1887
Volume 36, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

The submarine Miocene Central Canyon and Pleistocene channel systems in the Qiongdongnan Basin constitute valuable sedimentary records that provide insight into the depositional processes and sediment routing from the hinterland to the deep sea. However, the primary source of sediment for the Pleistocene channel systems and the variation in relative sediment contributions since the Miocene from potential source terranes remain unknown. We have integrated new and published detrital zircon U–Pb ages and rare earth elements (REEs) from Pleistocene channel sands and late Miocene Central Canyon sands in the Qiongdongnan Basin to analyse the sediment routing system of these channel systems since the Miocene. Qualitative analyses of REEs, comparisons of detrital zircon age spectra, and multidimensional scaling plots suggest that the Red River is a significant source of sediment supply. The quantitative analysis of sediment mixing models indicates that the Pleistocene channel sands were mainly sourced from the Red River (62.8%–85.7%), followed by Central Vietnam rivers (4.8%–27.1%), with a minor amount derived from rivers in Hainan Island, Northern Vietnam and Southern Vietnam. Sand sediments, mainly from the Red River system, were deposited in the Yinggehai Basin, then transported and deposited again in the Qiongdongnan Basin. The relatively stable and major sediment supply from the Red River since the Miocene may have been driven by the uplift of the Tibetan Plateau. This study quantifies the relative provenance contributions to submarine channel systems in the Qiongdongnan Basin since the Miocene. It provides crucial geological implications for tectonic responses to channel migrations and the prediction of gas hydrates in sandy reservoirs.

,

Schematic reconstruction of the vertical evolution of sedimentary provenance in large axial channel systems since the late Miocene, including the Miocene Central Canyon (a) and Pleistocene channel systems (b).

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70003
2024-11-15
2025-11-14
Loading full text...

Full text loading...

References

  1. Amidon, W. H., Burbank, D. W., & Gehrels, G. E. (2005a). Construction of detrital mineral populations: Insights from mixing of U‐Pb zircon ages in Himalayan rivers. Basin Research, 17, 463–485. https://doi.org/10.1111/j.1365‐2117.2005.00279.x
    [Google Scholar]
  2. Amidon, W. H., Burbank, D. W., & Gehrels, G. E. (2005b). U‐Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya. Earth and Planetary Science Letters, 235, 244–260. https://doi.org/10.1016/j.epsl.2005.03.019
    [Google Scholar]
  3. Andrew, C., Roques, D., Bristow, C., & Kinny, P. (2001). Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology, 29(3), 211–214. https://doi.org/10.1130/0091‐7613(2001)029<0211:UMAISA>2.0.CO;2
    [Google Scholar]
  4. Babonneau, N., Savoye, B., Cremer, M., & Klein, B. (2002). Morphology and architecture of the present canyon and channel system of the Zaire deep‐sea fan. Marine and Petroleum Geology, 19, 445–467. https://doi.org/10.1016/S0264‐8172(02)00009‐0
    [Google Scholar]
  5. Blum, M., & Pecha, M. (2014). Mid‐Cretaceous to Paleocene North American drainage reorganization from detrital zircons. Geology, 42(7), 607–610. https://doi.org/10.1130/G35513.1
    [Google Scholar]
  6. Burchfiel, B. C., & Wang, E. (2003). Northwest‐trending, middle Cenozoic, left‐lateral faults in southern Yunnan, China, and their tectonic significance. Journal of Structural Geology, 25(5), 781–792. https://doi.org/10.1016/S0191‐8141(02)00065‐2
    [Google Scholar]
  7. Cao, K., Wang, G. C., Leloup, P. H., Mahéo, G., Xu, Y., van Der Beek, P. A., Replumaz, A., & Zhang, K. (2019). Oligocene‐early Miocene topographic relief generation of southeastern Tibet triggered by thrusting. Tectonics, 38(1–2), 374–391. https://doi.org/10.1029/2017TC004832
    [Google Scholar]
  8. Cao, L., Jiang, T., Wang, Z., Zhang, Y., & Sun, H. (2015). Provenance of Upper Miocene sediments in the Yinggehai and Qiongdongnan basins, northwestern South China Sea: Evidence from REE, heavy minerals and zircon U‐Pb ages. Marine Geology, 361, 136–146. https://doi.org/10.1016/j.margeo.2015.01.007
    [Google Scholar]
  9. Cawood, P. A., Martin, E. L., Murphy, J. B., & Pisarevsky, S. A. (2021). Gondwana's interlinked peripheral orogens. Earth & Planetary Science Letters, 568, 1–9. https://doi.org/10.1016/j.epsl.2021.117057
    [Google Scholar]
  10. Chen, S., Steel, R., Wang, H., Zhao, R., & Olariu, C. (2020). Clinoform growth and sediment flux into Late Cenozoic Qiongdongnan Shelf Margin, South China Sea. Basin Research, 32, 302–319. https://doi.org/10.1111/bre.12400
    [Google Scholar]
  11. Chen, Y., Yan, M., Fang, X., Song, C., Zhang, W., Zan, J., Zhang, Z., Li, B., Yang, Y., & Zhang, D. (2017). Detrital zircon U‐Pb geochronological and sedimentological study of, the Simao Basin, Yunnan: Implications for the Early Cenozoic evolution of the Red River. Earth and Planetary Science Letters, 476(1), 22–33. https://doi.org/10.1016/j.epsl.2017.07.025
    [Google Scholar]
  12. Cheng, C., Jiang, T., Kuang, Z., Ren, J., Liang, J., Lai, H., & Xiong, P. (2021). Seismic characteristics and distributions of Quaternary mass transport deposits in the Qiongdongnan Basin, northern South China Sea. Marine and Petroleum Geology, 129(1), 1–21. https://doi.org/10.1016/j.marpetgeo.2021.105118
    [Google Scholar]
  13. Clark, M. K., House, M. A., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., & Tang, W. (2005). Late Cenozoic uplift of Southeastern Tibet. Geology, 33(6), 525–528. https://doi.org/10.1130/G21265.1
    [Google Scholar]
  14. Clark, M. K., Schoenbohm, L. M., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., Tang, W., Wang, E., & Chen, L. (2004). Surface uplift, tectonics, and erosion of eastern Tibet from large scale drainage patterns. Tectonics, 23, 1–20. https://doi.org/10.1029/2002TC001402
    [Google Scholar]
  15. Clift, P. D., & Sun, Z. (2006). The sedimentary and tectonic evolution of the Yinggehai‐Song Hong Basin and the southern Hainan Margin, south China sea: implications for Tibetan uplift and monsoon intensification. Journal of Geophysical Research, 111, 1–28. https://doi.org/10.1029/2005IB004048
    [Google Scholar]
  16. Covault, J. A., Fildani, A., Romans, B. W., & McHargue, T. (2011). The natural range of submarine canyon‐and‐channel longitudinal profifiles. Geosphere, 7, 313–332. https://doi.org/10.1130/GES00610.1
    [Google Scholar]
  17. Covault, J. A., & Graham, S. A. (2010). Submarine fans at all sea‐level stands: Tectono‐morphologic and climatic controls on terrigenous sediment delivery to the deep sea. Geology, 38(10), 939–942. https://doi.org/10.1130/G31081.1
    [Google Scholar]
  18. Covault, J. A., Kostic, S., Paull, C. K., Ryan, H. F., & Fildani, A. (2014). Submarine channel initiation, filling and maintenance from sea‐floor geomorphology and morphodynamic modelling of cyclic steps. Sedimentology, 61, 1031–1054. https://doi.org/10.1111/sed.12084
    [Google Scholar]
  19. Critelli, S. (2018). Provenance of Mesozoic to Cenozoic Circum‐Mediterranean sandstones in relation to tectonic setting. Earth‐Science Reviews, 185, 624–648. https://doi.org/10.1016/j.earscirev.2018.07.001
    [Google Scholar]
  20. Cui, Y., Shao, L., Qiao, P., Pei, J., Zhang, D., & Tran, H. (2019). Upper Miocene–Pliocene provenance evolution of the Central Canyon in northwestern South China Sea. Marine Geophysical Researches, 40, 223–235. https://doi.org/10.1007/s11001‐018‐9359‐2
    [Google Scholar]
  21. Curray, J. R., Emmel, F. J., & Moore, D. G. (2002). The Bengal Fan: Morphology, geometry, stratigraphy, history and processes. Marine and Petroleum Geology, 19(10), 1191–1223. https://doi.org/10.1016/S0264‐8172(03)00035‐7
    [Google Scholar]
  22. Fedo, C. M., Sircombe, K. N., & Rainbird, R. H. (2003). Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy and Geochemistry, 53, 277–303. https://doi.org/10.2113/0530277
    [Google Scholar]
  23. Fyhn, M. B. W., Thomsen, T. B., Keulen, N., Knudsen, C., Rizzi, M., Bojesen‐Koefoed, J., Olivarius, M., Tri, T. V., Phach, P. V., Minh, N. Q., & Abatzis, I. (2018). Detrital zircon ages and heavy mineral composition along the Gulf of Tonkin—implication for sand provenance in the Yinggehai‐Song Hong and Qiongdongnan basins. Marine and Petroleum Geology, 101, 162–179. https://doi.org/10.1016/j.marpetgeo.2018.11.051
    [Google Scholar]
  24. Gehrels, G. E., DeCelles, P. G., Ojha, T. P., & Upreti, B. N. (2006). Geologic and U–Pb geochronologic evidence for early Paleozoic tectonism in the Dadeldhura thrust sheet, far‐west Nepal Himalaya. Journal of Asia Earth Sciences, 28(4), 385–408. https://doi.org/10.1016/j.jseaes.2005.09.012
    [Google Scholar]
  25. Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation‐multicollector‐inductively coupled plasma‐mass spectrometry. Geochemistry, Geophysics, Geosystems, 9(3), 1–13. https://doi.org/10.1029/2007GC001805
    [Google Scholar]
  26. Goldfarb, R. J., Mao, J. W., Qiu, K. F., & Goryachev, N. (2021). The great Yanshanian metallogenic event of eastern Asia: Consequences from 100 million years of plate margin geodynamics. Gondwana Research, 3, 1–28. https://doi.org/10.1016/j.gr.2021.02.020
    [Google Scholar]
  27. Gong, C., Qi, K., Ma, Y., Li, D., Feng, N., & Xu, H. (2019). Tight coupling between the cyclicity of deep‐water systems and rising‐then‐flat shelf‐edge pairs along the submarine segment of the Qiongdongnan sediment‐routing system. Journal of Sedimentary Research, 89(10), 956–975. https://doi.org/10.2110/jsr.2019.47
    [Google Scholar]
  28. Gong, C., Wang, Y., Steel, R. J., Olariu, C., Xu, Q., Liu, X., & Zhao, Q. (2015). Growth styles of shelf‐margin Clinoforms: Prediction of sand‐ and sediment‐budget partitioning into and across the shelf. Journal of Sedimentary Research, 85(3), 209–229. https://doi.org/10.2110/jsr.2015.10
    [Google Scholar]
  29. Gong, C., Wang, Y., Zhu, W., Li, W., Xu, Q., & Zhang, J. (2011). The central submarine canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes. Marine and Petroleum Geology, 28, 1690–1702. https://doi.org/10.1016/j.marpetgeo.2011.06.005
    [Google Scholar]
  30. Gong, C., Liu, L., Shao, D., Guo, R. T., Zhu, Y., & Qi, Q. (2022). Seesaw Styles of Step Changes in Depositional Patterns of Bengal‐Nicobar Fan Since the Late Miocene and Their Source‐to‐Sink Genetic Mechanisms. Earth Science Frontiers, 29(4), 25–41. https://doi.org/10.13745/j.esf.sf.2022.1.1
    [Google Scholar]
  31. Gradstein, F. M., Ogg, J. G., & Hilgen, F. J. (2012). The Geologic Time Scale. Cambridge University Press.
    [Google Scholar]
  32. He, J., Zhang, W., Yan, W., Lu, Z., Zhang, J., & Gong, X. (2014). Episodic tectonic evolution, basin types and hydrocarbon accumulation in Chinese marginal basins. Marine Geology and Quaternary Geology, 34(2), 121–134. https://doi.org/10.3724/SP.J.1140.2014.02121
    [Google Scholar]
  33. He, X., Zhang, Y., Zhang, D., Chen, Y., & Huang, C. (2017). Sedimentary evolution and exploration prospects of Axial Channel in Ying–Qiong Basin. Journal of Southwest Petroleum University (Science & Technology Edition)., 39(3), 66–76. https://doi.org/10.11885/j.issn.1674‐5086.2015.12.31.01
    [Google Scholar]
  34. Hoa, T. T., Anh, T. T., Phuong, N. T., Dung, P. T., Anh, T. V., Izokh, A. E., Borisenko, A. S., Lan, C. Y., Chung, S. L., & Lo, C. H. (2008). Permo‐Triassic intermediate‐felsic magmatism of the Truong son belt, eastern margin of Indochina. Comptes Rendus Geoscience, 340, 112–126. https://doi.org/10.1016/j.crte.2007.12.002
    [Google Scholar]
  35. Hoang, V. L., Wu, F. Y., Clift, P. D., Wysocka, A., & Swierczewska, A. (2009). Evaluating the evolution of the Red River system based on situ U‐Pb dating and Hf isotope analysis of zircons. Geochemistry, Geophysics, Geosystems, 10(11), 1–20. https://doi.org/10.1029/2009GC002819
    [Google Scholar]
  36. Hu, B., Wang, L., Yan, W., Liu, S., Cai, D., Zhang, G., Zhong, K., Pei, J., & Sun, B. (2013). The tectonic evolution of the Qiongdongnan Basin in the northern margin of the South China Sea. Journal of Asian Earth Sciences, 77, 163–182. https://doi.org/10.1016/j.jseaes.2013.08.022
    [Google Scholar]
  37. Hu, X., Garzanti, E., Wang, J., Huang, W., An, W., & Webb, A. (2016). The timing of India‐Asia collision onset—facts, theories, controversies. Earth‐Science Reviews, 160, 264–299. https://doi.org/10.1016/j.earscirev.2016.07.014
    [Google Scholar]
  38. Huang, B., Tian, H., Li, X., Wang, Z., & Xiao, X. (2016). Geochemistry, origin and accumulation of natural gases in the deepwater area of the Qiongdongnan Basin, South China Sea. Marine and Petroleum Geology, 72, 254–267. https://doi.org/10.1016/j.marpetgeo.2016.02.007
    [Google Scholar]
  39. Jia, J., Zheng, H., Huang, X., Wu, F., Yang, S., Wang, K., & He, M. (2010). Detrital zircon U‐Pb ages of late Cenozoic sediments from the Yangtze delta: Implication for the evolution of the Yangtze River. Chinese Science Bulletin, 55(15), 1520–1528. https://doi.org/10.1007/s11434‐010‐3091‐x
    [Google Scholar]
  40. Jiang, L., Sun, Z., Zhai, S., et al. (2018). The sedimentary environment and provenance analysis based on geochemical characteristics of rare‐earth elements in deepwater well core of the Qiongdongnan Basin. Marine Science, 42(4), 89–100. https://doi.org/10.11759/hykx20170321001
    [Google Scholar]
  41. Lawton, T. F. (2014). Small grains,big rivers, continental concepts. Geology, 42(7), 639–640. https://doi.org/10.1130/focus072014.1
    [Google Scholar]
  42. Lei, C., Alves, T. M., Ren, J., & Tong, C. (2020). Rift structure and sediment infill of hyperextended continental crust: Insights from 3D seismic and well data (Xisha trough, South China Sea). Journal of Geophysical Research: Solid Earth, 125(5), 1–26. https://doi.org/10.1029/2019JB018610
    [Google Scholar]
  43. Lei, C., Clift, P. D., Ren, J., Ogg, J., & Tong, C. (2019). A rapid shift in the sediment routing system of lower‐upper Oligocene strata in the Qiongdongnnan Basin (Xisha trough), northwest South China Sea. Marine and Petroleum Geology, 104, 249–258. https://doi.org/10.1016/j.marpetgeo.2019.03.012
    [Google Scholar]
  44. Leloup, P. H., Arnaud, N., Lacassin, R., Kienast, J. R., Harrison, T. M., Trong, T. P., Replumaz, A., & Tapponnier, P. (2001). New constraints on the structure, thermochronology, and timing of the Ailao Shan‐Red River shear zone, SE Asia. Journal of Geophysical Research—Solid Earth, 106(B4), 6683–6732. https://doi.org/10.1029/2000jb900322
    [Google Scholar]
  45. Lepvrier, C., Vượng, N. V., Maluski, H., Maluski, H., Thi, P. T., & Van Vu, T. (2008). Indosinian tectonics in Vietnam. Comptes Rendus Geoscience, 340, 94–111. https://doi.org/10.1016/j.crte.2007.10.005
    [Google Scholar]
  46. Li, C., Lv, C., Chen, G., Zhang, G., Ma, M., Shen, H., Zhao, Z., & Guo, S. (2017). Source and sink characteristics of the continental slope‐parallel central canyon in the Qiongdongnan Basin on the northern margin of the South China Sea. Journal of Asia Earth Sciences, 134, 1–12. https://doi.org/10.1016/j.jseaes.2016.10.014
    [Google Scholar]
  47. Li, D., Xu, Q., & Wang, Y. (2015). Provenance analysis of the Pliocene central canyon in Qiongdongnan Basin and its implications. Acta Sedimentologica Sincia., 33(4), 659–664. https://doi.org/10.14027/j.cnki.cjxb.2015.04.004
    [Google Scholar]
  48. Liang, J., Zhang, W., Lu, J., Wei, J., Kuang, Z., & He, Y. (2019). Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: Insights from site GMGS5‐W9‐2018. Marine Geology, 418, 1–10. https://doi.org/10.1016/j.margeo.2019.106042
    [Google Scholar]
  49. Lin, C., Liu, J., Cai, S., et al. (2001). Sedimentary composition and development background of large undercut valley and submarine gravity flow system in the Yinggehai‐Qiongdongnan Basin. Chinese Science Bulletin, 46(1), 69–72.
    [Google Scholar]
  50. Liu, L., Han, J., Pei, J., Stockli, D. F., You, L., Stockli, L. D., Zhang, J., Gong, C., & Zhu, D. (2023). Wide shelves as discriminators between hinterland tectonic and intra‐basin rifting signals. Earth and Planetary Science Letters, 620, 118347. https://doi.org/10.1016/j.epsl.2023.118347
    [Google Scholar]
  51. Liu, Y., Zong, K., Kelemen, P. B., & Gao, S. (2008). Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh‐pressure metamorphism of lower crustal cumulates. Chemical Geology, 247, 133–153. https://doi.org/10.1016/j.chemgeo.2007.10.016
    [Google Scholar]
  52. Liu, Y., Hu, Z., Gao, S., Günther, D., Xu, J., Gao, C., & Chen, H. (2008). In situ analysis of major and trace elements of anhydrous minerals by LA‐ICP‐MS without applying an internalstandard. Chemical Geology, 257, 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    [Google Scholar]
  53. Martin, A. J., DeCelles, P. G., Gehrels, G. E., Patchett, P. J., & Isachsen, C. (2005). Isotopic and structural constraints on the location of the Main central thrust in the Annapurna range, central Nepal Himalaya. GSA Bulletin, 117(7–8), 926–944. https://doi.org/10.1130/B25646.1
    [Google Scholar]
  54. Martini, E. (1971). Standard Tertiary and Quaternary calcareous nannoplankton zonation. In Proceedings of the 2nd Nannoplankton Conference (pp. 739–785). Roma.
    [Google Scholar]
  55. Mason, C. C., Romans, B. W., Stockli, D. F., Mapes, R. W., & Fildani, A. (2019). Detrital zircons reveal sea‐level and hydroclimate controls on Amazon River to deep‐sea fan sediment transfer. Geology, 47, 563–567. https://doi.org/10.1130/G45852.1
    [Google Scholar]
  56. Mayall, M., Jones, E., & Casey, M. (2006). Turbidite channel reservoirs‐key elements in facies prediction and effective development. Marine and Petroleum Geology, 23, 821–841. https://doi.org/10.1016/j.marpetgeo.2006.08.001
    [Google Scholar]
  57. McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(1), 169–200.
    [Google Scholar]
  58. Meng, M., Liang, J., Kuang, Z., Ren, J., He, Y., Deng, W., & Gong, Y. (2022). Distribution characteristics of Quaternary Channel systems and their controlling factors in the Qiongdongnan Basin, South China Sea. Frontiers in Earthquake Science, 10(1), 1–14. https://doi.org/10.3389/feart.2022.902517
    [Google Scholar]
  59. Meng, M., Liang, J., Zhang, W., Kuang, Z., Fang, Y., He, Y., Deng, W., & Huang, W. (2021). Quaternary deep‐water sedimentary characteristics and their relationship with the gas hydrate accumulations in the Qiongdongnan Basin, northwest South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 177(1), 1–14. https://doi.org/10.1016/j.dsr.2021.103628
    [Google Scholar]
  60. Milliman, J. D., & Syvitski, J. P. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. Journal of Geology, 100, 525–544. https://doi.org/10.1086/629606
    [Google Scholar]
  61. Reed, W. P. (1992). Certificate of analysis: Standard reference materials 610 and 611. National Institute of Standards and Technology.
    [Google Scholar]
  62. Ren, J., Cheng, C., Xiong, P., Kuang, Z., Liang, J., Lai, H., Chen, Z., Chen, Y., Li, T., & Jiang, T. (2022). Sand‐rich gas hydrate and shallow gas systems in the Qiongdongnan Basin, northern South China Sea. Journal of Petroleum Science and Engineering, 215, 1‐11. https://doi.org/10.1016/j.petrol.2022.110630
    [Google Scholar]
  63. Replumaz, A., José, M. S., Margirier, A., van Der Beek, P., Gautheron, C., Leloup, P. H., Ou, X., Kai, C., Wang, G. C., Zhang, Y. Z., & Valla, P. G. (2020). Tectonic control on rapid Late Miocene‐Quaternary incision of the Mekong River knickzone, southeast Tibetan Plateau. Tectonics, 39(2), 1–16. https://doi.org/10.1029/2019TC005782
    [Google Scholar]
  64. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012
    [Google Scholar]
  65. Romans, B. W., & Graham, A. (2013). A deep‐time perspective of land‐ocean linkages in the sedimentary record. Annual Review of Marine Science, 5, 69–94. https://doi.org/10.1146/annurev‐marine‐121211‐172426
    [Google Scholar]
  66. Saylor, J. E., Knowles, J. N., Horton, B. K., Nie, J., & Mora, A. (2013). Mixing of source populations recorded in detrital zircon U‐Pb age spectra of modern river sands. Journal of Geology, 121, 17–33. https://doi.org/10.1086/668683
    [Google Scholar]
  67. Saylor, J. E., & Sundell, K. E. (2016). Quantifying comparison of large detrital geochronology data sets. Geosphere, 12, 203–220. https://doi.org/10.1130/GES01237.1
    [Google Scholar]
  68. Schoenbohm, L. M., Burchfiel, B. C., Liangzhong, C., & Jiyun, Y. (2006). Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper‐crustal rotation, and lower‐crustal flow. GSA Bulletin, 118(5–6), 672–688. https://doi.org/10.1130/B25816.1
    [Google Scholar]
  69. Shao, L., Cao, L., Pang, X., Jiang, T., Qiao, P., & Zhao, M. (2016). Detrital zircon provenance of the Paleogene syn‐rift sediments in the northern South China Sea. Geochemistry, Geophysics, Geosystems, 17, 255–269. https://doi.org/10.1002/2015GC006113
    [Google Scholar]
  70. Shao, L., Cu, Y. C., & Kar, S. (2018). Drainage control of Eocene to Miocene sedimentary records in the southeastern margin of Eurasian plate. GSA Bulletin, 131(3), 461–478. https://doi.org/10.1130/b32053.1
    [Google Scholar]
  71. Shao, L., Li, A., Wu, G., Li, Q., Liu, C., & Qiao, P. (2010). Evolution of sedimentary environment and provenance in Qiongdongnan Basin in the northern South China Sea. Acta Petrolei Sinica, 31, 548–552. https://doi.org/10.7623/syxb201004005
    [Google Scholar]
  72. Sharman, G. R., Covault, J. A., Stockli, D. F., Wroblewski, A. F., & Bush, M. A. (2017). Early Cenozoic drainage reorganization of the United States Western interior–Gulf of Mexico sediment routing system. Geology, 45(2), 187–190. https://doi.org/10.1130/g38765.1
    [Google Scholar]
  73. Sharman, G. R., & Johnstone, S. A. (2017). Sediment unmixing using detrital geochronology. Earth and Planetary Science Letters, 477, 183–194. https://doi.org/10.1016/j.epsl.2017.07.044
    [Google Scholar]
  74. Sharman, G. R., Sharman, J. P., & Sylvester, Z. (2018). DetritalPy: A python‐based toolset for visualizing and analysing detrital geo‐thermochronologic data. The Depositional Record, 4(2), 202–215. https://doi.org/10.1002/dep2.45
    [Google Scholar]
  75. Shi, W., Xie, Y., Wang, Z., Li, X., & Tong, C. (2013). Characteristics of overpressure distribution and its implication for hydrocarbon exploration in the Qiongdongnan Basin. Journal of Asian Earth Sciences, 66, 150–165. https://doi.org/10.1016/j.jseaes.2012.12.037
    [Google Scholar]
  76. Su, M., Wu, C., Chen, H., Li, D., Jiang, T., Xie, X., Jiao, H., Wang, Z., & Sun, X. (2019). Late Miocene provenance evolution at the head of Central Canyon in the Qiongdongnan Basin, northern South China Sea. Marine and Petroleum Geology, 110, 787–796. https://doi.org/10.1016/j.marpetgeo.2019.07.053
    [Google Scholar]
  77. Su, M., Xie, X. N., Xie, Y. H., Wang, Z., Zhang, C., Jiang, T., & He, Y. (2014). The segmentations and the significances of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea. Journal of Asia Earth Sciences, 79, 552–563. https://doi.org/10.1016/j.jseaes.2012.12.038
    [Google Scholar]
  78. Su, M., Zhang, C., Xie, X., Wang, Z., Jiang, T., He, Y., & Zhang, C. (2014). Controlling factors on the submarine canyon system: A case study of the central canyon system in the Qiongdongnan Basin, northern South China sea. Science China Earth Sciences, 57, 2457–2468. https://doi.org/10.1007/s11430‐014‐4878‐4
    [Google Scholar]
  79. Su, T., Farnsworth, A., Spicer, R. A., Huang, J., Wu, F.., Liu, J., Li, S., Xing, Y., Huang, Y., Deng, W. Y., & Tang, H. (2019). No high Tibetan Plateau until the Neogene. Science Advances, 5(3), 1‐8. https://doi.org/10.1126/sciadv.aav2189
    [Google Scholar]
  80. Sun, X., Zhang, X., Zhang, G., Lu, B., Yue, J., & Zhang, B. (2014). Texture and tectonic attribute of Cenozoic basin basement in the northern South China Sea. Science China Earth Sciences, 6, 13. https://doi.org/10.1007/s11430‐014‐4835‐2
    [Google Scholar]
  81. Sun, Z., Zhong, Z., Zhou, D., Qiu, X., & Wu, S. (2003). Deformation mechanism of Red River fault zone during Cenozoic and experimental evidences related to Yinggehai Basin formation. Journal of Tropical Oceanography, 22, 1–9. https://doi.org/10.3969/j.issn.1009‐5470.2003.02.001
    [Google Scholar]
  82. Sundell, K. E., & Saylor, J. E. (2017). Unmixing detrital geochronology age distributions. Geochemistry, Geophysics, Geosystems, 18, 2872–2886. https://doi.org/10.1002/2016GC006774
    [Google Scholar]
  83. Tian, Y. T., Kohn, B. P., Gleadow, A. J. W., & Hu, S. (2014). A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau. Journal of Geophysical Research—Solid Earth, 119(1), 676–698. https://doi.org/10.1002/2013JB010429
    [Google Scholar]
  84. Tsikouras, B., Pe‐Piper, G., Piper, D. J., & Schaffer, M. (2011). Varietal heavy mineral analysis of sediment provenance, Lower Cretaceous Scotian Basin, eastern Canada. Sedimentary Geology, 237, 150–165. https://doi.org/10.1016/j.sedgeo.2011.02.011
    [Google Scholar]
  85. Turner, C. C., Meert, J. G., Pandit, M. K., & Kamenov, G. D. (2014). A detrital zircon U–Pb and Hf isotopic transect across the Son Valley sector of the Vindhyan Basin, India: Implications for basin evolution and paleogeography. Gondwana Research, 26(1), 348–364. https://doi.org/10.1016/j.gr.2013.07.009
    [Google Scholar]
  86. Uenzelmann‐Neben, G. (1998). Neogene sedimentation history of the Congo fan. Marine and Petroleum Geology, 15(7), 650. https://doi.org/10.1016/S0264‐8172(98)00034‐8
    [Google Scholar]
  87. Vermeesch, P. (2013). Multi‐sample comparison of detrital age distributions. Chemical Geology, 341, 140–146. https://doi.org/10.1016/j.chemgeo.2013.01.010
    [Google Scholar]
  88. Wang, B., Lyu, F., Li, S., Yang, Z., Li, L., Wang, X., Lu, Y., Yang, T., Wu, J., & Sun, G. (2021). A buried submarine canyon in the northwest South China Sea: Architecture, development processes and implications for hydrocarbon exploration. Acta Oceanologica Sinica, 40(3), 84–93. https://doi.org/10.1007/s13131‐021‐1700‐y
    [Google Scholar]
  89. Wang, C., Liang, X., Foster, D. A., Tong, C., Liu, P., Liang, X., & Zhang, L. (2019). Linking source and sink: Detrital zircon provenance record of drainage systems in Vietnam and the Yinggehai–Song Hong Basin, South China Sea. Geological Society of America Bulletin, 131, 191–204. https://doi.org/10.1130/B32007.1
    [Google Scholar]
  90. Wang, C., Liang, X., Zhou, Y., Fu, J., Jiang, Y., Dong, C., Xie, Y., Tong, C., Pei, J., & Liu, P. (2015). Construction of age frequencies of provenances on the eastern side of the Yinggehai Basin: Studies of LA‐ICP‐MS U‐Pb ages of detrital zircons from six modern rivers, western Hainan, China. Earth Science Frontiers, 22, 277–289. https://doi.org/10.13745/j.esf.2015.04.028
    [Google Scholar]
  91. Wang, P. (2009). Deep sea sediments and earth system. Marine Geology and Quaternary Geology, 29(4), 1–11. https://doi.org/10.3724/SP.J.1140.2009.04001
    [Google Scholar]
  92. Wang, Y., Xu, Q., Li, D., Han, J., Lü, M., Wang, Y., Li, W., & Wang, H. (2011). The Late Miocene Red River submarine fan in the northwest South China Sea. Chinese Science Bulletin, 56(10), 781–787. https://doi.org/10.1007/s11434‐011‐4441‐z
    [Google Scholar]
  93. Weimer, P. (1990). Sequence stratigraphy, seismic geometries, and depositional history of the Mississippi Fan, deep Gulf of Mexico. AAPG Bulletin, 74(4), 425–453. https://doi.org/10.1306/0C9B2321‐1710‐11D7‐8645000102C1865D
    [Google Scholar]
  94. Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F. V., Quadt, A. V., Roddick, J. C., & Spiegel, W. (1995). Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses. Geostandards Newsletter, 19(1), 1–23. https://doi.org/10.1111/j.1751‐908X.1995.tb00147.x
    [Google Scholar]
  95. Wilson, C. J. L., & Fowler, A. P. (2011). Denudational response to surface uplift in east Tibet: Evidence from apatite fission‐track thermochronology. Geological Society of America Bulletin, 123(9–10), 1966–1987. https://doi.org/10.1130/B30331.1
    [Google Scholar]
  96. Wu, Y., & Zheng, Y. (2004). Genesis of zircon and its constraints on interpretation of U‐Pb age. Chinese Science Bulletin, 49, 1554–1569. https://doi.org/10.1007/BF03184122
    [Google Scholar]
  97. Xie, X., Müller, R. D., Ren, J., Jiang, T., & Zhang, C. (2008). Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northem South China Sea. Marine Geology, 247(3), 129–144. https://doi.org/10.3390/en15124298
    [Google Scholar]
  98. Xie, Y. (2020). Sedimentary characteristics and hydrocarbon exploration potential of the upstream of the Central Canyon in the Yinggehai and Qiongdongnan basins. Bulletin of Geological Science and Technology., 39(5), 69–78. https://doi.org/10.19509/j.cnki.dzkq.2020.0601
    [Google Scholar]
  99. Xie, Y., Fu, J., Yu, S., Xiang, J., Tong, C., Pei, J., Liu, P., Liang, X., Wang, C., Zhou, Y., Jiang, Y., & Wen, S. (2016). Detrital Zircon Ages and Reservoir Source of the Second Member of the Huangliu Formation in the Yinggehai Basin. Geotectonica et Metallogenia, 40(3), 517–544. https://doi.org/10.16539/ddgzyckx.2016.03.009
    [Google Scholar]
  100. Xu, J., Snedden, J. W., Fulthorpe, C. S., Fulthorpe, C. S., Stockli, D. F., Galloway, W. E., & Sickmann, Z. T. (2022). Quantifying the relative contributions of Miocene rivers to the deep Gulf of Mexico using detrital zircon geochronology: Implications for the evolution of Gulf Basin circulation and regional drainage. Basin Research, 34, 1143–1163. https://doi.org/10.1111/bre.12653
    [Google Scholar]
  101. Xu, Q., Li, D., Zhu, W., Zhu, W., & Wang, Y. (2020). SHRIMP U‐Pb ages of detrital zircons: Discussions on provenance control and the Red River capture event. Sedimentary Geology and Tethyan Geology, 40(3), 20–30. https://doi.org/10.19826/j.cnki.1009–3850.2020.07009
    [Google Scholar]
  102. Xu, X., O'Reilly, S. Y., Griffin, W. L., Wang, X., Pearson, N. J., & He, Z. (2007). The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 158(1), 51–78. https://doi.org/10.1016/j.precamres.2007.04.010
    [Google Scholar]
  103. Zhao, M., Shao, L., Liang, J., Qiao, P. J., & Xiang, X. H. (2013). REE character of sediment from the Paleo‐Red River and its implication of provenance. Earth Science, 38(S1), 61–69. https://doi.org/10.3799/dqkx.2013.S1.007
    [Google Scholar]
  104. Zhao, M., Shao, L., Liang, J. S., & Li, Q. (2015). No Red River capture since the late Oligocene: Geochemical evidence from the northwestern South China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 122, 185–194. https://doi.org/10.1016/j.dsr2.2015.02.029
    [Google Scholar]
  105. Zhao, Z. X., Sun, Z., Wang, Z. F., Sun, Z., Liu, J., & Zhang, C. (2015). The high resolution sedimentary filling in Qiongdongnan Basin, northern south China Sea. Marine Geology, 361, 11–24. https://doi.org/10.1016/j.margeo.2015.01.002
    [Google Scholar]
  106. Zhou, D., Ru, K., & Chen, H. Z. (1995). Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region. Tectonophysics, 251(1–4), 161–177. https://doi.org/10.1016/0040‐1951(95)00018‐6
    [Google Scholar]
  107. Zhu, D. C., Wang, Q., Weinberg, R. F., Cawood, P. A., Chung, S. L., Zheng, Y. F., Zhao, Z., Hou, Z. Q., & Mo, X. X. (2022). Interplay between oceanic subduction and continental collision in building continental crust. Nature Communications, 13(1), 7141. https://doi.org/10.1038/s41467‐022‐34826‐0
    [Google Scholar]
  108. Zhu, M., Graham, S., & McHargue, T. (2009a). The Red River Fault Zone in the Yinggehai Basin, South China Sea. Tectonophysics, 476, 397–417.
    [Google Scholar]
  109. Zhu, W., Huang, B., Mi, L., Wilkins, R. W., Fun, N., & Xiao, X. (2009b). Geochemistry, origin and deep‐water exploration potential of natural gases in the Pearl River Mouth and Qiongdongnan basins, south China Sea. AAPG Bulletin, 93, 741–761.
    [Google Scholar]
/content/journals/10.1111/bre.70003
Loading
/content/journals/10.1111/bre.70003
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error