1887
Volume 36, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

Exhumation affects sedimentary basin evolution by influencing structural, pressure and temperature dynamics, thereby impacting energy resource formation. Compaction‐based methods are widely used to quantify exhumation, utilising sonic and porosity data to track sediment uplift from its maximum burial depths. However, uncertainties arise from applying empirical compaction models developed for specific geological regions, highlighting the need for region‐specific models. Even such region‐specific models contain uncertainties, which can compromise exhumation estimates. We, therefore, develop a probabilistic compaction model for the Northwest Shelf Basins using sonic data from normally compacted and unexhumed shales from the Northern Carnarvon Basin (NCB). The model's robustness is estimated using MCMC, and uncertainty propagation analysis is employed to assess the impact of model uncertainty on the model's predictive applications. The model shows exponential porosity reduction with depth, demonstrating rapid compaction from the surface to ca. 2 km and slower compaction thereafter. The model is then applied to interpret new datasets from the Canning, Gippsland and NCB regions. The results reveal that while some parts of the NCB exhibit normal compaction without exhumation, others were significantly exhumed. Conversely, Canning and Gippsland Basin data indicate signs of significant exhumation, as suggested by previous studies, thereby confirming the model's effectiveness outside the Northwest Shelf. Since the model could not explain data from exhumed regions, we inferred new models incorporating “exhumation” parameters to interpret the complex compaction histories of these areas, and the best‐fitting models were selected using the Bayes Factor method. Uncertainty analysis revealed that the impacts of model uncertainty on exhumation estimates are consistent across wide depth ranges. Our findings highlight the need to refine compaction models for better predictive reliability and informed resource exploration in sedimentary basins.

,

The reference compaction model for the Northwest Shelf Basin illustrates porosity reduction with depth. The model demonstrates rapid compaction from the surface to approximately 2 km depth, followed by slower compaction thereafter. While the model shows some similarities to the Nagaoka Basin model, it deviates from Athy's classic Oklahoma model and other models.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70005
2024-11-11
2025-01-24
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/6/bre70005.html?itemId=/content/journals/10.1111/bre.70005&mimeType=html&fmt=ahah

References

  1. Aldega, L., Corrado, S., Di Paolo, L., Somma, R., Maniscalco, R., & Balestrieri, M. L. (2011). Shallow burial and exhumation of the Peloritani Mountains (NE Sicily, Italy): Insight from paleothermal and structural indicators. Geological Society of America Bulletin, 123(1–2), 132–149. https://doi.org/10.1130/B30093.1
    [Google Scholar]
  2. Allen, P. A., & Allen, J. A. (2013). Basin analysis principles and applications to petroleum systems (3rd ed.). Wiley Blackwell.
    [Google Scholar]
  3. Athy, L. F. (1930). Density, porosity, and compaction of sedimentary rocks. AAPG Bulletin, 14, 1–24. https://doi.org/10.1306/3D93289E‐16B1‐11D7‐8645000102C1865D
    [Google Scholar]
  4. Bjørlykke, K. (2014). Petroleum geoscience: From sedimentary environments to rock physics. Springer.
    [Google Scholar]
  5. Bjorlykke, K., Jahren, J., Mondol, N. H., Marcussen, O., Croize, D., Peltonen, C., & Thyberg, B. (2009). Sediment compaction and rock properties, #50192, 8.
  6. Bray, R. J., Green, P. F., & Duddy, I. R. (1992). Thermal history reconstruction using apatite fission track analysis and vitrinite reflectance: A case study from the UK east midlands and southern North Sea. Geological Society, London, Special Publications, 67(1), 3–25. https://doi.org/10.1144/GSL.SP.1992.067.01.01
    [Google Scholar]
  7. Burnham, A. K. (2019). Kinetic models of vitrinite, kerogen, and bitumen reflectance. Organic Geochemistry, 131, 50–59. https://doi.org/10.1016/j.orggeochem.2019.03.007
    [Google Scholar]
  8. Caricchi, C., Aldega, L., & Corrado, S. (2015). Reconstruction of maximum burial along the northern Apennines thrust wedge (Italy) by indicators of thermal exposure and modelling. Geological Society of America Bulletin, 127(3–4), 428–442. https://doi.org/10.1130/B30947.1
    [Google Scholar]
  9. Corcoran, D. V., & Doré, A. G. (2005). A review of techniques for the estimation of magnitude and timing of exhumation in offshore basins. Earth‐Science Reviews, 72(3–4), 129–168. https://doi.org/10.1016/j.earscirev.2005.05.003
    [Google Scholar]
  10. Dasgupta, T., & Mukherjee, S. (2020). Compaction of sediments and different compaction models. In T.Dasgupta & S.Mukherjee (Eds.), Sediment compaction and applications in petroleum geoscience (pp. 1–8). Springer International Publishing. https://doi.org/10.1007/978‐3‐030‐13442‐6_1
    [Google Scholar]
  11. DiCaprio, L., Gurnis, M., & Müller, R. D. (2009). Long‐wavelength tilting of the Australian continent since the Late Cretaceous. Earth and Planetary Science Letters, 278(3), 175–185. https://doi.org/10.1016/j.epsl.2008.11.030
    [Google Scholar]
  12. Dong, J.‐J., Hsu, J.‐Y., Wu, W.‐J., Shimamoto, T., Hung, J.‐H., Yeh, E.‐C., Wu, Y.‐H., & Sone, H. (2010). Stress‐dependence of the permeability and porosity of sandstone and shale from TCDP hole‐a. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1141–1157. https://doi.org/10.1016/j.ijrmms.2010.06.019
    [Google Scholar]
  13. Duddy, I. R., & Green, P. F. (1992). Tectonic development of the Gippsland Basin and environs: Identification of key episodes using apatite fission track analysis (AFTA). Energy, Economics and Environment. Proc. Gippsland Basin Symposium, Melbourne, 1992, 111–120. Scopus.
  14. Duddy, I. R., Moore, M. E., & O'Brien, C. (2005). Thermal History Reconstruction in Five Canning Basin Wells: Acacia‐1 &‐2, Kidson‐1, Willara‐1 & Yulleroo‐1 Based on Apatite Fission Track Analysis (AFTA®) and Vitrinite Reflectance Data, Geotrack Report, p. 28.
  15. Foreman‐Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. (2013). Emcee: The MCMC hammer. Publications of the Astronomical Society of the Pacific, 125(925), 306–312. https://doi.org/10.1086/670067
    [Google Scholar]
  16. Gartrell, A., Torres, J., Dixon, M., & Keep, M. (2016). Mesozoic rift onset and its impact on the sequence stratigraphic architecture of the Northern Carnarvon Basin. The APPEA Journal, 56(1), 143. https://doi.org/10.1071/AJ15012
    [Google Scholar]
  17. Gibbons, A. D., Barckhausen, U., van den Bogaard, P., Hoernle, K., Werner, R., Whittaker, J. M., & Müller, R. D. (2012). Constraining the Jurassic extent of Greater India: Tectonic evolution of the West Australian margin. Geochemistry, Geophysics, Geosystems, 13. https://doi.org/10.1029/2011GC003919
    [Google Scholar]
  18. Goodman, J., & Weare, J. (2010). Ensemble samplers with affine invariance. Communications in Applied Mathematics and Computational Science, 5(1), 65–80. https://doi.org/10.2140/camcos.2010.5.65
    [Google Scholar]
  19. Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586‐020‐2649‐2
    [Google Scholar]
  20. Hedberg, H. D. (1936). Gravitational compaction of clays and shales. American Journal of Science, s5‐31(184), 241–287. https://doi.org/10.2475/ajs.s5‐31.184.241
    [Google Scholar]
  21. Heine, C., Müller, R. D., Steinberger, B., & DiCaprio, L. (2010). Integrating deep Earth dynamics in paleogeographic reconstructions of Australia. Tectonophysics, 483(1–2), 135–150. https://doi.org/10.1016/j.tecto.2009.08.028
    [Google Scholar]
  22. Hogg, D. W., Bovy, J., & Lang, D. (2010). Data analysis recipes: Fitting a model to data, 55.
  23. Holford, S., Hillis, R., Duddy, I., Green, P., Stoker, M., Tuitt, A., Backé, G., Tassone, D., & MacDonald, J. (2011). Cenozoic post‐breakup compressional deformation and exhumation of the southern Australian margin. The APPEA Journal, 51(1), 613. https://doi.org/10.1071/AJ10044
    [Google Scholar]
  24. Japsen, P., Mukerji, T., & Mavko, G. (2007). Constraints on velocity‐depth trends from rock physics models. Geophysical Prospecting, 55(2), 135–154. https://doi.org/10.1111/j.1365‐2478.2007.00607.x
    [Google Scholar]
  25. Johnson, L. M., Rezaee, R., Kadkhodaie, A., Smith, G., & Yu, H. (2017). A new approach for estimating the amount of eroded sediments, a case study from the Canning Basin, Western Australia. Journal of Petroleum Science and Engineering, 156, 19–28. https://doi.org/10.1016/j.petrol.2017.05.008
    [Google Scholar]
  26. Longley, L., Buessenschuett, L., Clydsdale, L., Cubitt, C., Davis, R., Johnson, M., Marshall, N., Somerville, R., & Spry, T. (2002). The north west shelf of Australia a Woodside perspective, the sedimentary basins of Western Australia 3: Proceedings of the petroleum exploration Society of Australia Symposium. PESA, 27–88.
  27. Magara, K. (1976). Thickness of removed sedimentary rocks, paleopore pressure, and paleotemperature, southwestern part of Western Canada Basin. AAPG Bulletin, 60(4), 554–566. https://doi.org/10.1306/83D92401‐16C7‐11D7‐8645000102C1865D
    [Google Scholar]
  28. Magara, K. (1980). Comparison of porosity‐depth relationships of shale and sandstone. Journal of Petroleum Geology, 3, 175–185. https://doi.org/10.1111/j.1747‐5457.1980.tb00981.x
    [Google Scholar]
  29. Makuluni, P., Hauser, J., & Clark, S. (2022). Tilting of the Australian continent: New evidence from the subsidence and deposition history of the northern Carnarvon Basin. Marine and Petroleum Geology, 137, 105483. https://doi.org/10.1016/j.marpetgeo.2021.105483
    [Google Scholar]
  30. Makuluni, P., Johnson, L. M., Hauser, J., Langhi, L., & Clark, S. (2021). Quantifying exhumation using compaction and vitrinite reflectance in the southern Bonaparte Basin, north west shelf, Australia. Marine and Petroleum Geology, 134, 105318. https://doi.org/10.1016/j.marpetgeo.2021.105318
    [Google Scholar]
  31. Makuluni, P., Johnson, L. M., Langhi, L., Hauser, J., & Clark, S. (2024). The spatio‐temporal variation of exhumation and its impacts on the resource distribution in the Northern Carnarvon Basin, Australia. Marine and Petroleum Geology, 165, 106898. https://doi.org/10.1016/j.marpetgeo.2024.106898
    [Google Scholar]
  32. Marshall, N. G., & Lang, S. C. (2013). A new sequence stratigraphic framework for the north west shelf, Australia, 32.
  33. Müller, R. D., Hassan, R., Gurnis, M., Flament, N., & Williams, S. E. (2018). Dynamic topography of passive continental margins and their hinterlands since the Cretaceous. Gondwana Research, 53, 225–251. https://doi.org/10.1016/j.gr.2017.04.028
    [Google Scholar]
  34. Paumard, V., Bourget, J., Payenberg, T., Ainsworth, R. B., George, A. D., Lang, S., Posamentier, H. W., & Peyrot, D. (2018). Controls on shelf‐margin architecture and sediment partitioning during a syn‐rift to post‐rift transition: Insights from the Barrow Group (Northern Carnarvon Basin, North West Shelf, Australia). Earth‐Science Reviews, 177, 643–677. https://doi.org/10.1016/j.earscirev.2017.11.026
    [Google Scholar]
  35. Peter, S. J., Siviglia, A., Nagel, J., Marelli, S., Boes, R. M., Vetsch, D., & Sudret, B. (2018). Development of probabilistic dam breach model using Bayesian inference. Water Resources Research, 54(7), 4376–4400. https://doi.org/10.1029/2017WR021176
    [Google Scholar]
  36. Sandiford, M. (2007). The tilting continent: A new constraint on the dynamic topographic field from Australia. Earth and Planetary Science Letters, 261(1), 152–163. https://doi.org/10.1016/j.epsl.2007.06.023
    [Google Scholar]
  37. Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., & Francis, R. (2014). New global marine gravity model from CryoSat‐2 and Jason‐1 reveals buriedtectonic structure. Science, 346(6205), 65–67. https://doi.org/10.1126/science.1258213
    [Google Scholar]
  38. Sivia, D. S., & Skilling, J. (2006). Data analysis: A Bayesian tutorial (2nd ed.). Oxford University Press.
    [Google Scholar]
  39. Tassone, D. R., Holford, S. P., Duddy, I. R., Green, P. F., & Hillis, R. R. (2014). Quantifying Cretaceous–Cenozoic exhumation in the Otway Basin, southeastern Australia, using sonic transit time data: Implications for conventional and unconventional hydrocarbon prospectivity. AAPG Bulletin, 98(1), 67–117. https://doi.org/10.1306/04011312111
    [Google Scholar]
  40. Tassone, D. R., Holford, S. P., Stoker, M. S., Green, P., Johnson, H., Underhill, J. R., & Hillis, R. R. (2014). Constraining Cenozoic exhumation in the Faroe‐Shetland region using sonic transit time data. Basin Research, 26(1), 38–72. https://doi.org/10.1111/bre.12052
    [Google Scholar]
  41. Tindale, K., Keall, J., Newell, N., & Smith, N. (1998). Structural evolution and charge history of the Exmouth Sub‐basin, northern Carnarvon Basin, Western Australia. In P. G.Purcell & R. R.Purcell (Eds.), The Sedimentary Basins of Western Australia 2 (pp. 478–490). The Sedimentary Basins of WA. https://pesa.com.au/the_sedimentary_basins_of_wa_2_p447‐472‐pdf/
    [Google Scholar]
  42. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … Vázquez‐Baeza, Y. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592‐019‐0686‐2
    [Google Scholar]
  43. Wagenmakers, E.‐J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis testing for psychologists: A tutorial on the Savage–Dickey method. Cognitive Psychology, 60(3), 158–189. https://doi.org/10.1016/j.cogpsych.2009.12.001
    [Google Scholar]
  44. Wilkinson, M., & Haszeldine, R. S. (2011). Oil charge preserves exceptional porosity in deeply buried, overpressured sandstones: Central North Sea, UK. Journal of the Geological Society, 168(6), 1285–1295. https://doi.org/10.1144/0016‐76492011‐007
    [Google Scholar]
  45. Wilkinson, M., Haszeldine, R. S., & Fallick, A. E. (2014). Authigenic illite within northern and central North Sea oilfield sandstones: Evidence for post‐growth alteration. Clay Minerals, 49(2), 229–246. https://doi.org/10.1180/claymin.2014.049.2.06
    [Google Scholar]
/content/journals/10.1111/bre.70005
Loading
/content/journals/10.1111/bre.70005
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error