1887
Volume 36, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

The Cenozoic topographic growth of the Tibetan Plateau is a pulsed, polyphase process that still requires more constraints. The Cenozoic sedimentary record of the Ningnan Basin, a continental basin located adjacent to the northeastern margin of the Tibetan Plateau, is a key archive for recording the surface evolution of the Tibetan Plateau. This work reports new provenance data (apatite fission‐track, apatite U–Pb dating, and trace element analysis on the same individual grains) from the Oligocene–Pliocene sedimentary sequence that filled the Ningnan Basin. The data set shows variations in provenance patterns through the Miocene which are related to the tectonic evolution of the northeastern margin of the Tibetan Plateau. In contrast to a primary provenance from the Western Ordos Block (WOB) during the Oligocene, the Miocene sediments were mostly derived from the recycling of Mesozoic successions that occur along the northwestern Haiyuan Fault, documenting it was active in the last ca. 15 Myr. These sediments, in turn, were derived from different orogenic blocks but mainly from different segments of the Qilian Mountains. We show that the Late Miocene–Pliocene sediments were primarily derived from transpressional uplift along the Haiyuan Fault, which affected regions such as the Liupan Mountains. Progressive northeastward migration of tectonic stress since the Middle Miocene has induced extensive regional deformation in the northeastern Tibetan Plateau, particularly along the Haiyuan Fault. The provenance record of the neighbouring Cenozoic basins is a key archive for deciphering this tectonic evolution.

,

The Cenozoic sedimentary record of the Ningnan Basin, a continental basin located adjacent to the northeastern margin of the Tibetan Plateau. The data set shows variations in provenance patterns through the Miocene which are related to the tectonic evolution of the northeastern margin of the Plateau.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70004
2024-11-06
2025-11-16
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/6/bre70004.html?itemId=/content/journals/10.1111/bre.70004&mimeType=html&fmt=ahah

References

  1. An, K., Lin, X., Wu, L., Yang, R., Chen, H., Cheng, X., Xia, Q., Zhang, F., Ding, W., Gao, S., Li, C., & Zhang, Y. (2020). An immediate response to the Indian‐Eurasian collision along the northeastern Tibetan Plateau: Evidence from apatite fission track analysis in the Kuantan Shan‐Hei Shan. Tectonophysics, 774(2019), 228278. https://doi.org/10.1016/j.tecto.2019.228278
    [Google Scholar]
  2. Ansberque, C., Godard, V., Olivetti, V., Bellier, O., de Sigoyer, J., Bernet, M., Stübner, K., Tan, X., Xu, X., & Ehlers, T. A. (2018). Differential exhumation across the Longriba Fault System: Implications for the Eastern Tibetan Plateau. Tectonics, 37(2), 663–679. https://doi.org/10.1002/2017TC004816
    [Google Scholar]
  3. Brandon, M. T. (1996). Probability density plot for fission‐track. Science, 26(5), 663–676.
    [Google Scholar]
  4. Burchfiel, B. C., Zhang, P., Wang, Y., Zhang, W., Song, F., Deng, Q., Molnar, P., & Royden, L. (1991). Geology of the Haiyuan Fault Zone, Ningxia‐Hui Autonomous Region, China, and its relation to the evolution of the Northeastern Margin of the Tibetan Plateau. Tectonics, 10(6), 1091–1110.
    [Google Scholar]
  5. Carter, A. (2019). Thermochronology on sand and sandstones for stratigraphic and provenance studies. In M.Malusà & P.Fitzgerald (Eds.), Fission‐track thermochronology and its application to geology. Springer textbooks in earth sciences, geography and environment (pp. 259–268). Springer. https://doi.org/10.1007/978‐3‐319‐89421‐8_15
    [Google Scholar]
  6. Chen, G., Sun, J. B., Zhou, L. F., Zhang, H. R., Li, X. P., & Wang, Z. W. (2007). Fission‐track‐age records of the Mesozoic tectonic‐events in the southwest margin of the Ordos Basin, China. Science in China, Series D: Earth Sciences, 50(Suppl. 2), 133–143. https://doi.org/10.1007/s11430‐007‐6025‐y
    [Google Scholar]
  7. Chew, D., O'Sullivan, G., Caracciolo, L., Mark, C., & Tyrrell, S. (2020). Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U‐Pb provenance analysis. Earth‐Science Reviews, 202(January), 103093. https://doi.org/10.1016/j.earscirev.2020.103093
    [Google Scholar]
  8. Chew, D. M., Babechuk, M. G., Cogné, N., Mark, C., O'Sullivan, G. J., Henrichs, I. A., Doepke, D., & McKenna, C. A. (2016). (LA,Q)‐ICPMS trace‐element analyses of Durango and McClure Mountain apatite and implications for making natural LA‐ICPMS mineral standards. Chemical Geology, 435, 35–48. https://doi.org/10.1016/j.chemgeo.2016.03.028
    [Google Scholar]
  9. Chew, D. M., Petrus, J. A., & Kamber, B. S. (2014). U‐Pb LA‐ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology, 363, 185–199. https://doi.org/10.1016/j.chemgeo.2013.11.006
    [Google Scholar]
  10. Clark, M. K., Farley, K. A., Zheng, D., Wang, Z., & Duvall, A. R. (2010). Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U–Th)/He ages. Earth and Planetary Science Letters, 296(1–2), 78–88. https://doi.org/10.1016/j.epsl.2010.04.051
    [Google Scholar]
  11. Clark, M. K., & Royden, L. H. (2000). Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8), 703–706. https://doi.org/10.1130/0091‐7613(2000)28<703:TOBTEM>2.0.CO;2
    [Google Scholar]
  12. Copeland, P., Mark, H. T., Kidd, W. S. F., Xu, R., & Zhang, Y. (1987). Rapid early Miocene acceleration of uplift in the Gangdese Belt, Xizang (southern Tibet), and its bearing on accommodation mechanisms of the India‐Asia collision. Earth and Planetary Science Letters, 86(2–4), 240–252. https://doi.org/10.1016/0012‐821X(87)90224‐X
    [Google Scholar]
  13. Dai, S., Fang, X., Dupont‐Nivet, G., Song, C., Gao, J., Krijgsman, W., Langereis, C., & Zhang, W. (2006). Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 111(11), 1–19. https://doi.org/10.1029/2005JB004187
    [Google Scholar]
  14. DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8(2), 105–123. https://doi.org/10.1046/j.1365‐2117.1996.01491.x
    [Google Scholar]
  15. Ding, G., Chen, J., Tian, Q., Shen, X., Xing, C., & Wei, K. (2004). Active faults and magnitudes of left‐lateral displacement along the northern margin of the Tibetan Plateau. Tectonophysics, 380(3–4), 243–260. https://doi.org/10.1016/j.tecto.2003.09.022
    [Google Scholar]
  16. Ding, L., Kapp, P., Cai, F., Garzione, C. N., Xiong, Z., Wang, H., & Wang, C. (2022). Timing and mechanisms of Tibetan Plateau uplift. Nature Reviews Earth and Environment, 3(10), 652–667. https://doi.org/10.1038/s43017‐022‐00318‐4
    [Google Scholar]
  17. Dong, X., Li, Z., Liu, X., Jing, X., Cui, J., Huang, T., Ma, Z., & Kou, L. (2022). Eogene to Neogene north‐eastward expansion of the arcuate tectonic belt in north‐east Tibetan Plateau: Constraints from detrital zircon geochronology and heavy minerals. Geological Journal, 57(9), 3601–3622. https://doi.org/10.1002/gj.4490
    [Google Scholar]
  18. Dong, Y., & Santosh, M. (2016). Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1), 1–40. https://doi.org/10.1016/j.gr.2015.06.009
    [Google Scholar]
  19. Duvall, A. R., Clark, M. K., Kirby, E., Farley, K. A., Craddock, W. H., Li, C., & Yuan, D. Y. (2013). Low‐temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late‐stage orogenesis. Tectonics, 32(5), 1190–1211. https://doi.org/10.1002/tect.20072
    [Google Scholar]
  20. Enkelmann, E., Ratschbacher, L., Jonckheere, R., Nestler, R., Fleischer, M., Gloaguen, R., Hacker, B. R., Zhang, Y. Q., & Ma, Y. S. (2006). Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan basin?Bulletin of the Geological Society of America, 118(5–6), 651–671. https://doi.org/10.1130/B25805.1
    [Google Scholar]
  21. Fan, L. G., Meng, Q. R., Wu, G. L., Wei, H. H., Du, Z. M., & Wang, E. (2019). Paleogene crustal extension in the eastern segment of the NE Tibetan plateau. Earth and Planetary Science Letters, 514, 62–74. https://doi.org/10.1016/j.epsl.2019.02.036
    [Google Scholar]
  22. Fang, X., Yan, M., Van der Voo, R., Rea, D. K., Song, C., Parés, J. M., Gao, J., Nie, J., & Dai, S. (2005). Late Cenozoic deformation and uplift of the NE Tibetan Plateau: Evidence from high‐resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China. Bulletin of the Geological Society of America, 117(9–10), 1208–1225. https://doi.org/10.1130/B25727.1
    [Google Scholar]
  23. Fu, S., Fu, J., Yu, J., Yao, J., Zhang, C., Ma, Z., Yang, Y., & Zhang, Y. (2018). Petroleum geological features and exploration prospect of Linhe Depression in Hetao Basin, China. Petroleum Exploration and Development, 45(5), 803–817. https://doi.org/10.1016/S1876‐3804(18)30084‐3
    [Google Scholar]
  24. Galbraith, R. F. (1984). On statistical estimation in fission track dating. Journal of the International Association for Mathematical Geology, 16(7), 653–669. https://doi.org/10.1007/BF01033028
    [Google Scholar]
  25. Gleadow, A. J. W., & Duddy, I. R. (1981). A natural long‐term track annealing experiment for apatite. Nuclear Tracks, 5(1–2), 169–174. https://doi.org/10.1016/0191‐278X(81)90039‐1
    [Google Scholar]
  26. Glorie, S., March, S., Nixon, A., Meeuws, F., O'Sullivan, G. J., Chew, D. M., Kirkland, C. L., Konopelko, D., & De Grave, J. (2020). Apatite U–Pb dating and geochemistry of the Kyrgyz South Tian Shan (Central Asia): Establishing an apatite fingerprint for provenance studies. Geoscience Frontiers, 11(6), 2003–2015. https://doi.org/10.1016/j.gsf.2020.06.003
    [Google Scholar]
  27. Guo, P., Liu, C., Wang, J., Deng, Y., Mao, G., & Wang, W. (2018). Detrital‐zircon geochronology of the Jurassic coal‐bearing strata in the western Ordos Basin, North China: Evidences for multi‐cycle sedimentation. Geoscience Frontiers, 9(6), 1725–1743. https://doi.org/10.1016/j.gsf.2017.11.003
    [Google Scholar]
  28. Harrison, T. M., Copeland, P., Kidd, W. S. F., & Yin, A. (1992). Raising Tibet. Science, 255(5052), 1663–1670. https://doi.org/10.1126/science.255.5052.1663
    [Google Scholar]
  29. He, S., Wang, H., Chen, J., Xu, X., Zhang, H., Ren, G., & Yu, J. (2007). LA‐ICP‐MS U‐Pb zircon geochronology of basic dikes within Maxianshan rock group in the central Qilian orogenic belt and its tectonic implications. Journal of China University of Geosciences, 18(1), 19–29. https://doi.org/10.1016/S1002‐0705(07)60015‐6
    [Google Scholar]
  30. Huang, H., Niu, Y., Nowell, G., Zhao, Z., Yu, X., & Mo, X. (2015). The nature and history of the Qilian Block in the context of the development of the Greater Tibetan Plateau. Gondwana Research, 28(1), 209–224. https://doi.org/10.1016/j.gr.2014.02.010
    [Google Scholar]
  31. Hurford, A. J. (1990). Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the I.U.G.S. Subcommission on Geochronology: Chemical Geology: Isotope Geoscience Section, 80(2), 171–178. https://doi.org/10.1016/0168‐9622(90)90025‐8
    [Google Scholar]
  32. Jian, X., Weislogel, A., & Pullen, A. (2019). Triassic sedimentary filling and closure of the Eastern Paleo‐Tethys Ocean: New insights from detrital zircon geochronology of Songpan‐Ganzi, Yidun, and West Qinling Flysch in Eastern Tibet. Tectonics, 38(2), 767–787. https://doi.org/10.1029/2018TC005300
    [Google Scholar]
  33. Jolivet, M., Cheng, F., Zuza, A. V., Guo, Z., & Dauteuil, O. (2022). Large‐scale topography of the north Tibetan ranges as a proxy for contrasted crustal‐scale deformation modes. Journal of the Geological Society, 179(4). https://doi.org/10.1144/jgs2021‐085
    [Google Scholar]
  34. Kirby, E., Reiners, P. W., Krol, M. A., Whipple, K. X., Hodges, K. V., Farley, K. A., Tang, W., & Chen, Z. (2002). Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U‐th)/He thermochronology. Tectonics, 21(1), 1–20. https://doi.org/10.1029/2000tc001246
    [Google Scholar]
  35. Lease, R. O., Burbank, D. W., Clark, M. K., Farley, K. A., Zheng, D., & Zhang, H. (2011). Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau. Geology, 39(4), 359–362. https://doi.org/10.1130/G31356.1
    [Google Scholar]
  36. Lease, R. O., Burbank, D. W., Hough, B., Wang, Z., & Yuan, D. (2012). Pulsed Miocene range growth in northeastern Tibet: Insights from Xunhua Basin magnetostratigraphy and provenance. Bulletin of the Geological Society of America, 124(5–6), 657–677. https://doi.org/10.1130/B30524.1
    [Google Scholar]
  37. Li, B., Chen, X., Zuza, A. V., Hu, D., Ding, W., Huang, P., & Xu, S. (2019). Cenozoic cooling history of the North Qilian Shan, northern Tibetan Plateau, and the initiation of the Haiyuan fault: Constraints from apatite‐ and zircon‐fission track thermochronology. Tectonophysics, 751(July 2018), 109–124. https://doi.org/10.1016/j.tecto.2018.12.005
    [Google Scholar]
  38. Li, B., Qi, B., Chen, X., Zuza, A. V., Hu, D., Sun, Y., & Wang, Z. (2023). Two‐phase kinematic evolution of the Qilian Shan, northern Tibetan Plateau: Initial Eocene – Oligocene deformation that accelerated in the mid‐Miocene. The Geological Society of America, 136, 1–18. https://doi.org/10.1130/B37159.1/5996482/b37159
    [Google Scholar]
  39. Li, B., Zuza, A. V., Chen, X., Hu, D., Shao, Z., Qi, B., Wang, Z., Levy, D. A., & Xiong, X. (2020). Cenozoic multi‐phase deformation in the Qilian Shan and out‐of‐sequence development of the northern Tibetan Plateau. Tectonophysics, 782–783(January), 782–783. https://doi.org/10.1016/j.tecto.2020.228423
    [Google Scholar]
  40. Li, L. L. (2007). Magnetostratigraphy and magnetic susceptibility of tertiary in the Liupanshan Mountain. Chinese Master thesis, Lanzhou University Press, 61–66 (in Chinese with English abstract).
  41. Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K., & Vernikovsky, V. (2008). Assembly, configuration, and break‐up history of Rodinia: a synthesis. Precambrian Research, 160(1–2), 179–210. https://doi.org/10.1016/j.precamres.2007.04.021
    [Google Scholar]
  42. Liang, H., Zhang, K., Fu, J., Wang, W., Zhang, P., & Ma, Z. (2021). Sedimentary basin evolution and its implications for outward expansion of the northeastern Tibetan Plateau: Insights from the Tongxin Basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 575(May), 110460. https://doi.org/10.1016/j.palaeo.2021.110460
    [Google Scholar]
  43. Lin, X., Chen, H., Wyrwoll, K. H., Batt, G. E., Liao, L., & Xiao, J. (2011). The uplift history of the Haiyuan‐Liupan Shan region northeast of the present Tibetan plateau: Integrated constraint from stratigraphy and thermochronology. Journal of Geology, 119(4), 372–393. https://doi.org/10.1086/660190
    [Google Scholar]
  44. Lin, X., Chen, H., Wyrwoll, K. H., & Cheng, X. (2010). Commencing uplift of the Liupan Shan since 9.5 Ma: Evidences from the Sikouzi section at its east side. Journal of Asian Earth Sciences, 37(4), 350–360. https://doi.org/10.1016/j.jseaes.2009.09.005
    [Google Scholar]
  45. Liou, J. G., Wang, X. M., & Coleman, R. G. (1989). Blueschists in major suture zones of China. Tectonics, 8(3), 609–619.
    [Google Scholar]
  46. Liu, C., Zhao, H., Zhao, J., Wang, J., Zhang, D., & Yang, M. (2008). Temporo‐spatial coordinates of evolution of the Ordos Basin and its mineralization responses. Acta Geologica Sinica ‐ English Edition, 82(6), 1229–1243. https://doi.org/10.1111/j.1755‐6724.2008.tb00725.x
    [Google Scholar]
  47. Liu, J., Zhang, P., Lease, R. O., Zheng, D., Wan, J., Wang, W., & Zhang, H. (2013). Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range‐Weihe graben: Insights from apatite fission track thermochronology. Tectonophysics, 584, 281–296. https://doi.org/10.1016/j.tecto.2012.01.025
    [Google Scholar]
  48. Liu, S. (2014). Late tertiary reorganizations of deformation in northeastern Tibet constrained by stratigraphy and provenance data from eastern Longzhong Basin. Journal of Geophysical Research, Solid Earth, 119(iv), 3076–3095. https://doi.org/10.1002/2015JB011949
    [Google Scholar]
  49. Liu, T., Pei, X., Liu, C., Li, Z., Li, R., Wei, B., Wang, Y., Ren, H., Xu, X., & Chen, W. (2014). Detrital zircon LA‐ICP‐MS UPb dating of the Taiyangsi Formation in Liangdang area, Western Qinling and its implications for material source and sedimentary age. Geological Bulletin of China, 33(7), 1029–1040. (in Chinese with English abstract).
    [Google Scholar]
  50. Lu, H., Cao, X., Malusà, M. G., Zhang, Z., Pan, J., & Li, H. (2023). Slowing extrusion tectonics and accelerated uplift of Northern Tibet since the Mid‐Miocene. Tectonics, 42(8), 1–23. https://doi.org/10.1029/2023TC007801
    [Google Scholar]
  51. Luo, W., Shi, Z., Liu, C., & Zhao, X. (2021). Detrital zircon U–Pb geochronology as an indicator of provenance in the Zhiluo Formation of the Western Ordos Basin, China. Arabian Journal for Science and Engineering, 46(1), 587–600. https://doi.org/10.1007/s13369‐020‐04993‐7
    [Google Scholar]
  52. Meyer, B., Tapponnier, P., Bourjot, L., Métivier, F., Gaudemer, Y., Peltzer, G., Shunmin, G., & Zhitai, C. (1998). Crustal thickening in Gansu‐Qinghai, lithospheric mantle subduction, and oblique, strike‐slip controlled growth of the Tibet Plateau. Geophysical Journal International, 135(1), 1–47. https://doi.org/10.1046/j.1365‐246X.1998.00567.x
    [Google Scholar]
  53. Molnar, P., & Stock, J. M. (2009). Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 28(3), 1–11. https://doi.org/10.1029/2008TC002271
    [Google Scholar]
  54. Ningxia Bureau of Geology and Mineral Resources (NB‐ GMR) . (1989). Regional geology of Ningxia Hui autonomous region (in Chinese with English introduction). Geological Publishing House, 194–206.
  55. Olivetti, V., Balestrieri, M. L., Chew, D., Zurli, L., Zattin, M., Pace, D., Drakou, F., Cornamusini, G., & Perotti, M. (2023). Ice volume variations and provenance trends in the Oligocene‐Early Miocene Glaciomarine sediments of the Central Ross Sea, Antarctica (Dsdp site 270). Global and Planetary Change, 221, 104042. https://doi.org/10.1016/j.gloplacha.2023.104042
    [Google Scholar]
  56. O'Sullivan, G., Chew, D., Kenny, G., Henrichs, I., & Mulligan, D. (2020). The trace element composition of apatite and its application to detrital provenance studies. Earth‐Science Reviews, 201(2019), 103044. https://doi.org/10.1016/j.earscirev.2019.103044
    [Google Scholar]
  57. O'Sullivan, G. J., Chew, D. M., Morton, A. C., Mark, C., & Henrichs, I. A. (2018). An integrated apatite geochronology and geochemistry tool for sedimentary provenance analysis. Geochemistry, Geophysics, Geosystems, 19(4), 1309–1326. https://doi.org/10.1002/2017GC007343
    [Google Scholar]
  58. Pang, J., Yu, J., Zheng, D., & Wang, W. (2019). Neogene expansion of the Qilian Shan, North Tibet: Implications for the dynamic evolution of the Tibetan plateau. Tectonics, 38(3), 1018–1032. https://doi.org/10.1029/2018TC005258
    [Google Scholar]
  59. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508–2518. https://doi.org/10.1039/c1ja10172b
    [Google Scholar]
  60. Peng, H., Wang, J., Liu, C., Ma, M., Ma, Q., Li, K., Pan, J., Li, J., Qin, Y., Xie, Q., & Zattin, M. (2022). Meso‐Cenozoic growth of the eastern Qilian Shan, northeastern Tibetan Plateau margin: Insight from borehole apatite fission‐track thermochronology in the Xiji Basin. Marine and Petroleum Geology, 143(2020), 105798. https://doi.org/10.1016/j.marpetgeo.2022.105798
    [Google Scholar]
  61. Peng, H., Wang, J., Liu, C., Zhang, S., Zattin, M., Wu, N., & Feng, Q. (2019). Thermochronological constraints on the Meso‐Cenozoic tectonic evolution of the Haiyuan‐Liupanshan region, northeastern Tibetan plateau. Journal of Asian Earth Sciences, 183(August), 103966. https://doi.org/10.1016/j.jseaes.2019.103966
    [Google Scholar]
  62. Peng, H., Wang, J., Liu, C., Zhao, H., Huang, L., Zhao, X., Zhang, S., Liang, C., Wang, Z., Silvia, C., Jiao, X., Zhang, L., Zhang, T., Zhang, D., & Zattin, M. (2023). Long‐term and multiple stage exhumation of the Ordos Basin, western North China craton: Insights from seismic reflection, borehole and geochronological data. Earth‐Science Reviews, 238(February). https://doi.org/10.1016/j.earscirev.2023.104349
    [Google Scholar]
  63. Qi, B., Hu, D., Yang, X., Zhang, Y., Tan, C., Zhang, P., & Feng, C. (2016). Apatite fission track evidence for the Cretaceous‐Cenozoic cooling history of the Qilian Shan (NW China) and for stepwise northeastward growth of the northeastern Tibetan plateau since early Eocene. Journal of Asian Earth Sciences, 124, 28–41. https://doi.org/10.1016/j.jseaes.2016.04.009
    [Google Scholar]
  64. Qian, Q., Wang, Y., Li, H., Jia, X., Han, S., & Zhang, Q. (1998). Geochemical characteristics and genesis of diorites from Laohushan, Gansu Province. Acta Petrologica Sinica, 14(4), 520–528. (in Chinese with English abstract).
    [Google Scholar]
  65. Ritts, B. D., Weislogel, A., Graham, S. A., & Darby, B. J. (2009). Mesozoic tectonics and sedimentation of the giant polyphase nonmarine intraplate Ordos Basin, Western North China block. International Geology Review, 51(2), 95–115. https://doi.org/10.1080/00206810802614523
    [Google Scholar]
  66. Royden, L. H., Burchfiel, B. C., & Van Der Hilst, R. D. (2008). The geological evolution of the Tibetan plateau. Science, 321(5892), 1054–1058. https://doi.org/10.1126/science.1155371
    [Google Scholar]
  67. Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., & Chandler, M. (2012). Global continental and ocean basin reconstructions since 200 Ma. Earth‐Science Reviews, 113(3–4), 212–270. https://doi.org/10.1016/j.earscirev.2012.03.002
    [Google Scholar]
  68. Shi, W., Dong, S., Liu, Y., Hu, J., Chen, X., & Chen, P. (2015). Cenozoic tectonic evolution of the south Ningxia region, northeastern Tibetan plateau inferred from new structural investigations and fault kinematic analyses. Tectonophysics, 649, 139–164. https://doi.org/10.1016/j.tecto.2015.02.024
    [Google Scholar]
  69. Song, S., Niu, Y., Su, L., & Xia, X. (2013). Tectonics of the North Qilian orogen, NW China. Gondwana Research, 23(4), 1378–1401. https://doi.org/10.1016/j.gr.2012.02.004
    [Google Scholar]
  70. Song, S., Zhang, L., & Niu, Y. (2004). Ultra‐deep origin of garnet peridotite from the North Qaidam ultrahigh‐pressure belt, northern Tibetan Plateau, NW China. American Mineralogist, 89(8–9), 1330–1336. https://doi.org/10.2138/am‐2004‐8‐922
    [Google Scholar]
  71. Song, Y., Fang, X., Li, J., An, Z., & Miao, X. (2001). The late Cenozoic uplift of the Liupan Shan, China. Science in China, Series D: Earth Sciences, 44(December), 176–184. https://doi.org/10.1007/BF02911985
    [Google Scholar]
  72. Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two‐stage model. Earth and Planetary Science Letters, 26(2), 207–221. https://doi.org/10.1016/0012‐821X(75)90088‐6
    [Google Scholar]
  73. Sun, L., Deng, C., Deng, T., Kong, Y., Wu, B., Liu, S., Li, Q., & Liu, G. (2023). Magnetostratigraphy of the Oligocene and Miocene of the Linxia Basin, northwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 613(2022), 111404. https://doi.org/10.1016/j.palaeo.2023.111404
    [Google Scholar]
  74. Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., & Jingsui, Y. (2001). Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547), 1671–1677.
    [Google Scholar]
  75. Tseng, C. Y., Yang, H. J., Yang, H. Y., Liu, D., Tsai, C. L., Wu, H., & Zuo, G. (2007). The Dongcaohe ophiolite from the North Qilian Mountains: A fossil oceanic crust of the Paleo‐Qilian ocean. Chinese Science Bulletin, 52(17), 2390–2401. https://doi.org/10.1007/s11434‐007‐0300‐3
    [Google Scholar]
  76. Tseng, C. Y., Yang, H. Y., Wan, Y., Liu, D., Wen, D. J., Lin, T. C., & Tung, K. A. (2006). Finding of Neoproterozoic (∼775 Ma) magmatism recorded in metamorphic complexes from the North Qilian orogen: Evidence from SHRIMP zircon U‐Pb dating. Chinese Science Bulletin, 51(8), 963–970. https://doi.org/10.1007/s11434‐006‐0963‐1
    [Google Scholar]
  77. Tung, K., Yang, H. J., Yang, H. Y., Liu, D., Zhang, J., Wan, Y., & Tseng, C. Y. (2007). SHRIMP U‐Pb geochronology of the zircons from the Precambrian basement of the Qilian Block and its geological significances. Chinese Science Bulletin, 52(19), 2687–2701. https://doi.org/10.1007/s11434‐007‐0356‐0
    [Google Scholar]
  78. Vermeesch, P. (2012). On the visualisation of detrital age distributions. Chemical Geology, 312–313, 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021
    [Google Scholar]
  79. Wang, C. Y., Zhang, Q., Qian, Q., & Zhou, M. F. (2005). Geochemistry of the early Paleozoic Baiyan volcanic rocks (NW China): Implications for the tectonic evolution of the North Qilian Orogenic Belt. Journal of Geology, 113(1), 83–94. https://doi.org/10.1086/425970
    [Google Scholar]
  80. Wang, W., Kirby, E., Peizhen, Z., Dewen, Z., Guangliang, Z., Huiping, Z., Wenjun, Z., & Chizhang, C. (2013). Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: Evidence for basin formation during Oligocene transtension. Bulletin of the Geological Society of America, 125(3–4), 377–400. https://doi.org/10.1130/B30611.1
    [Google Scholar]
  81. Wang, W., Zhang, P., Kirby, E., Wang, L., Zhang, G., Zheng, D., & Chai, C. (2011). A revised chronology for Tertiary sedimentation in the Sikouzi basin: Implications for the tectonic evolution of the northeastern corner of the Tibetan Plateau. Tectonophysics, 505(1–4), 100–114. https://doi.org/10.1016/j.tecto.2011.04.006
    [Google Scholar]
  82. Wang, W., Zhang, P., Liu, C., Zheng, D., Yu, J., Zheng, W., Wang, Y., Zhang, H., & Chen, X. (2016). Pulsed growth of the west Qinling at ~30 Ma in northeastern Tibet: Evidence from Lanzhou Basin magnetostratigraphy and provenance. Journal of Geophysical Research: Solid Earth, 121(11), 7754–7774. https://doi.org/10.1002/2016JB013279
    [Google Scholar]
  83. Wang, W., Zhang, P., Zheng, D., & Pang, J. (2014). Late cenozoic tectonic deformation of the Haiyuan fault zone in the northeastern margin of the Tibetan Plateau. Earth Science Frontiers, 21(4), 266–274. (in Chinese with English abstract).
    [Google Scholar]
  84. Wang, W., Zheng, D., Li, C., Wang, Y., Zhang, Z., & Pang, J. (2020). Cenozoic exhumation of the Qilian Shan in the Northeastern Tibetan Plateau: Evidence from low‐temperature thermochronology. Tectonics, 39, 1–16. https://doi.org/10.1029/2019TC005705
    [Google Scholar]
  85. Wang, X., Song, C., Zattin, M., He, P., Song, A., Li, J., & Wang, Q. (2016). Cenozoic pulsed deformation history of northeastern Tibetan plateau reconstructed from fission‐track thermochronology. Tectonophysics, 672–673, 212–227. https://doi.org/10.1016/j.tecto.2016.02.006
    [Google Scholar]
  86. Wang, Y., Zhang, J., Qi, W., & Guo, S. (2015). Exhumation history of the Xining Basin since the Mesozoic and its tectonic significance. Acta Geologica Sinica, 89(1), 145–162. https://doi.org/10.1111/1755‐6724.12401
    [Google Scholar]
  87. Whittaker, J., Muller, R., Leitchenkov, G., Stagg, H., Sdrolias, M., Gaina, C., & Goncharov, A. (2007). Major Australian‐Antarctic plate reorganization at Hawaiian‐Emperor bend time. Science, 318(4), 83–87.
    [Google Scholar]
  88. Wu, C., Li, J., Zuza, A. V., Liu, C., Liu, W., Chen, X., Jiang, T., & Li, B. (2020). Cenozoic cooling history and fluvial terrace development of the western domain of the Eastern Kunlun Range, northern Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 560(June), 109971. https://doi.org/10.1016/j.palaeo.2020.109971
    [Google Scholar]
  89. Wu, C., Xu, X., Gao, Q., Li, X., Lei, M., Frost, R. B., & Wooden, J. (2010). Early Palaezoie granitoid magmatism and tectonic evolution in North Qilian, NW China. Acta Petrologica Sinica, 26(4), 1027–1044. (in Chinese with English abstract).
    [Google Scholar]
  90. Wu, S., Pei, X., Li, Z., Li, R., Pei, L., Chen, Y., Gao, J., Liu, C., Wei, F., & Wang, Y. (2012). A study of the material source of Dacaotan Group in the northern margin of West Qinling orogenic belt: LA‐ICP‐MS U‐Th‐Pb age evidence of detrital zircons. Geological Bulletin of China, 31(9), 1470–1481. (in Chinese with English abstract).
    [Google Scholar]
  91. Xia, X., Song, S., & Niu, Y. (2012). Tholeiite‐Boninite terrane in the north Qilian suture zone: Implications for subduction initiation and back‐arc basin development. Chemical Geology, 328, 259–277. https://doi.org/10.1016/j.chemgeo.2011.12.001
    [Google Scholar]
  92. Xia, X. H., & Song, S. G. (2010). Forming age and tectono‐petrogenises of the Jiugequan ophiolite in the North Qilian Mountain, NW China. Chinese Science Bulletin, 55(18), 1899–1907. https://doi.org/10.1007/s11434‐010‐3207‐3
    [Google Scholar]
  93. Xie, X. (2016). Provenance and sediment dispersal of the Triassic Yanchang Formation, southwest Ordos Basin, China, and its implications. Sedimentary Geology, 335, 1–16. https://doi.org/10.1016/j.sedgeo.2015.12.016
    [Google Scholar]
  94. Xu, Y., Du, Y., Cawood, P. A., & Yang, J. (2010). Provenance record of a foreland basin: Detrital zircon U–Pb ages from Devonian strata in the North Qilian Orogenic Belt, China. Tectonophysics, 495(3–4), 337–347. https://doi.org/10.1016/j.tecto.2010.10.001
    [Google Scholar]
  95. Yang, H., Zhang, H., Luo, B., Gao, Z., Guo, L., & Xu, W. (2016). Generation of peraluminous granitic magma in a post‐collisional setting: A case study from the eastern Qilian orogen, NE Tibetan Plateau. Gondwana Research, 36, 28–45. https://doi.org/10.1016/j.gr.2016.04.006
    [Google Scholar]
  96. Yang, H., Zhang, H., Luo, B., Zhang, J., Xiong, Z., Guo, L., & Pan, F. (2015). Early Paleozoic intrusive rocks from the eastern Qilian orogen, NE Tibetan plateau: Petrogenesis and tectonic significance. Lithos, 224–225, 13–31. https://doi.org/10.1016/j.lithos.2015.02.020
    [Google Scholar]
  97. Yu, J., Pang, J., Wang, Y., Zheng, D., Liu, C., Wang, W., Li, Y., Li, C., & Xiao, L. (2019). Mid‐Miocene uplift of the northern Qilian Shan as a result of the northward growth of the northern Tibetan Plateau. Geosphere, 15(2), 1–10.
    [Google Scholar]
  98. Yu, J., Zheng, D., Wang, W., Pang, J., Li, C., Wang, Y., Hao, Y., Zhang, H., & Zhang, P. (2023). Cenozoic tectonic development in the northeastern Tibetan Plateau: Evidence from thermochronological and sedimentological records. Global and Planetary Change, 224(March 2022), 104098. https://doi.org/10.1016/j.gloplacha.2023.104098
    [Google Scholar]
  99. Yuan, D. Y., Ge, W. P., Chen, Z. W., Li, C. Y., Wang, Z. C., Zhang, H. P., Zhang, P. Z., Zheng, D. W., Zheng, W. J., Craddock, W. H., Dayem, K. E., Duvall, A. R., Hough, B. G., Lease, R. O., Champagnac, J. D., Burbank, D. W., Clark, M. K., Farley, K. A., Garzione, C. N., … Roe, G. H. (2013). The growth of northeastern Tibet and its relevance to large‐scale continental geodynamics: A review of recent studies. Tectonics, 32(5), 1358–1370. https://doi.org/10.1002/tect.20081
    [Google Scholar]
  100. Yuan, W., & Yang, Z. (2015). The Alashan Terrane was not part of North China by the Late Devonian: Evidence from detrital zircon U‐Pb geochronology and Hf isotopes. Gondwana Research, 27(3), 1270–1282. https://doi.org/10.1016/j.gr.2013.12.009
    [Google Scholar]
  101. Zattin, M., & Wang, X. (2019). Exhumation of the western Qinling mountain range and the building of the northeastern margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 177(April), 307–313. https://doi.org/10.1016/j.jseaes.2019.04.002
    [Google Scholar]
  102. Zhang, J., Dickson, C., & Cheng, H. (2010). Sedimentary characteristics of Cenozoic strata in central‐southern Ningxia, NW China: Implications for the evolution of the NE Qinghai‐Tibetan plateau. Journal of Asian Earth Sciences, 39(6), 740–759. https://doi.org/10.1016/j.jseaes.2010.05.008
    [Google Scholar]
  103. Zhang, J., Li, J., Liu, J., & Feng, Q. (2011). Detrital zircon U‐Pb ages of Middle Ordovician flysch sandstones in the western ordos margin: New constraints on their provenances, and tectonic implications. Journal of Asian Earth Sciences, 42(5), 1030–1047. https://doi.org/10.1016/j.jseaes.2011.03.009
    [Google Scholar]
  104. Zhang, J., Wang, Y., Zhang, B., & Zhao, H. (2015). Evolution of the NE Qinghai‐Tibetan Plateau, constrained by the apatite fission track ages of the mountain ranges around the Xining Basin in NW China. Journal of Asian Earth Sciences, 97(PA), 10–23. https://doi.org/10.1016/j.jseaes.2014.10.002
    [Google Scholar]
  105. Zhang, J., Zhang, Y., Xiao, W., Wang, Y., & Zhang, B. (2015). Linking the Alxa Terrane to the eastern Gondwana during the Early Paleozoic: Constraints from detrital zircon U‐Pb ages and Cambrian sedimentary records. Gondwana Research, 28(3), 1168–1182. https://doi.org/10.1016/j.gr.2014.09.012
    [Google Scholar]
  106. Zhang, J. X., Meng, F. C., & Wan, Y. S. (2007). A cold early Palaeozoic subduction zone in the North Qilian Mountains, NW China: Petrological and U‐Pb geochronological constraints. Journal of Metamorphic Geology, 25(3), 285–304. https://doi.org/10.1111/j.1525‐1314.2006.00689.x
    [Google Scholar]
  107. Zhang, L., Zhang, H., Zhang, S., Xiong, Z., Luo, B., Yang, H., Pan, F., Zhou, X., Xu, W., & Guo, L. (2017). Lithospheric delamination in post‐collisional setting: Evidence from intrusive magmatism from the North Qilian orogen to southern margin of the Alxa block, NW China. Lithos, 288–289, 20–34. https://doi.org/10.1016/j.lithos.2017.07.009
    [Google Scholar]
  108. Zhang, Y., Chen, X., Zuza, A. V., Zhang, J., Shao, Z., Li, B., Xu, S., Zhang, B., Zhao, H., & Wang, Z. (2022). Testing the cenozoic lower crustal flow beneath the Qinling Orogen, northeastern Tibetan Plateau. Journal of Structural Geology, 165(October), 104747. https://doi.org/10.1016/j.jsg.2022.104747
    [Google Scholar]
  109. Zhang, Y., Ma, Y., Yang, N., Shi, W., & Dong, S. (2003). Cenozoic extensional stress evolution in North China. Journal of Geodynamics, 36(5), 591–613. https://doi.org/10.1016/j.jog.2003.08.001
    [Google Scholar]
  110. Zhang, Y., Wang, D., Yang, H., Xin, B., Fu, J., & Yao, J. (2015). Provenance analysis of Nanyinger Group in the North Qilian Belt: Constraints from zircon U–Pb geochronology. Arabian Journal of Geosciences, 8(6), 3403–3416. https://doi.org/10.1007/s12517‐014‐1439‐2
    [Google Scholar]
  111. Zhao, X., Liu, C., Wang, J., Luo, W., Du, F., & Ma, L. (2020). Provenance analyses of lower cretaceous strata in the Liupanshan Basin: From Paleocurrents indicators, conglomerate clast compositions, and zircon U‐Pb geochronology. Journal of Earth Science, 31(4), 757–771 (in Chinese with English abstract). https://doi.org/10.1007/s12583‐020‐1324‐8
    [Google Scholar]
  112. Zhao, X., Liu, C., Wang, J., Zhao, Y., Zhang, D., Wang, L., Deng, Y., & Guo, P. (2016). Mesozoic‐Cenozoic tectonic uplift events of Xiangshan Mountain in northern north‐south tectonic belt, China. Acta Petrologica Sinica, 32(7), 2124–2136.
    [Google Scholar]
  113. Zhao, X., Zhao, S., Liu, C., Wang, J., Huang, L., Niu, Y., Chen, Y., Du, F., Peng, H., Feng, Z., & Dong, Y. (2024). Provenance analysis of the Cenozoic sedimentary successions in the Ningnan Basin, NE Tibetan Plateau: Constraints on Sedimentological and Tectonomorphological evolution. Acta Geologica Sinica (English Edition) under pressing. https://doi.org/10.1111/1755‐6724.15165
    [Google Scholar]
  114. Zheng, D., Wang, W., Wan, J., Yuan, D., Liu, C., Zheng, W., Zhang, H., Pang, J., & Zhang, P. (2017). Progressive northward growth of the northern Qilian Shan‐Hexi Corridor (northeastern Tibet) during the Cenozoic. Lithosphere, 9(3), 408–416. https://doi.org/10.1130/L587.1
    [Google Scholar]
  115. Zheng, D., Zhang, P. Z., Wan, J., Yuan, D., Li, C., Yin, G., Zhang, G., Wang, Z., Min, W., & Chen, J. (2006). Rapid exhumation at ~ 8 Ma on the Liupan Shan thrust fault from apatite fission‐track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth and Planetary Science Letters, 248(1–2), 198–208. https://doi.org/10.1016/j.epsl.2006.05.023
    [Google Scholar]
  116. Zuza, A. V., Wu, C., Wang, Z., Levy, D. A., Li, B., Xiong, X., & Chen, X. (2019). Underthrusting and duplexing beneath the northern Tibetan Plateau and the evolution of the Himalayan‐Tibetan orogen. Lithosphere, 11(2), 209–231. https://doi.org/10.1130/L1042.1
    [Google Scholar]
/content/journals/10.1111/bre.70004
Loading
/content/journals/10.1111/bre.70004
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error