertation, Nagoya University.
  61. Jonk, R. (2010). Sand‐rich injectites in the context of short‐lived and long‐lived fluid flow. Basin Research, 22, 603–621. https://doi.org/10.1111/j.1365‐2117.2010.00471.x
    [Google Scholar]
  62. Jonk, R., Duranti, D., Parnell, J., Hurst, A., & Fallick, A. E. (2003). The structural and diagenetic evolution of injected sandstones: Examples from the Kimmeridgian of NE Scotland. Journal of the Geological Society, 160(6), 881–894. https://doi.org/10.1144/0016‐764902‐091
    [Google Scholar]
  63. Jonk, R., Parnell, J., & Hurst, A. (2005). Aqueous and petroleum fluid flow associated with sand injectites. Basin Research, 17, 241–257. https://doi.org/10.1111/j.1365‐2117.2005.00262.x
    [Google Scholar]
  64. Katagiri, T., Naruse, H., Ishikawa, N., & Hirata, T. (2020). Collisional bending of the western Paleo‐Kuril Arc deduced from paleomagnetic analysis and U–Pb age determination. Island Arc, 29(1), e12329. https://doi.org/10.1111/iar.12329
    [Google Scholar]
  65. Katz, A. (1973). The interaction of magnesium with calcite during crystal growth at 25–90°C and one atmosphere. Geochimica et Cosmochimica Acta, 37(6), 1563–1586. https://doi.org/10.1016/0016‐7037(73)90091‐4
    [Google Scholar]
  66. Kawai, M. (1956). Explanatory text of the geological map of Japan, Kombumori (pp. 1–59). Geological Survey of Japan.
    [Google Scholar]
  67. Kawakami, G., & Kawamura, M. (2002). Sediment flow and deformation (SFD) layers: Evidence for intrastratal flow in laminated muddy sediments of the Triassic Osawa Formation, Northeast Japan. Journal of Sedimentary Research, 72(1), 171–181. https://doi.org/10.1306/041601720171
    [Google Scholar]
  68. Kim, S.‐T., & O'Neil, J. R. (1997). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61(16), 3461–3475. https://doi.org/10.1016/S0016‐7037(97)00169‐5
    [Google Scholar]
  69. Kiminami, K. (1983). Sedimentary history of the Late Cretaceous‐Paleocene Nemuro Group, Hokkaido, Japan: A forearc basin of the Paleo‐Kuril arc‐trench system. The Journal of the Geological Society of Japan, 89(11), 607–624. https://doi.org/10.5575/geosoc.89.607
    [Google Scholar]
  70. Kimura, G., Kitamura, Y., Yamaguchi, A., Kameda, J., Hashimoto, Y., & Hamahashi, M. (2019). Origin of the early Cenozoic belt boundary thrust and Izanagi–Pacific ridge subduction in the western Pacific margin. Island Arc, 28(5), e12320. https://doi.org/10.1111/iar.12320
    [Google Scholar]
  71. Kitano, Y., Kanamori, N., & Oomori, T. (1971). Measurements of distribution coefficients of strontium and barium between carbonate precipitate and solution abnormally high values of distribution coefficients measured at early stages of carbonate formation. Geochemical Journal, 4(4), 183–206. https://doi.org/10.2343/geochemj.4.183
    [Google Scholar]
  72. Kyser, K., & Hiatt, E. E. (2003). Fluids in sedimentary basins: An introduction. Journal of Geochemical Exploration, 80(2–3), 139–149. https://doi.org/10.1016/S0375‐6742(03)00188‐2
    [Google Scholar]
  73. Kyser, T. K. (2007). Fluids, basin analysis, and mineral deposits. Geofluids, 7(2), 238–257. https://doi.org/10.1111/j.1468‐8123.2007.00178.x
    [Google Scholar]
  74. Lammers, L. N., & Mitnick, E. H. (2019). Magnesian calcite solid solution thermodynamics inferred from authigenic deep‐sea carbonate. Geochimica et Cosmochimica Acta, 248(1), 343–355. https://doi.org/10.1016/j.gca.2019.01.006
    [Google Scholar]
  75. Le Heron, D. P., & Etienne, J. L. (2005). A complex subglacial clastic dyke swarm, Sólheimajökull, southern Iceland. Sedimentary Geology, 181(1–2), 25–37. https://doi.org/10.1016/j.sedgeo.2005.06.012
    [Google Scholar]
  76. Lee, S.‐G., Lee, D.‐H., Kim, Y., Chae, B.‐G., Kim, W.‐Y., & Woo, N.‐C. (2003). Rare earth elements as indicators of groundwater environment changes in a fractured rock system: Evidence from fracture‐filling calcite. Applied Geochemistry, 18(1), 135–143. https://doi.org/10.1016/S0883‐2927(02)00071‐9
    [Google Scholar]
  77. Lee, Y.‐J., & Morse, J. W. (1999). Calcite precipitation in synthetic veins: Implications for the time and fluid volume necessary for vein filling. Chemical Geology, 156(1–4), 151–170. https://doi.org/10.1016/S0009‐2541(98)00183‐1
    [Google Scholar]
  78. Lee, Y.‐J., Morse, J. W., & Wiltschko, D. V. (1996). An experimentally verified model for calcite precipitation in veins. Chemical Geology, 130(3–4), 203–215. https://doi.org/10.1016/0009‐2541(96)00008‐3
    [Google Scholar]
  79. Li, C., Luo, X., Zhang, L., Wang, B., Guan, X., Luo, H., & Lei, Y. (2019). Overpressure generation mechanisms and its distribution in the Paleocene Shahejie Formation in the Linnan Sag, Huimin depression, eastern China. Energies, 12, 3183. https://doi.org/10.3390/en12163183
    [Google Scholar]
  80. Li, C., Zhan, L., & Lu, H. (2022). Mechanisms for overpressure development in marine sediments. Journal of Marine Science and Engineering, 10, 490. https://doi.org/10.3390/jmse10040490
    [Google Scholar]
  81. Li, Y., Li, C., & Guo, J. (2020). Re‐evaluation and optimisation of dissolution methods for strontium isotope stratigraphy based on chemical leaching of carbonate certificated reference materials. Microchemical Journal, 154, 104607. https://doi.org/10.1016/j.microc.2020.104607
    [Google Scholar]
  82. Lonergan, L., Lee, N., Johnson, H. D., Cartwright, J. A., & Jolly, R. J. H. (2000). Remoblization and injection in deepwater depositional systems: Implications for reservoir architecture and prediction. In P.Weimer (Ed.), Deep‐water reservoirs of the world. SEPM Society for Sedimentary Geology. https://doi.org/10.5724/gcs.00.15.0515
    [Google Scholar]
  83. Mabuti, S. (1962). A study on sedimentation and tectogenic history of the Paleogene system of the Kushiro Coal Field. Contributions from the Institute of Geology and Paleontology, Tohoku University, 56, 1–42.
    [Google Scholar]
  84. Maeda, T. (2022). Douto no Chikei to Chisitsu (pp. 26–27). The Hokkaido Shimbun Press.
    [Google Scholar]
  85. Mahara, Y., Nakata, E., Ooyama, T., Miyakawa, K., Igarashi, T., Ichihara, Y., & Matsumoto, H. (2006). Proposal for the methods to characterize fossil seawater‐distribution of anions, cations and stable isotopes, and estimation on the groundwater residence time by measuring 36Cl at the Taiheiyo coal mine. Journal of Groundwater Hydrology, 48(1), 17–33. https://doi.org/10.5917/jagh1987.48.17
    [Google Scholar]
  86. Marfil, R., Delgado, A., Rossi, C., Iglesia, A. L., & Ramseyer, K. (1999). Origin and diagenetic evolution of kaolin in reservoir sandstones and associated shales of the Jurassic and cretaceous, Salam Field, western Desert (Egypt). In R. H.Worden & S.Morad (Eds.), Clay mineral cements in sandstones (pp. 319–342). Wiley. https://doi.org/10.1002/9781444304336.ch14
    [Google Scholar]
  87. Matsumoto, H., Uchida, K., Takahashi, T., Fujii, Y., Kodama, J., & Aizawa, J. (2014). The scond report of the Rock Seam Gas Committee. Proceedings of MMIJ Fall Meeting 2014, Kumamoto 1(2), A4‐2.
  88. Matsumoto, R., & Iijima, A. (1981). Origin and diagenetic evolution of Ca–Mg–Fe carbonates in some coalfields of Japan. Sedimentology, 28, 239–259. https://doi.org/10.1111/j.1365‐3091.1981.tb01678.x
    [Google Scholar]
  89. Mavromatis, V., Goetschl, K. E., Grengg, C., Konrad, F., Purgstaller, B., & Dietzel, M. (2018). Barium partitioning in calcite and aragonite as a function of growth rate. Geochimica et Cosmochimica Acta, 237(15), 65–78. https://doi.org/10.1016/j.gca.2018.06.018
    [Google Scholar]
  90. McIntire, W. L. (1963). Trace element partition coefficients—A review of theory and applications to geology. Geochimica et Cosmochimica Acta, 27(12), 1209–1264. https://doi.org/10.1016/0016‐7037(63)90049‐8
    [Google Scholar]
  91. Minisini, D., & Schwartz, H. (2007). An early Paleocene cold seep system in the Panoche and Tumey Hills, Central California (United States). In A.Hurst & J.Cartwright (Eds.), Sand injectites: Implications for hydrocarbon exploration and production (pp. 185–197). AAPG Memoir 87. American Association of Petroleum Geologists. https://doi.org/10.1306/1209862M873264
    [Google Scholar]
  92. Moore, C. H. (1989). Carbonate diagenesis and porosity (pp. 61–68). Elsevier.
    [Google Scholar]
  93. Moore, D. M., & Reynolds, R. C., Jr. (1997). X‐ray diffraction and the identification and analysis of clay minerals (2nd ed., pp. 211–213). Oxford University Press.
    [Google Scholar]
  94. Morse, J. W., & Mackenzie, F. T. (1993). Geochemical constraints on CaCO3 transport in subsurface sedimentary environments. Chemical Geology, 105(1–3), 181–196. https://doi.org/10.1016/0009‐2541(93)90125‐3
    [Google Scholar]
  95. Muehlenbachs, K. (1998). The oxygen isotopic composition of the oceans, sediments and the seafloor. Chemical Geology, 145(3–4), 263–273. https://doi.org/10.1016/S0009‐2541(97)00147‐2
    [Google Scholar]
  96. Murakami, T., Tamamura, S., Ueno, A., Tamazawa, S., Kiyama, T., Inomata, H., Igarashi, T., Kaneko, K., & Marui, A. (2021). Geochemical and microbiological characterization of iodine‐rich hot springs in Hokkaido, Japan. Journal of Hot Spring Sciences, 71(2), 66–84.
    [Google Scholar]
  97. Murchison, R. I. (1828). XXIII—Supplementary remarks on the strata of the Oolitic series, and the rocks associated with them, in the counties of Sutherland and Ross, and in the Hebrides. Transactions of the Geological Society of London, S2‐2(3), 353–368. https://doi.org/10.1144/transgslb.2.3.353
    [Google Scholar]
  98. Mystkowski, K., Środoń, J., & Elsass, F. (2000). Mean thickness and thickness distribution of smectite crystallites. Clay Minerals, 35(3), 545–557.
    [Google Scholar]
  99. Nagabuchi, M. (1952). Kushirochikuniokeru saganmyaku. Tanko Gijyutsu, 7(12), 13–15.
    [Google Scholar]
  100. Nagahama, H. (1962a). Quadrangle series 1:50,000, Kushiro (02 Kushiro–47). Hokkaido Development Agency.
    [Google Scholar]
  101. Nagahama, H. (1962b). Explanatory text of the geological map of Japan, KUSHIRO (pp. 1–53). Hokkaido Development Agency.
    [Google Scholar]
  102. Nanayama, F. (1995). Petrological informatios of the upper mantle peridotites from detrital chromian spinels: A case study of the Paleogene Urahoro Group, eastern Hokkaido, northeastern Japan. Education of Earth Science, 48(4), 157–169.
    [Google Scholar]
  103. Naruse, H. (2003). Cretaceous to Paleocene depositional history of North‐Pacific subduction zone: Reconstruction from the Nemuro Group, eastern Hokkaido, northern Japan. Cretaceous Research, 24, 55–71. https://doi.org/10.1016/S0195‐6671(03)00024‐7
    [Google Scholar]
  104. Oomori, T., Kaneshima, H., Maezato, Y., & Kitano, Y. (1987). Distribution coefficient of Mg2+ ions between calcite and solution at 10–50°C. Marine Chemistry, 20(4), 327–336. https://doi.org/10.1016/0304‐4203(87)90066‐1
    [Google Scholar]
  105. Osborne, M. J., & Swarbrick, R. E. (1997). Mechanisms for generating overpressure in sedimentary basins: A reevaluation. AAPG Bulletin, 81(6), 1023–1041. https://doi.org/10.1306/522B49C9‐1727‐11D7‐8645000102C1865D
    [Google Scholar]
  106. Parnell, J., & Kelly, J. (2003). Remobilization of sand from consolidated sandstones: Evidence from mixed bitumen‐sand intrusions. In P.Van Rensbergen, R. R.Hillis, A. J.Maltman, & C. K.Morley (Eds.), Subsurface sediment mobilization (pp. 503, 216–513). Geological Society, London, Special Publications. https://doi.org/10.1144/GSL.SP.2003.216.01.33
    [Google Scholar]
  107. Pešek, J., & Sýkorová, I. (2006). A review of the timing of coalification in the light of coal seam erosion, clastic dykes and coal clasts. International Journal of Coal Geology, 66(1–2), 13–34. https://doi.org/10.1016/j.coal.2005.05.010
    [Google Scholar]
  108. Post, V. E. A., Groen, J., Kooi, H., Person, M., Ge, S., & Edmunds, W. M. (2013). Offshore fresh groundwater reserves as a global phenomenon. Nature, 504, 71–78. https://doi.org/10.1038/nature12858
    [Google Scholar]
  109. Roche, D. M., Donnadieu, Y., Pucéat, E., & Paillard, D. (2006). Effect of changes in δ18O content of the surface ocean on estimated sea surface temperatures in past warm climate. Paleoceanography, 21, PA2023. https://doi.org/10.1029/2005PA001220
    [Google Scholar]
  110. Rozanski, K., Araguás‐Araguás, L., & Gonfiantini, R. (1993). Isotopic patterns in modern global precipitation. In P. K.Swart, K. C.Lohmann, J.Mckenzie, & S.Savin (Eds.), Climate change in continental isotopic records (Vol. 78, pp. 1–36). American Geophysical Union. https://doi.org/10.1029/GM078p0001
    [Google Scholar]
  111. Rumyantseva, A., Mann‐Kalil, J., Mitchell, S., Macaulay, D., & Triki, A. (2024). Detailed mapping of sand injectites integrating seismic attribute and machine learning techniques in the Norwegian North Sea. First Break, 42(5), 45–51. https://doi.org/10.3997/1365‐2397.fb2024038
    [Google Scholar]
  112. Ryb, U., & Eiler, J. M. (2018). Oxygen isotope composition of the Phanerozoic ocean and a possible solution to the dolomite problem. Proceedings of the National Academy of Sciences of the United States of America, 115(26), 6602–6607. https://doi.org/10.1073/pnas.1719681115
    [Google Scholar]
  113. Sasaki, M., & Nagata, M. (1963). On the study of the coal field gas in the Kushiro Coal Mine, Kushiro Coal Field. Bulletin of the Geological Survey of Japan, 14(4), 347–363.
    [Google Scholar]
  114. Sass, B. M., Rosenberg, P. E., & Kittrick, J. A. (1987). The stability of illite/smectite during diagenesis: An experimental study. Geochimica et Cosmochimica Acta, 51(8), 2103–2115. https://doi.org/10.1016/0016‐7037(87)90259‐6
    [Google Scholar]
  115. Sato, S. (1961). Kushirotanden tobu niokeru Harutorikyotanso to tanso no taiseki nitsuite. Hokkaido Kozan Chisitsu Gakkaishi, 17(2), 20–28.
    [Google Scholar]
  116. Sato, T., Watanabe, T., & Otsuka, R. (1992). Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays and Clay Minerals, 40(1), 103–113. https://doi.org/10.1346/CCMN.1992.0400111
    [Google Scholar]
  117. Sato, T., & Yamato, O. R. G. (2006). Omine and Odai cauldrons‐arcuate and semicircular faults, dike swarms and collapse structure in the central area of the Kii Mountains, Southwest Japan. Earth Science (Chikyu Kagaku), 60, 403–413. https://doi.org/10.15080/agcjchikyukagaku.60.5_403
    [Google Scholar]
  118. Shaltami, O. R., Artola, J., Cordoba, A., Arconada, O., Siasia, G. D., Fernandez, M. R., Jorgensen, L., Elkjaer, C., Fares, F. F., El Oshebi, F. M., Errishi, H., & Maceda, E. (2020). Paleoclimatology—a review. 3rd International Symposium on Paleoclimatology, Federal University of Goiás, Brazil, 11–27.
  119. Sharp, Z. (2007). Stable isotope geochemistry (pp. 15–39). Pearson Prentice Hall.
    [Google Scholar]
  120. Sibson, R. H. (1981). Fluid flow accompanying faulting: Field evidence and models. In D. W.Simpson & P. G.Richards (Eds.), Earthquake prediction, an international review (pp. 593–603). American Geophysical Union. https://doi.org/10.1029/ME004p0593
    [Google Scholar]
  121. Sitko, R., Zawisza, B., Krzykawski, T., & Malicka, E. (2009). Determination of chemical composition of siderite in concretions by wavelength‐dispersive X‐ray spectrometry following selective dissolution. Talanta, 77(3), 1105–1110. https://doi.org/10.1016/j.talanta.2008.08.019
    [Google Scholar]
  122. Šucha, V., Środoń, J., Clauer, N., Elsass, F., Eberl, D. D., Kraus, I., & Madejová, J. (2001). Weathering of smectite and illite‐smectite under temperate climatic conditions. Clay Minerals, 36(3), 403–419. https://doi.org/10.1180/000985501750539490
    [Google Scholar]
  123. Szarawarska, E., Huuse, M., Hurst, A., De Boer, W., Lu, L., Molyneux, S., & Rawlinson, P. (2010). Three‐dimensional seismic characterisation of large‐scale sandstone intrusions in the lower Palaeogene of the North Sea: Completely injected vs. in situ remobilised sandbodies. Basin Research, 22, 517–532. https://doi.org/10.1111/j.1365‐2117.2010.00469.x
    [Google Scholar]
  124. Tamamura, S., Murakami, T., Ueno, A., Tamazawa, S., Kiyama, T., Inomata, H., Matsumoto, H., Uchida, K., Suzuki, Y., Aizawa, J., & Kaneko, K. (2020). Formation of coalbed methane and water‐dissolved gas in Kushiro Coal Mine, Japan, based on isotopic compositions of gas, groundwater, and calcite. International Journal of Coal Geology, 229, 103577. https://doi.org/10.1016/j.coal.2020.103577
    [Google Scholar]
  125. Taylor, B. J. (1982). Sedimentary dykes, pipes and related structures in the Mesozoic sediments of south‐eastern Alexander Island. British Antarctic Survey Bulletin, 51, 1–42.
    [Google Scholar]
  126. Tesoriero, A. J., & Pankow, J. F. (1996). Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite. Geochimica et Cosmochimica Acta, 60(6), 1053–1063. https://doi.org/10.1016/0016‐7037(95)00449‐1
    [Google Scholar]
  127. Tsuchihara, T. I. I. H., Ishida, S., & Imaizumi, M. (2006). Recharge area of distributed springs in Kushiro Wetland estimated from hydrogen and oxygen stable isotope ratios and tritium concentration. Transactions of the Japanese Society of Irrigation, Drainage and Rural Engineering, 245(74–5), 755–765. https://doi.org/10.11408/jsidre1965.2006.755
    [Google Scholar]
  128. van Geldern, R., Hayashi, T., Böttcher, M. E., Mottl, M. J., Barth, J. A. C., & Stadler, S. (2013). Stable isotope geochemistry of pore waters and marine sediments from the New Jersey shelf: Methane formation and fluid origin. Geosphere, 9(1), 96–112. https://doi.org/10.1130/GES00859.1
    [Google Scholar]
  129. Veizer, J. (1983). Chemical diagenesis of carbonates: Theory and application of trace element technique. In M. A.Arthur, T. F.Anderson, I. R.Kaplan, J.Veizer, & L. S.Land (Eds.), Stable isotopes in sedimentary geology (Vol. 10, pp. 3–1–3–100). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/scn.83.01.0000
    [Google Scholar]
  130. Vigorito, M., & Hurst, A. (2010). Regional sand injectite architecture as a record of pore‐pressure evolution and sand redistribution in the shallow crust: Insights from the Panoche Giant injection complex, California. Journal of the Geological Society, 167(5), 889–904. https://doi.org/10.1144/0016‐76492010‐004
    [Google Scholar]
  131. Vigorito, M., Hurst, A., Scott, A. J. S., Stanzione, O., & Grippa, A. (2022). A giant sand injection complex: Processes and implications for basin evolution and subsurface fluid flow. American Journal of Science, 322(6), 729–794. https://doi.org/10.2475/06.2022.01
    [Google Scholar]
  132. Wada, Y., & Iwano, H. (2001). Pyroclastic (Tuffite) dikes at Kawakami in Nara Prefecture, central Kii Peninsula, SW Japan. Bulletin of the Volcanological Society of Japan, 46(3), 107–115. https://doi.org/10.18940/kazan.46.3_107
    [Google Scholar]
  133. Warren, B. E., & Averbach, B. L. (1950). The effect of cold‐work distortion on X‐ray patterns. Journal of Applied Physics, 21(595), 595–599. https://doi.org/10.1063/1.1699713
    [Google Scholar]
  134. Watanabe, Y., Matsumoto, R., & Lu, H. (2000). Trace element geochemistry of the Blake Ridge sediments at site 997. In C. K.Paull, R.Matsumoto, P. J.Wallace, & W. P.Dillon (Eds.), Proceedings of the ocean drilling program, 164 (pp. 151–163). scientific results.
    [Google Scholar]
  135. Wilson, M. D., & Pittman, E. D. (1977). Authigenic clays in sandstones; recognition and influence on reservoir properties and paleoenvironmental analysis. Journal of Sedimentary Research, 47(1), 3–31. https://doi.org/10.1306/212F70E5‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  136. Wilson, M. D., & Stanton, P. T. (1994). Diagenetic mechanisms of porosity and permeability reduction and enhancement. In M. D.Wilson (Ed.), Reservoir quality assessment and prediction in clastic rocks. SEPM Society for Sedimentary Geology. https://doi.org/10.2110/scn.94.30.0059
    [Google Scholar]
  137. Yardley, G. S., & Swarbrick, R. E. (2000). Lateral transfer: A source of additional overpressure?Marine and Petroleum Geology, 17(4), 523–537. https://doi.org/10.1016/S0264‐8172(00)00007‐6
    [Google Scholar]
  138. Yuan, G., Cao, Y., Gluyas, J., Li, X., Xi, K., Wang, Y., Jia, Z., Sun, P., & Oxtoby, N. H. (2015). Feldspar dissolution, authigenic clays, and quartz cements in open and closed sandstone geochemical systems during diagenesis: Typical examples from two sags in Bohai Bay Basin, East China. AAPG Bulletin, 99(11), 2121–2154. https://doi.org/10.1306/07101514004
    [Google Scholar]
  139. Yuan, G., Cao, Y., Schulz, H.‐M., Hao, F., Gluyas, J., Liu, K., Yang, T., Wang, Y., Xi, K., & Li, F. (2019). A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs. Earth‐Science Reviews, 191, 114–140. https://doi.org/10.1016/j.earscirev.2019.02.004
    [Google Scholar]
  140. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693. https://doi.org/10.1126/science.1059412
    [Google Scholar]
  141. Zhong, S., & Mucci, A. (1989). Calcite and aragonite precipitation from seawater solutions of various salinities: Precipitation rates and overgrowth compositions. Chemical Geology, 78(3–4), 283–299. https://doi.org/10.1016/0009‐2541(89)90064‐8
    [Google Scholar]
  142. Zhou, X., Liu, D., Bu, H., Deng, L., Liu, H., Yuan, P., Du, P., & Song, H. (2018). XRD‐based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review. Solid Earth Sciences, 3(1), 16–29. https://doi.org/10.1016/j.sesci.2017.12.002
    [Google Scholar]
/content/journals/10.1111/bre.70002
Loading
/content/journals/10.1111/bre.70002
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error